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Abstract

While RNAs are well known to possess complex structures, functionally similar RNAs often

have little sequence similarity. While the exact size and spacing of base-paired regions

vary, functionally similar RNAs have pronounced similarity in the arrangement, or topology,

of base-paired stems. Furthermore, predicted RNA structures often lack pseudoknots (a

crucial aspect of biological activity), and are only partially correct, or incomplete. A topologi-

cal approach addresses all of these difficulties. In this work we describe each RNA struc-

ture as a graph that can be converted to a topological spectrum (RNA fingerprint). The set

of subgraphs in an RNA structure, its RNA fingerprint, can be compared with the finger-

prints of other RNA structures to identify and correctly classify functionally related RNAs.

Topologically similar RNAs can be identified even when a large fraction, up to 30%, of the

stems are omitted, indicating that highly accurate structures are not necessary. We investi-

gate the performance of the RNA fingerprint approach on a set of eight highly curated RNA

families, with diverse sizes and functions, containing pseudoknots, and with little sequence

similarity–an especially difficult test set. In spite of the difficult test set, the RNA fingerprint

approach is very successful (ROC AUC > 0.95). Due to the inclusion of pseudoknots, the

RNA fingerprint approach both covers a wider range of possible structures than methods

based only on secondary structure, and its tolerance for incomplete structures suggests

that it can be applied even to predicted structures. Source code is freely available at https://

github.rcac.purdue.edu/mgribsko/XIOS_RNA_fingerprint.

Introduction

Once seen as a simple scaffold, RNA is now known to play important regulatory and catalytic
roles. RNA is involved in processes including transcriptional regulation [1], RNA maturation
and modification [2], and RNA splicing [3]. The structuralmotifs in RNA that are responsible
for its functions are evolutionarily conserved; however, unlike DNA and protein, for which
conserved functionalmotifs can be identified based on sequence similarity, the functional
motifs in RNA may have little or no sequence similarity [4], and instead conserve patterns of
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base-pairing (stems) and topological relationships between base-paired regions, for instance
nesting of stems, multi-loops, and pseudoknots [5, 6]. This topological view of RNA structure
has been discussed by Giegerich et al. who point out that, in a family of RNAs with the same
function, the global arrangements of structural elements (topology) are conserved, but there is
considerable variation in the length of stems, presence of bulge loops and unpaired bases, and
type of base-pairs. Therefore, in the study of RNA functions, it may be more relevant to look at
global topological patterns than individual base-pairs [7, 8]. RNAs with similar functions, for
example those in ribonuclease P (RNase P), the ribosome, or self-splicing introns, typically
have strongly conserved topologies [5, 9–11]. One of the notable topological aspects of RNA
structure is the importance of pseudoknots in many classes of molecules. For example, in Hep-
atitis Delta Virus (HDV), a double-pseudoknotted structure contained in a self-cleaving ribo-
zyme is a key factor in HDV infection [12]; in Group I self-splicing introns, the catalytic core is
formed by pseudoknots [13]; in ribosomal RNA, pseudoknots at the catalytic site are the key
structures that mediate microbial resistance to antibiotics [14] and stimulate viral frame-shift-
ing [15].
As only a small number of functional RNA classes have been identified, we believe that the

majority of regulatory and functional RNA motifs are yet to be identified. Eukaryotic genomes
are pervasively transcribed [16]; almost every base can be found in an RNA transcript. This is
surprising since, in most genomes, protein-coding sequences comprise only a small fraction of
the genome. Much of this RNA is therefore likely to be regulatory in nature, and will almost
certainly contain functionally important structures, including pseudoknots.
Just as conserved structural topologies are important for RNA function, the identification of

