
Introduction to machine learning

CSI 4106 - Fall 2025

Marcel Turcotte

Version: Sep 6, 2025 13:43

Preamble

Message of the day

TIME100 AI 2025 - The 100 Most Influential People in AI 2025, TIME, 2025-08-28.

For the third year in a row, TIME magazine has released its list of the 100 most influential

figures in the field of artificial intelligence.

Quote of the day (continued)

https://time.com/collections/time100-ai-2025/

Yoshua Bengio, Université de Montréal, was recognized again by TIME as one of the

most influential individuals in the field of artificial intelligence.

Once again this year, Yoshua Bengio from Université de Montréal has been included in

the list of the most influential people in artificial intelligence. Bengio, along with Geoffrey

Hinton and Yann LeCun, received the ACM Turing Award in 2018 for their pioneering

contributions to the field. The trio is often referred to as the “Fathers of Deep Learning.”

Fathers of the Deep Learning Revolution Receive ACM A.M. Turing Award

The Most-Cited Computer Scientist Has a Plan to Make AI More Trustworthy, by

Harry Booth, TIME, 2025-06-03.

Remark

In the evolution of intelligence, learning was one of the first milestones to

emerge. It is also one of the most thoroughly understood mechanisms in

natural intelligence.

Debunking the Myths

** (Burkov 2019)**

Let’s start by telling the truth: machines don’t learn. (…) just like artificial

intelligence is not intelligence, machine learning is not learning.

https://time.com/collections/time100-ai-2025/7305845/yoshua-bengio-ai/?filters=thinkers
https://time.com/collections/time100-ai-2025/7305845/yoshua-bengio-ai/?filters=thinkers
https://awards.acm.org/about/2018-turing
https://time.com/7290554/yoshua-bengio-launches-lawzero-for-safer-ai/?utm_source=chatgpt.com

Andriy Burkov, a machine learning expert based in Quebec City, Canada, authored The

Hundred-Page Machine Learning Book, which is referenced at the end of this

presentation. He is active on LinkedIn and publishes a newsletter, True Positive Weekly,

where he shares significant developments and insights from the field that have attracted

his attention each week.

Fundamentals of machine learning

In this lecture, we will introduce concepts essential for understanding machine learning,

including the types of problems (tasks).

General objective:

Describe the fundamental concepts of machine learning

Learning objectives

Summarize the various types and tasks in machine learning

Discuss the need for a training and test set

Readings

Russell and Norvig (2020), Chapter 19: Learning from examples.

Introduction

Rationale

Why a computer program should learn?

https://themlbook.com/
https://themlbook.com/
https://www.linkedin.com/in/andriyburkov
https://aiweekly.substack.com/

Attribution: Gemini 1.5 Flash, Aug. 14, 2024, prompted with “In the style of a children’s

book, create the image of a cute robot holding a red flower.”

1. Adaptability and Continuous Improvement:

Adaptability to Dynamic Environments: Programs that learn can adapt to

changing conditions, ensuring fective operation in dynamic settings.

Example: Self-driving cars adjusting to traffic and weather changes.

Continuous Improvement: Learning enables systems to stay current with the

latest data and trends without man intervention.

Example: Spam filters evolving to counter new spam techniques.

2. Enhanced Performance and Efficiency:

Improved Performance: Learning allows programs to enhance their

performance based on past experiences or ta.

Example: Recommendation systems refining suggestions with more user

data.

Cost-Effectiveness: Automating the learning process reduces the need for

manual updates, leading to cost savings.

Example: Predictive maintenance systems minimizing manual inspections.

3. Complex Problem Solving and Hidden Pattern Discovery:

Handling Complex Problems: Learning algorithms tackle problems that are too

intricate for static, rule-based systems.

Example: Image recognition distinguishing between different objects.

Discovering Hidden Patterns: Learning models can uncover hidden

relationships in data that are not evident human analysts.

Example: Identifying complex genomic relationships in bioinformatics.

4. Personalization and Scalability:

Personalization: Learning allows programs to provide tailored outputs to

individual users, enhancing user perience.

Example: Virtual assistants learning user preferences.

