Simultaneous Alignment and Structure Prediction of RNAs Are Three Input Sequences Better than Two?*

Beeta Masoumi and Marcel Turcotte

School of Information Technology and Engineering University of Ottawa Ottawa, Ontario, Canada {bmasoumi,turcotte}@site.uottawa.ca

A Web Appendix: Supplementary Material

^{* 2005} International Workshop on Bioinformatics Research and Applications

Table 1. tRNA dataset.

Id Lei	ngth Description
RD0260	77 Asp Phage T5 (Virus)
RD0500	76 Asp Haloferax volcanii (Archae)
RD4800	71 Asp Aedes albopictus (Mitochondria, Animal)
RE2140	76 Glu Synechocystis sp. (Eubacteria)
RE6781	76 Glu Hordeum vulgare (Chloroplast)
RF6320	76 Phe Schizosaccharomyces pombe (Cytoplasm, Fungi)
RL0503	88 Leu Haloferax volcanii (Archae)
RL1141	89 Leu Mycoplasma capricolum (Eubacteria)
RS0380	88 Ser Halobacterium cutirubrum (Archae)
RS1141	92 Ser Mycoplasma capricolum (Eubacteria)

Table 2. 5S rRNA dataset.

Id	Length	Description
AJ131594	117	Delftia acidovorans
AJ251080	117	$Geobacillus\ stearothermophilus$
K02682	120	Micrococcus luteus
M10816	119	$Geobacillus\ stearothermophilus$
M16532	121	Thermus sp.
M25591	117	$Geobacillus\ stearothermophilus$
V00336	120	Escherichia coli
X02024	119	Sporosarcina pasteurii
X02627	120	Agrobacterium tumefaciens
X04585	119	Rhodobacter capsulatus
X08000	122	Arthrobacter oxydans
X08002	122	Arthrobacter globiformis

 Table 3. Sensitivity for the tRNA dataset.

Id	N_{xd}	N_d	Min_{xd}	Min_d	Max_{xd}	Max_d	Ave_{xd}	Ave_d
RD0260	4	5	95	57	100	100	98.8	90.5
RD0500	4	5	76	47	95	95	81.0	80.0
RD4800	5	5	95	57	100	100	99.0	91.4
RE2140	2	4	100	95	100	100	100.0	98.8
RE6781	2	4	100	81	100	100	100.0	95.2
RF6320	4	5	95	47	100	100	96.4	89.5
RL0503	1	2	95	95	95	95	95.8	95.8
RL1141	2	3	92	68	92	92	92.0	84.0
RS0380	1	2	92	80	92	80	92.0	80.0
RS1141	2	3	88	65	88	92	88.5	82.1

tRNA dataset: 1 = Sensitivity, 2 = PPV, 3 = MCC

Fig. 1. Effect of various gap penalty scores on PPV, sensitivity and MCC for the tRNA dataset.

5S dataset: 1 = Sensitivity, 2 = PPV, 3 = MCC

Fig. 2. Effect of various gap penalty scores on MCC, PPV and Sensitivity for the 5S dataset.

Table 4. MCC for the tRNA dataset.

Id	N_{xd}	N_d	Min_{xd}	Min_d	Max_{xd}	Max_d	Ave_{xd}	Ave_d
RD0260	4	5	97	67	100	100	99.4	93.0
RD0500	4	5	76	46	97	97	81.6	80.4
RD4800	5	5	97	67	100	100	99.5	93.5
RE2140	2	4	100	97	100	100	100.0	99.4
RE6781	2	4	100	79	100	100	100.0	94.8
RF6320	4	5	95	46	100	100	96.4	89.3
RL0503	1	2	97	97	97	97	97.9	97.9
RL1141	2	3	95	69	95	95	95.9	87.1
RS0380	1	2	95	81	95	83	95.9	82.5
RS1141	2	3	94	68	94	96	94.1	86.1

Fig. 3. Reference (a), Dynalign (b) and X-Dynalign (c) structures for the tRNA RS0380.

Id	N_{xd}	N_d	Min_{xd}	Min_d	Max_{xd}	Max_d	Ave_{xd}	Ave_d
AJ131594	2	3	86	86	86	89	86.8	87.7
AJ251080	6	5	76	76	78	84	77.2	79.4
D11460	6	5	73	63	76	81	74.6	71.1
K02682	8	9	53	79	84	89	76.3	84.3
M10816	3	4	76	76	78	84	77.2	80.9
M16532	1	2	82	71	82	76	82.1	74.3
M25591	6	5	76	76	78	84	76.7	79.4
V00336	3	4	62	57	82	90	75.8	78.8
X02024	9	6	76	73	78	84	77.2	76.8
X02627	1	2	84	87	84	89	84.6	88.5
X04585	2	3	63	63	84	81	73.7	74.6
X08000	5	5	74	74	74	79	74.4	77.5
X08002	5	5	74	74	74	79	74.4	77.5

Table 5. Sensitivity for the 5S dataset.

Fig. 4. Reference (a), Dynalign (b) and X-Dynalign (c) secondary structures for the 5S rRNA K02682.

Id	N_{xd}	N_d	Min_{xd}	Min_d	Max_{xd}	Max_d	Ave_{xd}	Ave_d
AJ131594	2	3	93	89	93	93	93.2	91.0
AJ251080	6	5	83	79	84	85	83.5	82.1
D11460	6	5	80	64	81	85	80.8	75.1
K02682	8	9	58	85	92	93	82.4	88.1
M10816	3	4	83	80	84	86	83.7	84.3
M16532	1	2	87	74	87	81	87.9	78.0
M25591	6	5	81	79	83	85	83.0	82.1
V00336	3	4	68	61	90	94	83.5	84.8
X02024	9	6	83	79	84	86	83.4	81.1
X02627	1	2	92	90	92	93	92.0	92.2
X04585	2	3	67	65	89	87	78.4	78.5
X08000	5	5	82	82	82	83	82.1	83.2
X08002	5	5	82	82	82	83	82.1	83.2

Table 6. MCC for the 5S dataset.