novel conserved topologies provides an approach to discovering the functions of currently
unknown classes of biologically important RNAs. An analogy can be made to the importance
of sequence alignment and database searching programs in identifying novel proteins and
DNA regulatory elements. While typical functional RNA structures are pseudoknotted, the
current computational approaches to RNA structure comparison only consider structures
without pseudoknots. Because of their importance to RNA function, we believe that incorpo-
rating pseudoknots in structural comparisons is critical to identifying biologically important
classes of molecules. In this paper we propose a straightforward approach to comparing RNA
structural topologies, including pseudoknots, and identifying known and unknown conserved
topologies.Waterman [17] introduced the first graphical representation of RNA structure, the
full-graph, where the nodes represents nucleotides. The tree-graph representation was later
introduced by Shapiro et al., which is an abstract tree where the nodes represent structural ele-
ments [18–20], and this coarse-grained representation was implemented in the ViennaRNA
package [21]. Fontana et al. implemented the homeomorphically irreducible tree (HIT) that
represents an RNA secondary structure as a contracted topology in which each node represents
a structural element weighted by size [22]. Shu et al. have developed the element-contact
graphs (ECGs) with size-weighted nodes as well [23], which uses topological indices, such as
the Randić index [23, 24], the Wiener index, and Balaban index, to measure graph connectivity
[23, 24]. Although the ECGs framework and an extendedWiener index [25] were developed to
be able to identify small ncRNAs such as miRNAs, no evidencewas shown for its ability to clas-
sify larger RNAs (for example, 23S rRNA are usually over 1000nt long) with low sequence sim-
ilarity. The RNAshapes package [7, 8] of Giegerich et al., which represents RNA structures as
abstract shapes and aims for efficient RNA structure comparisons, has been shown useful in
topologically clustering RNA families; however, RNAshapes does not performwell on families
with pseudoknots [26]. Building on this work, Heyne et al. developed a graph-based pipeline
called GraphClust [27] for fast clustering of RNA molecules. In this approach, RNA secondary
structures are generated by the RNAshapes package from input sequences, encoded by graphs
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preserving nucleotide connectivity, and clustered by a graph kernel, the Neighborhood Sub-
graph Pairwise Distance Kernel (NSPDK) [28]. However, given data sets of small RNA
sequences (sequence length< 400nt, similarity up to 80%) the precision and recall of Graph-
Clust only reaches around 85%. In addition, these approaches do not include pseudoknots in
either the representation or the analysis.
The Schlick group has developed the RNA-As-Graphs procedure, which combines elements

from several sources to develop a database of mathematically possible RNA graphs in which
RNA structures are represented as Shapiro tree graphs, without pseudoknots, or as dual graphs,
with inclusion of pseudoknots [29–32]. Numerical descriptors have been applied to comparison
of these RNA topological patterns. The eigenvalue spectrumof the Laplacian matrix measures
graph compactness and connectivity;λ2, the second eigenvalue of the Laplacian matrix [33–35],
measures RNA graph similarity. The Schlick group used several structural invariants, including
λ2 and linear combinations of α and β (the intercept and slope of the eigenvalues of the Laplacian
matrix), for categorizing the structural similarity of RNA graphs, and for predictingwhether ran-
domly generated RNA topologies are similar to biological examples (RNA-like). These numerical
descriptors, however, have never been shown to be able to group RNAs into structural/functional
classes. Moreover, these approaches, which rely on a small number of numeric descriptors, can-
not identify similarity between specific substructures nested within fairly large graphs (for
instance graphs of the size of RNase P RNA, whichmay have up to 20 vertices).
There are several aspects of RNA structure that make it particularly hard to identify topo-

logically similar structures. Structures from the same functional family may have little or no
sequence similarity; they typically have a similar arrangement of stems (topology), but different
local base-pairing; our knowledge of the structuresmay be incomplete due to lack of a high-
quality three-dimensional structure or structural prediction; structuresmay lack biologically
important pseudoknots since tractable computational approaches based on dynamic program-
ming often do not include these important features; or in the case of graph comparison, the
computation itself may require infeasible amounts of time. The RNA XIOS graph [36] explic-
itly represents serial, nested, pseudoknotted, and mutually exclusive stems, but finding topo-
logically similar RNA structures requires identifying isomorphous subgraphs common to one
or more structures. The coarse-grained approach we describe here builds on the XIOS
approach, addresses the problems described above, and provides a feasible approach to cluster-
ing and identifying biological RNAs with topologically similar structures. A coarse-grained
RNA secondary structure representation has also been used to predict RNA deleteriousmuta-
tions by RNAMute [37] and RNAmutants [38]. In addition, a coarse-grained approach is also
applied for RNA design such as RNAexinv [39] and Nanofolder [40]. We demonstrate the util-
ity of the XIOS approach by classifying a representative set of pseudoknot-includingRNA
structural families that have very low levels of sequence similarity–the high accuracy of the
classification indicates that this approach can be broadly applied to identifyingRNAs with con-
served topologies, whether their function is known or unknown.