Scalability: Learning algorithms efficiently manage and analyze large datasets,

improving their utility.

Example: Search engines optimizing result relevance with machine learning.

5. Innovation and Research:

Fostering Innovation: Learning algorithms can simulate new ideas, leading to

advancements and discoveries.

Example: Machine learning models predicting drug efficacy in

pharmaceutical research.

Definition

** Mitchell (1997), page 2**

A computer program is said to learn from experience with respect to

some class of tasks and performance measure , if its performance at

tasks in , as measured by , improves with experience .

Tom M Mitchell. Machine Learning. McGraw-Hill, New York, 1997. (PDF)

Although this book was published in 1997, it has been influential and remains relevant.

Unlike many other machine learning books, it is particularly engaging.

This particular definition of learning is often reused.

Concepts

E

T P

T P E

https://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf

Machine
Learning

Problem Data Evaluation Theory Mathematics
Essential

See: images/svg/ml_concepts-00.svg

Types of problems

There are three (3) distinct types of feedback:

1. Unsupervised Learning: No feedback is provided to the algorithm.

2. Supervised Learning: Each example is accompanied by a label.

3. Reinforcement Learning: The algorithm receives a reward or a punishment

following each action.

4. . .

Supervised learning is the most extensively studied and arguably the most intuitive

type of learning. It is typically the first type of learning introduced in educational

contexts.

Two phases

1. Learning (building a model)

2. Inference (using the model)

Learning (building a model)

file:///var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/T/images/svg/ml_concepts-00.svg

In machine learning, the learning phase is often the most challenging and resource-

intensive component. This stage necessitates meticulous attention to data curation, as

well as the selection and training of an appropriate algorithm.

It is estimated that training contemporary large language models, such as OpenAI’s GPT

or Google’s Gemini Ultra, incurs costs exceeding 100 million USD.

Source: Stanford University Human-Centered Artificial Intelligence 2025 AI Index Report

Developing such models necessitates infrastructure investments that could reach

trillions of dollars.

https://hai.stanford.edu/news/ai-index-state-ai-13-charts

“By the end of 2024, we’re aiming to continue to grow our infrastructure build-out

that will include 350,000 NVIDIA H100 GPUs as part of a portfolio that will

feature compute power equivalent to nearly 600,000 H100s.”

Building Meta’s GenAI Infrastructure, 2024-03-12.

OpenAI’s Sam Altman Expects to Spend ‘Trillions’ on Infrastructure, Bloomber,

2025-08-15.

Inference (using a model)

Inference typically demands fewer computational resources because it involves utilizing

a pre-trained model to predict the outcome for an individual instance. Nevertheless, the

emergence of chain-of-thought reasoning models, often referred to as reasoning

models, has substantially elevated the computational cost associated with inference.

OpenAI’s o3 Reasoning Models Are Extremely Expensive to Run, by Alexandra

Tremayne-Pengelly, Observer, 2025-04-04.

“In December, OpenAI’s o3 reasoning model became the first A.I. system to

pass the test with an 87.5 percent score.”

“Testing OpenAI’s o3 model may cost as much as $30,000 per task.”

Carp-e Diem! (example)

1. Problem: Will They Bite Today?

Objective: Develop a predictive model to classify the likelihood of a successful fishing

day into three categories: ‘Poor’, ‘Average’, or ‘Excellent’.

https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://www.bloomberg.com/news/articles/2025-08-15/openai-s-altman-expects-to-spend-trillions-on-infrastructure
https://observer.com/2025/04/openai-o3-model-cost/

Attribution: Gemini 1.5 Flash, Sept. 10, 2024, prompted with “In the style of a children’s

book, generate the image of a fish with a farmer’s hat.”

Supervised learning involves training a model on labeled data so that it can make

predictions on new, unseen data.

The specific task is classification.

“Poor”, “Average”, and “Excellent” are classes (for the target variable).

2. Attributes (features)

Various sources, including The Old Farmer’s Almanac, suggest that the moon phase

serves as a reliable predictor of fishing success.