Materials and Methods

Curated RNA families

A set of curated RNA structures have been collected from the literature and a variety of biologi-
cal databases [41], and is extended in this work (S1 Table). This set of known structures has
been carefully selected to contain pseudoknots, to cover a broad range of lengths, and to have
been the subject of extensive expert curation by the biological community. This curated set
includes 206 structures of transfer RNA, Ribonuclease P RNA, transfer-messenger RNA, group
I and group II self-splicing introns, and 5S, 16S and 23S ribosomal RNA. The structures in this
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curated set have been reviewed to ensure they reflect expert opinion on the correct structure,
and to ensure that the reported structures are as accurate as possible given existing experimen-
tal data such as X-ray crystallography [42, 43] and covariance analysis [44]. The curated struc-
tures have been screened to ensure that all structures are full-length, and no pair of structures
has greater than 50% sequence identity. Multiple families of the curated structures contain
pseudoknots.While several large databases of RNA structures exist, for instance Rfam [45] and
RNAStrand [46], these resources could not be directly used for testing in this work because
many families lack pseudoknots, lack a consensus of expert opinion on the correct structure(s),
have only a family consensus structure (rather than individual structures for each RNA), have
high levels of sequence identity, or comprise incomplete structures or structures in which single
stranded regions (or other regions judged to be unimportant) have been removed.

XIOS graphs

In a XIOS graph, RNA stems are shown as vertices and the relationships between stems are
shown as edges [36]. Edges may be one of four types: X–mutually exclusive (stems with base
conflicts, such as those in two alternative structures that use the same RNA sequence); I–
included (nested); O–overlapping (pseudoknotted); S–serial (adjacent) (Fig 1). Because there
are exactly four classes, and each pair of stems can have one and only one type of relationship,
we can omit S relationships without loss of generality (any pair of vertices without an edge
have an implicit S edge). In this work, none of the structures have X edges; the graphs therefore
have only two edge types, I and O. S1 Fig shows the XIOS graph representation of the Hepatitis
D Virus (HDV) ribozyme RNA.

Curated XIOS graphs

S1 Table shows the vertex number, edge number, and average degree of the XIOS graphs of
the curated RNA structures. Graph matching is highly dependent on the size of the graph

Fig 1. XIOS graph stem-stem relationships. Edges show the relationship between two stems, and may be one

of four types: X (mutually exclusive), I (included or nested), O (overlapping or pseudoknotted), or S (serial or

adjacent).

doi:10.1371/journal.pone.0164726.g001
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(describedby the number of vertices and edges) and the average degree of the vertices in the
graph; the characteristics of the curated RNA structures differ significantly between families
making this a representative set for RNAs in general.

Results

This work focuses on the topological similarity betweenRNA structures, that is, similarity in
the relative location and nesting of stems, and the location of pseudoknots. In principle, this
should provide the broadest range of matching since individual structures often differ in the
length of stems and the length of single-stranded regions between stems. As mentioned before,
the sequences themselves can be evenmore variable with little or no sequence conservation
detectable, even between RNAs with similar structures. Topologically similar substructures in a
pair of RNAs correspond to isomorphous subgraphs in their respective XIOS graphs. The max-
imal common subgraph (MCS) represents the greatest possible topologicalmatch between
RNAs, similar to the maximal alignment between two sequences. But the MCS is difficult to
identify because of the large size of biologically important structures; e.g., the 23S rRNA can
have more than 50 stems [47]. Finding the MCS of a set of graphs, corresponding to the largest
conserved topologicalmotif in a group of RNA structures, is an NP-hard problem [48], making
the computational identification of the MCS time consuming. In order to decrease the ineffi-
cient scaling inherent in graph matching, we characterize each graph as a set of smaller sub-
graphs. We call this set of subgraphs the RNA topological fingerprint, or more simply, the
RNA fingerprint. There are two key elements needed to determine an RNA fingerprint: a com-
prehensive dictionary of RNA topologicalmotifs, and an approach to identifying the motifs
that are present in a XIOS graph.

Enumerating a comprehensive set of RNA topologies

We have exhaustively enumerated a non-redundant set of all physically possible RNA topologi-
cal motifs containing from one to seven stems (Table 1). The graphs in this set are all IO-con-
nected, that is, all vertices (stems) can be reached by traversing I and O edges. Briefly, a
complete set of topologies for an N-stem RNA structure can be created by generating all the
permutations of an ordered set of 2N numbers; the numbers represent N objects (stems), num-
bered 1 to N, each with two instances (corresponding to the two base-paired halves of the
stem). For three stems (N = 3), the ordered unpermuted set would be (1, 1, 2, 2, 3, 3), with each
pair of matching numbers representing the two base-paired halves of a stem. The unpermuted
set, above, would thus correspond to three serial stems, and a permuted set such as (1, 2, 3, 2, 3,
1) would indicate a pair of pseudoknotted stems, 2 and 3, found within the loop of stem 1.
Obviously, this procedure generates multiple copies (isomorphs) of some topologies, for

instance (1, 2, 2, 3, 3, 1) and (3, 1, 1, 2, 2, 3), as well as some graphs that are not connected (for

Table 1. Topological Motif Library.

Number of Stems Unique Topologies

1 1

2 2

3 8

4 46

5 368

6 3914

7 51390

doi:10.1371/journal.pone.0164726.t001
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instance the unpermuted set, above). Some of the isomorphs can be eliminated by imposing
two restrictions. First, the graph must be connected, and second, the first instances (left half
stem) of each object (stem) must occur in numerical order. Even these restrictions do not
entirely eliminate permutations that correspond to isomorphic XIOS graphs. For instance, the
sets (1, 2, 1, 3, 3, 2) and (1, 2, 2, 3, 1, 3) are mirror images of each other, and correspond to the
same XIOS graph. These symmetry-related topologies are detected and removed using the
gSpan [36, 49] approach. In gSpan, a graph is describedusing a canonical labeling called the
minimumDFS code; Isomorphic graphs are guaranteed to have identical minimumDFS
codes.
Using this approach, we have enumerated a library of all unique physically possible RNA

topologies with 2 to 7 stem structures (Table 1). Because the minimumDFS code provides a
unique description for each topology, we index the motif library with a compressed version of
the minimumDFS code. The index of any structure within the library can be easily determined
by simply determining its minimumDFS code.
The topologies in the library are not independent; two unique 5-stem XIOS graphs, for

instance, may share a common 4-stem subgraph as shown in Fig 2. In this situation, we say
that the 4-stem subgraph is the parent of both 5-stem graphs because they each have had one
stem added to the parent subgraph (Fig 2). When comparing topologicalmotifs, subgraphs
that share a parent are clearly more similar than subgraphs that only share a grandparent or
great-grandparent. The topologicalmotif library includes all the parent and child relationships
between the enumerated graphs in order to allow for partial matching.

Determining RNA fingerprints using random sampling

A XIOS graph corresponding to a single structure can be characterized by the set of fixed-size
subgraphs it contains. This set of constituent subgraphs is the RNA fingerprint (Fig 3), which
can be thought of as a subgraph spectrum that is characteristic of a specific topology. Currently
we use a library comprising all 7-stem and smaller subgraphs; this number has been chosen to
cover both large and small biological structures, without requiring excessive computation. For
even a relatively small graph, for instance a graph with 25 to 30 vertices, exhaustively enumer-
ating the complete set of 7-vertex subgraphs within it can be time consuming. The subgraph
sampling approach we describe here allows the determination of the fingerprint in reasonable
time on parallel hardware. Briefly, given a XIOS graph, we randomly sample a fixed number,
currently seven, of connected vertices from the graph (Table 2). Sampling continues until a
suitable termination condition is met, typically when all observed subgraphs have been

Fig 2. Parent-Child relationships. The parent graph is a 4-stem motif; two different child graphs are created by

adding one stem to the parent graph.

doi:10.1371/journal.pone.0164726.g002
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independently sampled 10 times. In each iteration, one subgraph is sampled and uniquely iden-
tified by its minimumDFS code, which is used as a reference to identify the subgraph in the
RNA structuralmotif library. The complete fingerprints of 151 RNA structures computed by
an exhaustive method (not shown) have been used to validate the correctness of the RNA fin-
gerprints computed by random sampling (Fig 4).

RNA fingerprints identify topologically similar RNA structures

The set of subgraph motifs sampled in a query graph is its simple fingerprint.We define the
extended fingerprint as the simple fingerprint plus all of the ancestral subgraphs (i.e., parent,
grandparent, etc., see Fig 2) of the simple fingerprint motifs. In this sectionwe use both the
simple fingerprint and the extended fingerprint to identify RNAs with similar topologies. The
average numbers of motifs in simple and extended fingerprints are shown in S2 Fig.

Fig 3. Example of an RNA fingerprint. All 3-vertex motifs (corners) in a 6-vertex RNA graph (center) are shown.

The thick solid lines represent RNA chain, the thin solid lines represent base pairs, and the dotted lines represent

RNA sequences whose connectivity is not completely specified.

doi:10.1371/journal.pone.0164726.g003
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Table 2. Subgraph random sampling pseudocode.