Moon Phase (Categorical): ‘New Moon’, ‘First Quarter’, ‘Full Moon’, and ‘Last

Quarter’.

Forecast (Categorical): ‘Rainy’, ‘Cloudy’, and ‘Sunny’.

Outdoor Temperature (Numerical): The temperature in Celcius.

Water Temperature (Numerical): The water temperature of the lake or river.

https://www.almanac.com/best-fishing-days

Obviously, real-world applications will have many more attributes.

3. Training data

Example
Moon
Phase

Forecast
Outdoor

Temperature (°C)

Water
Temperature

(°C)

Fishing Day
Likelihood

1 Full Moon Sunny 25 22 Excellent

2
New
Moon

Cloudy 18 19 Average

3
First
Quarter

Rainy 15 17 Poor

4
Last
Quarter

Sunny 30 24 Excellent

5 Full Moon Cloudy 20 20 Average

6
New
Moon

Rainy 22 21 Poor

This is identified as a supervised learning problem because the value of the target

variable is known for each training instance. Additionally, since the target variable’s

values are categorical, this problem is classified as a classification task.

In this context, the training set consists of 6 examples. It is important to note that real-

world datasets typically contain a much larger number of examples to ensure robust

model training and validation.

The choice of the attributes and the quality of the data are paramount for the

performance of the model. An attribute such as the color of your socks is likely not have

a great impact the predictions.

Therefore, a machine learning project typically begins with an exploratory phase, which

involves analyzing the data, examining distributions, and identifying correlations.

3. Training data: data representation

Moon Phase Forecast Outdoor Temperature (°C) Water Temperature (°C)

Full Moon Sunny 25 22

New Moon Cloudy 18 19

First Quarter Rainy 15 17

Last Quarter Sunny 30 24

Full Moon Cloudy 20 20

Moon Phase Forecast Outdoor Temperature (°C) Water Temperature (°C)

New Moon Rainy 22 21

The data is often presented in a tabular (matrix) format, where each row represents an

attribute vector (feature vector), typically denoted as , which corresponds to the -th

example in the training set.

3. Training data: label representation

Fishing Day Likelihood

Excellent

Average

Poor

Excellent

Average

Poor

The labels are generally represented as a column vector, with denoting the label for

the -th example.

4. Model Training

Model training involves using labeled data to teach a machine learning algorithm how to

make predictions. This process adjusts the model’s parameters to minimize the error

between the predicted and actual outcomes.

4. Model Training (continued)

Excellent Fishing Day:

Moon Phase: Full Moon or New Moon

Forecast: Sunny

Outdoor Temperature: 20°C to 30°C

Water Temperature: 20°C to 25°C

Poor Fishing Day:

Moon Phase: First Quarter or Last Quarter

Forecast: Rainy

Outdoor Temperature: < 20°C or > 30°C

Water Temperature: < 20°C or > 25°C

xi i

yi

i

…

5. Prediction

Given new, unseen data, predict whether today will be successful.

. . .

Moon Phase: New Moon

Forecast: Sunny

Outdoor Temperature: 24°C

Water Temperature: 21°C

Life cycle

1. Data collection and preparation

2. Feature engineering

3. Training

4. Model evaluation

5. Model deployment

6. Monitoring and maintenance

Data collection and preparation are critical and labor-intensive processes.

There must be sufficient data.

The data must be of high quality; for instance, it should not be excessively

noisy.

There should be few missing values.

Most importantly, the data should be representative. We expect that new data

will be generated from the same process and have the same distribution.

The importance of this cannot be overstated.

Consider image classification software that was not trained on a

diverse sample in terms of ethnicity, gender, body size, or social status.

Think of medical applications and the consequences of datasets that

are not sufficiently diverse.

Feature engineering is the process of selecting, transforming, and creating input

variables (features) to improve the performance of a machine learning model. This

involves techniques such as scaling, encoding categorical variables, and generating

new features from existing ones to enhance the model’s ability to learn patterns and

make accurate predictions.

Feature engineering used to be a labor-intensive step. One of the main benefits

of deep learning is that it can automatically learn features.