Algorithm: Subgraph Random Sampling

Input: Query graph G = (V, E), subgraph size n

Output: Sampled subgraph S = (Vs, Es)

Select a random vertex vi 2 V

Initialize the set of vertices Vs = {vi}

Initialize the set of edges Es = {}

WHILE | Vs | < n DO

Identify NVs, the vertices adjacent to Vs

IF NVs = = {} DO

BREAK

ELSE DO

Select a random vertex vj from NVs

Update Es = Es [ { (vi, vj) } 8 vi, vj 2 Vs

Update Vs = Vs [ {vj}

END IF

END WHILE

RETURN subgraph S = (Vs, Es)

doi:10.1371/journal.pone.0164726.t002

Fig 4. Scaling of sampling with graph size. Fingerprints for 151 RNA graphs in the curated set were determined

multiple times (10 times per RNA graph) by random sampling. Numbers above the dots indicate the number of

different graphs with the same size (vertex number); each dot represents the average number of iterations needed

to determine the complete fingerprint for this specific size group, with bars showing the maximum and minimum

iterations as well.

doi:10.1371/journal.pone.0164726.g004
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Consider the simple or extended fingerprints,X and Y, of RNA RX and RNA RY; X = {x1, x2,
x3,. . ., xm} and Y = {y1,,y2, y3,. . ., yn} where x1, x2, x3, . . ., xm and y1,,y2, y3, . . ., yn are the sub-
graph motifs found in RNAs RX and RY. We have evaluated five similarity functions (Table 3)
for their ability to identify topologically similar structures.
Fig 5 shows the classification performance of the different similarity functions as measured

by Receiver Operating Characteristic (ROC) curves [55]. Jaccard Similarity works best in the
classification of RNA structures, with an area under the ROC curve (AUC) greater than 0.95
for the extended fingerprint. The increase in AUC from 0.870 for the simple fingerprint to
0.952 for the extended fingerprint using Jaccard Similarity indicates that the inclusion of parent
subgraphs substantially improves the detection of topologically similar structures. The classifi-
cation performance of Jaccard Similarity using the extended fingerprint on different RNA clas-
ses is around 0.95 for all groups except for 16S rRNA and group II introns (S2 Table). Fig 6
shows the ability of the extended-Jaccard similarity to effectively classify the test structures into
functional groups. As can be seen in the upper triangle of Fig 6, the level of sequence similarity
is very low between these structures and would be insufficient for correct clustering (not
shown). The 23S rRNAs form a single group, and also share some similarity with 16S rRNAs,
which may be explained by the topological similarity of the two subunits of rRNA [47]. The 5S
rRNAs form two separate groups, one with archaeal and eukaryotic nuclear structures, and the
other with bacterial structures. Self-splicing introns, especially the Group II Introns, share a
high topological similarity with the 23S and 16S rRNAs. The accuracy of the classification con-
firms that our topological approach can identify topologically similar RNAs, and potentially
functionally similar RNAs, as well. In addition, a neighbor-joining tree [56] (Fig 6, S3 and S4
Figs), using the extended-Jaccard similarity, correctly groups almost all the curated RNA fami-
lies into the correct categories, with only one Group I Intron falling onto a branch outside of its
curated group (Fig 6, tree on the right side).

Similarity of incomplete graphs can be detected using RNA fingerprints

In most cases, topological comparisons must be based on predicted structures, because three-
dimensional structures or high-quality comparative structures are usually unavailable.
Although structures with pseudoknots can be predicted [41, 57–60], such predicted structures
will typically be inaccurate or incomplete. It is highly desirable that a similarity function be
able to correctly identify similar RNAs, even when their structures are incomplete. To test the
effects of graph incompleteness on the extended-fingerprint Jaccard Similarity function,
incomplete RNA graphs were generated by randomly removing a percentage (10%, 30%, 50%,
60%, and 70%, respectively) of the vertices (stems) in the curated structures (Fig 5F). The
extended-fingerprint Jaccard Similarity can identify similar structures when only 70% of the
original stems are present (AUC = 0.810), and performs better than random even when only
30% of the stems remain. In addition, since pseudoknots are important structuralmotifs in
RNAs, for the 160 RNA structures that have pseudoknots, we generated incomplete RNA

Table 3. RNA fingerprint similarity functions. X and Y are fingerprints of the two structures being

compared.