Model evaluation is the process of assessing a machine learning model’s

performance using specific metrics, such as accuracy, precision, recall, F1-score, or

AUC-ROC. This typically involves testing the model on a separate validation or test

dataset to ensure it generalizes well to unseen data and meets the desired criteria

for accuracy and reliability.

Model deployment: An application is built using the model. It is important to note

that most of the time, the parameters of the system are frozen when deployed. First,

training is expensive and further training is often unaffordable. Additionally, further

training can cause the model to forget previously learned information, leading to

degraded performance on previously seen examples.

Monitoring and maintenance: The performance of the model needs to be

continuously monitored. Concept drift is often observed, requiring the system to be

retrained. Spam detection is a good example. Once the system is deployed,

spammers adapt and find ways to circumvent the spam detection mechanisms put

in place.

Formal definitions

Supervised learning (notation)

The data set (“experience”) is a collection of labelled examples.

Each is a feature (attribute) vector with dimensions.

 is the value of the feature of the example , for and

.

The label is either a class, taken from a finite list of classes, , a

real number, or a complex object (tree, graph, etc.).

. . .

Problem: Given the data set as input, create a model that can be used to predict the

value of for an unseen .

This notation follows that of The Hundred-Page Machine Learning Book by Andriy

Burkov.

Supervised learning (notation, contd)

When the label is a class, taken from a finite list of classes, , we

call the task a classification task.

When the label is a real number, we call the task a regression task.

Can you think of examples of regression tasks?

{(xi, yi)}N
i=1

xi D

x
(j)
i j i j ∈ 1 … D

i ∈ 1 … N

yi {1, 2, … , C}

y x

yi {1, 2, … , C}

yi

https://themlbook.com/

Here are several regression tasks along with their real-world applications:

1. House Price Prediction:

Application: Estimating the market value of residential properties based on

features such as location, size, number of bedrooms, age, and amenities.

2. Stock Market Forecasting:

Application: Predicting future prices of stocks or indices based on historical

data, financial indicators, and economic variables.

3. Weather Prediction:

Application: Estimating future temperatures, rainfall, and other weather

conditions using historical weather data and atmospheric variables.

4. Sales Forecasting:

Application: Predicting future sales volumes for products or services by

analyzing past sales data, market trends, and seasonal patterns.

5. Energy Consumption Prediction:

Application: Forecasting future energy usage for households, industries, or

cities based on historical consumption data, weather conditions, and economic

factors.

6. Medical Cost Estimation:

Application: Predicting healthcare costs for patients based on their medical

history, demographic information, and treatment plans.

7. Traffic Flow Prediction:

Application: Estimating future traffic volumes and congestion levels on roads

and highways using historical traffic data and real-time sensor inputs.

8. Customer Lifetime Value (CLV) Estimation:

Application: Predicting the total revenue a business can expect from a

customer over the duration of their relationship, based on purchasing behavior

and demographic data.

9. Economic Indicators Forecasting:

Application: Predicting key economic indicators such as GDP growth,

unemployment rates, and inflation using historical economic data and market

trends.

10. Demand Forecasting:

Application: Estimating future demand for products or services in various

industries like retail, manufacturing, and logistics to optimize inventory and

supply chain management.

11. Real Estate Valuation:

Application: Assessing the market value of commercial properties like office

buildings, malls, and industrial spaces based on location, size, and market

conditions.

12. Insurance Risk Assessment:

Application: Predicting the risk associated with insuring individuals or

properties, which helps in determining premium rates, based on historical

claims data, and demographic factors.

13. Ad Click-Through Rate (CTR) Prediction:

Application: Estimating the likelihood that a user will click on an online

advertisement based on user behavior, ad characteristics, and contextual

factors.

14. Loan Default Prediction:

Application: Predicting the probability of a borrower defaulting on a loan based

on credit history, income, loan amount, and other financial indicators.

Here are some regression task applications that can typically be found in mobile phone

applications:

1. Battery Life Prediction:

Application: Estimating remaining battery life based on usage patterns, running

applications, and device settings.

2. Health and Fitness Tracking:

Application: Predicting calorie burn, heart rate, or sleep quality based on user

activity, biometrics, and historical health data.