Similarity Function Definition

Intersection SB(X,Y) = |X \ Y|

Cosine [50] SC X;Yð Þ ¼
jX\Yjffiffiffiffiffiffiffiffi
jXjjYj
p

Dice [51, 52] SD X;Yð Þ ¼
2jX\Yj
jXjþjYj

Hamming [53] SH(X,Y) = |(X
T

Y)
S

(X
S

Y)C|

Jaccard [54] SJ X;Yð Þ ¼
jX\Yj
jX[Yj

doi:10.1371/journal.pone.0164726.t003
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graphs by first removing all the pseudoknot-formingvertices (stems), and continuing removing
random vertices until 30% of vertices were removed. The extended-fingerprint Jaccard Similarity
correctly identifies similar structures with pseudoknots removed (AUC = 0.915, data not shown).

Fingerprint similarity is not an artifact of graph size

The structures within each curated family generally have very similar numbers of stems.
Indeed, one can classify the structures into the correct groups using graph size alone (not
shown). It is essential, therefore to consider whether the results in Figs 5 and 6 are merely due
to the similarity in sizes. In order to test the effect of size, we have created a test data set in
which the graphs have been expanded to the same size (number of vertices) by randomly add-
ing additional vertices and edges to the graphs. In order to ensure that these expanded graphs
are typical of real biological structures we use a procedure in which we sample substructures
from the set of curated structures, and add them to the curated graphs. In order to do this, we
created a database (decoy database) of the 2 to 5 stem motifs found in the curated structures,
and randomly added these subgraphs to the curated structures according their frequency in the
entire curated set (which should reflect the biological background distribution).
We selected a set of 177 RNA graphs containing up to 25 vertices from the curated data set

(S1 Table), and created an expanded set by embedding subgraphs, randomly selected according

Fig 5. Classification performance of similarity functions. Pairwise similarities were calculated, using the

indicated similarity functions, for all RNAs in the curated dataset and ranked from high to low. A pair of RNAs from

the same curated family is considered a positive match; otherwise they are considered to be a negative match. In

all panels, the dashed line indicates the simple fingerprint, and the solid line the extended fingerprint. The AUC for

the simple and extended fingerprints, respectively, are indicated in parentheses, below. (A) Intersection Similarity

(AUC simple, 0.759; extended, 0.746), (B) Cosine Similarity (0.867; 0.753), (C) Dice Similarity (0.821; 0.864), (D)

Hamming Similarity (0.789; 0.834), and (E) Jaccard Similarity (0.870; 0.952). (F) Classification after random

removal of vertices from RNA graphs. All RNAs (except for tRNA and 5S rRNA which are too small for 70% stem

removal) are included. The five lines show ROC curves with differing fractions of stems removed (AUC in

parentheses): (0) no stem removal (AUC = 0.909), (1) 10% stem removal (0.844), (2) 30% stem removal (0.810),

(3) 50% stem removal (0.691), and (4) 70% stem removal (0.605).

doi:10.1371/journal.pone.0164726.g005
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to probability of occurrence, from the decoy database into these RNA graphs until each RNA
graph contained 30 vertices. As a control, we also created a decoy set of graphs with 30 vertices,
by random embedding of subgraphs from the decoy database only, i.e., graphs with no infor-
mation from real biological structures except the frequency of occurrence of subgraphs in the
known structures. Both the expanded and the decoy graph sets should be completely free of
size effects since they all have exactly the same number of stems. The two sets were mixed and
graphs compared using the Extended Fingerprint Jaccard Similarity. There is only a minor
decrease in performance (S3 Table, Extended Fingerprint Jaccard Similarity:AUC = 0.840)
when compared to the results obtained from the classification of the original dataset (Fig 5,
Extended Fingerprint Jaccard Similarity: AUC = 0.952). As expected, the decoy set of graphs
have AUC values close to 0.5, indicating that the decoy structures are random with respect to
each other.

Runtime analysis

Determination of whether a query RNA graph contains a subgraph isomorphic to a specific
graph in the structuralmotif library, is an NP-complete problem [48]. The brute-force compar-
ison requires comparing the query RNA graph with every graph in the library, and its

Fig 6. Extended-fingerprint Jaccard similarity between biological RNAs. Upper triangle. Sequence identity.

Lower triangle. Extended-fingerprint Jaccard Similarity of all the curated RNA structures (see S3 Fig and S5

Table for IDs). Sequence identity is shown in color, ranging from 0 (blue) to 1 (red) at steps of 0.1. A neighbor-

joining dendrogram calculated according to the extended-fingerprint Jaccard similarity is shown on the right side of

the heat map.

doi:10.1371/journal.pone.0164726.g006
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computational complexity is O(nmm), where n is the number of graphs in the library (55,728),
and m is the number of edges in the query graph. The subgraph random sampling algorithm
can be parallelized by simultaneously running independent instances on multiple processors.
The algorithm identifies the fingerprint of all 206 curated RNA graphs in a reasonable time,
especially when it is run on multiple cores (S5 Fig). The average runtime for calculating the fin-
gerprint of RNAs in each functional family is shown in S4 Table.

Discussion

A great deal of work has focused on identifying similar RNAs based on the comparison of
RNA secondary structures. This is readily accomplished using approaches such as tree edit
distance [22, 61] or string related measures such as those used in RNAshapes [7]. Other
approaches include the information of sequence alignment and folding of RNA sequences, for
example, Saito et al. developed an algorithm that clusters RNAs by all possible sequence align-
ments, and all possible secondary structures computed from dynamic programming and parti-
tion function calculations [62–64]. This approach correctly discriminated short RNA
sequences (around 100 bases) from different families. Unfortunately, secondary structures, and
in particularminimum free-energypredicted structures based on dynamic programming
approaches, do not predict pseudoknots [65–67], which are important in biological structures.
Even if predicted pseudoknots are available [68–70], it is not simple to add them to tree or
string basedmethods because of their non-nested nature. In addition, structurematching
methods based on dynamic programming have the additional problem of determining gap
penalties; it is not at all clear how to weight insertions and deletions in RNA structures.
Statistical algorithms, such as kernel methods, have been developed to classify RNA

sequences and structures. Kin et al. developed a marginalized kernel to measure RNA sequence
similarity [71], and this kernel was later implemented by Karklin et al. to measure the similarity
of RNA secondary structures represented by dual graphs [29, 72]; Liu et al. developed a fuzzy
kernel to cluster the secondary structure ensemble generated from a single sequence [73]. The
GraphClust pipeline developed by Heyne et al. encodes RNA sequence-structure information
as graphs and measures RNA graph similarities using a decomposition kernel and computing
the summed similarity of pairs of neighborhood subgraphs [27]. However, no pseudoknotted
structures were included in these approaches. Sakakibara et al. developed a stem kernel that
could discriminate between functional RNA sequences and randomly shuffled sequences using
structural features including pseudoknots [74]; however, no result was shown in which the
stem kernel could discriminate between sequences from different functional RNA groups, in
addition, the randomly shuffled sequences they generated only retain nucleotide composition,
while preserving dinucleotide composition is known to be important in generating randomized
negative controls for predicted RNA structures [75, 76]. In summary, none of these approaches
have demonstrated that they can succeed on the difficult test case presented here: classifying a
diverse set of functional families, with diverse sizes, containing pseudoknots, and with little
sequence similarity. Topological methods have the dual advantage of easily representing pseu-
doknots and not requiring an insertion/deletionpenalty. In the RNA-As-Graphs procedure
[29, 31, 77, 78], RNA topologies are represented either as “tree graphs” (without pseudoknots)
or “dual graphs” (with pseudoknots), and the topological properties of an RNA graph are sum-
marized using the eigenvalue of its Laplacian matrix (constructed from the adjacency and
degreematrices of the graph). They have developed a database, with all mathematically possi-
ble RNA graphs enumerated, including “existing graphs” (RNA structures experimentally
solved or obtained from comparative analysis) and “missing graphs” (mathematically possible
RNA structures that have not yet been experimentally observed).Using “existing graphs” as
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training data, “missing graphs” in the database were classified as either “RNA-like” or “non-
RNA-like” by applying regression analysis on Laplacian eigenvalue spectra [34]. These
approaches, which target the identification of novel RNA topologies, however, are not suffi-
cient for matching specific RNA functional families.
Graph matching is a computationally intensive process that scales exponentially with the

size of graph (in general, graph matching is an NP-hard process) [79]. Functional RNA mole-
cules can include dozens of stems/loops, especially with the current advance in high-through-
put technologies, and long non-coding RNAs including hundreds of stems/loops are not
uncommon [80]. The RAG database, however, only includes dual graphs up to 9 vertices and
tree graphs up to 10 vertices [77], which can cover RNA topologies only up to about 200nt,
while the XIOS graph approach can handle RNA topologies with 70 vertices and 2000nt (S1
and S5 Tables). Moreover, in a follow-up study, the discrimination between structures pre-
dicted to be RNA-like (naturally existing) and non-RNA-like was not impressive; out of 42
newly discovered RNA topologies, only 24 of them had been predicted as RNA-like, while 18
of them had been predicted to be non-RNA like [77]. In addition, the numerical descriptors
used in the RAG procedures have never been shown to be able to group RNAs into structural/
functional classes.
The XIOS graph is a topological graph approach [36] that specifically distinguishes pseudo-