3. Personal Finance Management:

Application: Forecasting future expenses or savings based on spending habits,

income patterns, and budget goals.

4. Weather Forecasting:

Application: Providing personalized weather forecasts based on current

location and historical weather data.

5. Traffic and Commute Time Estimation:

Application: Predicting travel times and suggesting optimal routes based on

historical traffic data, real-time conditions, and user behavior.

6. Image and Video Quality Enhancement:

Application: Adjusting image or video quality settings (e.g., brightness,

contrast) based on lighting conditions and user preferences.

7. Fitness Goal Achievement:

Application: Estimating the time needed to achieve fitness goals such as

weight loss or muscle gain based on user activity and dietary input.

8. Mobile Device Performance Optimization:

Application: Predicting the optimal settings for device performance and battery

life based on usage patterns and app activity.

These applications leverage regression tasks to provide personalized, efficient, and

context-aware services that enhance the user experience on mobile devices.

Example with code

Scikit-learn

** scikit-learn.org**

Scikit-learn is an open source machine learning library that supports

supervised and unsupervised learning. It also provides various tools for

model fitting, data preprocessing, model selection, model evaluation,

and many other utilities.

Scikit-learn provides dozens of built-in machine learning

algorithms and models, called estimators.

Built on NumPy, SciPy, and matplotlib.

We will use Scikit-learn for our next example, but also throught out the coming

weeks.

Scikit-learn

START

>50
samples

get

more
data

NO

predicting a

category

YES

do you have

labeled
data

YES

predicting a

quantity

NO

just

looking

NO

predicting

structure

NO

tough
luck

<100K
samples

YES

SGD
Classifier

NO

Linear
SVC

YES

text
data

Kernel
Approximation

KNeighbors
Classifier

NO

SVC

Ensemble
Classifiers

Naive
Bayes YES

classification

number of
categories

known

NO

<10K
samples

<10K
samples

NO

NO

YES

MeanShift

VBGMM

YESMiniBatch
KMeans

NOclustering

KMeans

YESSpectral
Clustering

GMM

<100K
samples

YES

few features
should be
important

YES

SGD
Regressor

NO

Lasso

ElasticNet

YES

RidgeRegression

SVR(kernel="linear")

NO

SVR(kernel="rbf")

Ensemble
Regressors

regression

Randomized
PCA

YES

<10K
samples

Kernel
Approximation

NO

IsoMap

Spectral
Embedding

YES
LLE

dimensionality
reduction

scikit

scikit-learn
algorithm cheat sheet

TRY
NEXT

TRY
NEXT

TRY
NEXT

TRY
NEXT

TRY
NEXT

TRY
NEXT

TRY
NEXT

Attribution: Choosing the right estimator

Example: Palmer Pinguins Dataset

https://scikit-learn.org/
https://numpy.org/
https://scipy.org/
https://matplotlib.org/
https://scikit-learn.org/stable/machine_learning_map.html

The Palmer penguins dataset by Allison Horst, Alison Hill, and Kristen Gorman. Artwork

by @allison_horst

The Palmer penguins dataset by Allison Horst, Alison Hill, and Kristen

Gorman was first made publicly available as an R package. The goal of the

Palmer Penguins dataset is to replace the highly overused Iris dataset for

data exploration & visualization.

Using this Python package you can easily load the Palmer penguins into

your Python environment.

Initially, we will examine the entire example from a high-level perspective to provide a

clear overview of the steps involved. Subsequently, we will revisit this example in greater

detail.

Example: In Case of a Missing Library

try:
 from palmerpenguins import load_penguins
except:
 ! pip install palmerpenguins
 from palmerpenguins import load_penguins

If you are executing this Jupyter Notebook within Google Colab or any environment

where the library is not pre-installed, proceed with the installation.

Example: Loading the Data

In [1]:

https://allisonhorst.github.io/palmerpenguins/
https://allisonhorst.github.io/palmerpenguins/
https://cran.r-project.org/web/packages/palmerpenguins/index.html

It is customary to use X and y for the data and labels

X, y = load_penguins(return_X_y = True)

Example: Using a DecisionTree

from sklearn import tree

clf = tree.DecisionTreeClassifier(random_state=42)

There are dozens of classifiers, including these ones: decision trees, support vector

machines, k-nearest neighbors, logistic regression, and neural networks.

Example: Training

Training

clf = clf.fit(X, y)

All the classifiers inherit from sklearn.base.BaseEstimator and

sklearn.base.ClassifierMixin . Accordingly, all the classifiers implement fit ,

predict , and score .

The DecisionTreeClassifier in scikit-learn constructs a decision tree by

recursively splitting the dataset into subsets based on the attribute that results in the

highest information gain (e.g., Gini impurity, entropy). Here is a concise description of

the process:

1. Initialization: The algorithm starts with the entire dataset as the root node.

2. Splitting Criteria: For each node, it evaluates all possible splits across all attributes

to find the one that best separates the classes. This is typically done by minimizing

a criterion such as Gini impurity or entropy.

3. Recursive Splitting: The dataset is divided into subsets based on the selected

attribute and threshold, creating child nodes. This process is repeated recursively

for each child node.

4. Stopping Conditions: Splitting stops when a predefined criterion is reached, such

as a maximum tree depth, a minimum number of samples per leaf, or if further

splitting does not significantly improve information gain.

5. Terminal Nodes: Once splitting is complete, each terminal node is assigned a class

label based on the majority class of the samples in that node.

In [2]:

In [3]:

In [4]:

The resulting tree can then be used to classify new samples by traversing from the root

to a terminal node, following the decision rules defined at each node.

Example: Visualizing the tree (1/2)

import matplotlib.pyplot as plt

tree.plot_tree(clf)
plt.show()

Example: Visualizing the tree (2/2)

target_names = ['Adelie','Chinstrap','Gentoo']

tree.plot_tree(clf,
 feature_names = X.columns,
 class_names = target_names,
 label = 'none',
 filled = True)
plt.show()

In [5]:

In [6]:

Example: Prediction

import pandas as pd

Creating 2 test examples

columns_names = ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'bo
X_test = pd.DataFrame([[34.2, 17.9, 186.8, 2945.0], [51.0, 15.2, 223.7, 5560

Prediction

y_test = clf.predict(X_test)

Printing the predicted labels for our two examples

print(y_test)

['Adelie' 'Gentoo']

Example: Complete

X, y = load_penguins(return_X_y = True)
clf = tree.DecisionTreeClassifier(random_state=123)
clf = clf.fit(X, y)
tree.plot_tree(clf)
X_test = pd.DataFrame([[34.2, 17.9, 186.8, 2945.0], [51.0, 15.2, 223.7, 5560
print(clf.predict(X_test))

['Adelie' 'Gentoo']

In [7]:

In [8]:

Example: Performance

from sklearn.metrics import classification_report, accuracy_score

Make predictions

y_pred = clf.predict(X)

Evaluate the model

accuracy = accuracy_score(y, y_pred)
report = classification_report(y, y_pred, target_names=target_names)

print(f'Accuracy: {accuracy:.2f}')
print('Classification Report:')
print(report)

Accuracy: 1.00
Classification Report:
 precision recall f1-score support

 Adelie 0.99 1.00 1.00 152
 Chinstrap 1.00 1.00 1.00 68
 Gentoo 1.00 0.99 1.00 124

 accuracy 1.00 344
 macro avg 1.00 1.00 1.00 344
weighted avg 1.00 1.00 1.00 344

Example: Discussion

In [9]:

We have demonstrated a complete example:

Loading the data

Selecting a classifier

Training the model

Visualizing the model

Making a prediction

However, several simplifications were made throughout this process.

Example: Wait a Minute!

from sklearn.metrics import classification_report, accuracy_score

Make predictions

y_pred = clf.predict(X)

Evaluate the model

accuracy = accuracy_score(y, y_pred)
report = classification_report(y, y_pred, target_names=target_names)

print(f'Accuracy: {accuracy:.2f}')
print('Classification Report:')
print(report)

Important

This example is misleading, or even flawed!