knots as a distinct type of edge. In addition to incorporating pseudoknots (O edge, Overlap-
ping), one of the most important characteristics in RNA structure, the XIOS approach also
includes embedding (I edge, Included) and juxtaposition (S edge, Serial), which are the two of
the RNA structural principles in the RNAshapes framework. The increased number of edge-
types in XIOS improves one’s ability to match graphs, for example using gSpan; however, the
time required to find the maximal common subgraph in two moderately large RNA graphs, for
instance with twenty to thirty stems in each graph, is prohibitive using exhaustive approaches
such as gSpan. Using the XIOS approach, we can easily enumerate a complete set of biologically
possible RNA graphs, permitting the construction of a complete dictionary of all graphs that
may occur in a RNA molecule up to a specified size. This allows us to characterize any RNA
topology in terms of the spectrumof subgraphs it contains, its RNA fingerprint, and to identify
topologically similar RNA structures based on their fingerprints. This approach is successful
with known RNA families, and is relatively insensitive to both the completeness of the RNA
graph, and the presence of extraneous added vertices in the graph. Similarities betweenRNA
structures in the same family are still detectable when the graphs are expanded to the same
size, indicating that the ability to identify topologically similar structures is not simply an arti-
fact of the similar sizes of RNAs within known families. These characteristics of RNA finger-
print matching are highly important in real-world settings where comparisons are made
between predicted structures in which only 60–80% of the true stems may be correctly pre-
dicted [58, 81], and a substantial number of mispredicted stems may be present. As mentioned
before, no previously reported RNA structure comparison method has shown that it can accu-
rately identify/classifyRNAs according to topological similarity using the particularly difficult
set of pseudoknot containing graphs used here.
Exhaustively enumerating the set of subgraphs present in a XIOS graph is time consuming

because each subgraph in the entire motif database must be separately tested against the query
to determine whether there is a match. Because the dictionary of subgraphs is large (55,728
graphs with seven or fewer stems), a brute force approach is slow. In this work we suggest a
sampling approach to enumerating the subgraph spectrum.The computational complexity of
motif sampling depends on both the size and structure of the query graph, and on the number
of vertices sampled in each iteration. As most of RNA XIOS graphs are highly connected, an
increase in graph size can result in a large increase in the time required to completely sample
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the fingerprint. Fortunately, the motif sampling is completely parallelizable; any number of
processors can independently sample subgraphs from the query, and the time required per
query graph is modest. Furthermore, our results suggest that a complete fingerprint may not be
necessary; that even incomplete fingerprints (such as fingerprints derived from structures
where part of the structure has been removed) are sufficient to identify topologically similar
structures. The question of whether absolutely every subgraph has been detected, which a sam-
pling strategy cannot guarantee, is therefore somewhat moot.
Experimental determination of RNA structures by X-ray crystallography or NMR is diffi-

cult, and a relatively small number of complete structures are available. Instead, structures are
often predicted using a combination of biochemical information (chemical modification,
nuclease sensitivity, and mutational sensitivity), secondary structure prediction, and phyloge-
netic conservation (covariance). This results in “known” structures that are incomplete (miss-
ing important stems) or inaccurate (containing stems that do not exist, or are unimportant in
the function of the RNA). It is therefore important that the structural/topologicalcomparison
be robust with respect to incompleteness or error in the structures, a salient characteristic of the
RNA fingerprint comparison we describe here. The extended-fingerprint Jaccard Similarity cor-
rectly identifies topologically similar RNAs across a broad range of sizes, and biological functions,
but its potential application is far more general. RNA structure prediction is commonly judged to
be 60 to 80 percent accurate [59, 68, 82]. The ability of the RNA fingerprint to correctly identify/
classify structural topologies even when 30% or more of the true stems are removed (Fig 5F), sug-
gests that this approach can be applied to broadly search for topologically similar structures
based on structures predicted from sequence (work in progress). Currently, GraphClust [27] is
probably the most widely used program for comparing and clustering RNAs according to
sequence and structure without pseudoknots.We believe that our approach, as a coarse-grained
method including pseudoknots, complements that of GraphClust.
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