The performance of this classifier appears to be perfect at first glance. However, is it

really?

Example: Exploration

penguins = load_penguins()

. . .

type(penguins)

pandas.core.frame.DataFrame

. . .

penguins.head()

In [10]:

In [11]:

In [12]:

In [13]:

Example: Exploration

penguins.describe()

Example: Using Seaborn

import seaborn as sns

Pairplot using seaborn

sns.pairplot(penguins, hue='species', markers=["o", "s", "D"])
plt.suptitle("Pairwise Scatter Plots of Penguins Features")
plt.show()

What insights can be drawn from examining the graphs?

The image presents all pairwise scatter plots for the iris dataset features, with the

diagonal displaying histograms for each individual feature. Each dot represents an

In [14]:

In [15]:

example (), and the colors indicate the corresponding labels ().

Let’s first consider the diagonal elements:

Is it possible to classify the examples using a single feature?

We observe that each feature alone cannot distinguish between the classes.

However, in bill_depth vs body_mass or flipper_length allow us to differentiate

Gentoo from the other two species, although they do not separate Adélie and

Chinstrap effectively.

The class Gentoo frequently forms a distinct cluster.

Example: Training and Test Set

from sklearn.model_selection import train_test_split

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ran

Our initial classifier, a decision tree, was constructed using the entire dataset. While it

provides the “best” fit for the data, we cannot ascertain its predictive accuracy

without further evaluation.

We will have a lot more to say about testing in the coming weeks.

Practice: Experiment with different values for random_state . What do you observe?

Why do you think this occurs? For instance, set random_state to 42 . Why is it

important to set the random_state value?

Example: Creating a New Classifier

clf = tree.DecisionTreeClassifier()

Example: Training the New Classifier

clf.fit(X_train, y_train)

Example: Visualizing the Tree

tree.plot_tree(clf,
 feature_names = X.columns,
 class_names = target_names,
 label = 'none',

x y

In [16]:

In [17]:

In [18]:

In [19]:

 filled = True)
plt.show()

Example: Making Predictions

Make predictions
y_pred = clf.predict(X_test)

Example: Measuring the Performance

Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, target_names=target_names)

print(f'Accuracy: {accuracy:.2f}')
print('Classification Report:')
print(report)

Accuracy: 0.93
Classification Report:
 precision recall f1-score support

 Adelie 0.96 0.87 0.91 30
 Chinstrap 0.83 1.00 0.91 15
 Gentoo 0.96 0.96 0.96 24

 accuracy 0.93 69
 macro avg 0.92 0.94 0.93 69
weighted avg 0.93 0.93 0.93 69

In [20]:

In [21]:

Here is a discussion on model persistence for scikit-learn models.

Summary

We introduced relevant terminology.

We examined a hypothetical example.

Next, we explored a complete example using scikit-learn.

We performed a detailed exploration of our data.

Finally, we recognized the necessity of an independent test set to accurately

measure performance.

Prologue

Further readings (1/3)

https://scikit-learn.org/stable/model_persistence.html

The Hundred-Page Machine Learning Book (Burkov 2019) is a succinct and

focused textbook that can feasibly be read in one week, making it an excellent

introductory resource.

Available under a “read first, buy later” model, allowing readers to evaluate its

content before purchasing.

Its author, Andriy Burkov, received his Ph.D. in AI from Université Laval.

Further readings (2/3)

https://themlbook.com/
https://www.linkedin.com/in/andriyburkov

Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow (Géron

2022) provides practical examples and leverages production-ready Python

frameworks.

Comprehensive coverage includes not only the models but also libraries for

hyperparameter tuning, data preprocessing, and visualization.

Code examples and solutions to exercises available as Jupyter Notebooks on

GitHub.

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://github.com/ageron/handson-ml3

Aurélien Géron is a former YouTube Product Manager, who lead video

classification for Search & Discovery.

Further readings (3/3)

Mathematics for Machine Learning (Deisenroth, Faisal, and Ong 2020) aims to

provide the necessary mathematical skills to read machine learning books.

PDF of the book

“This book provides great coverage of all the basic mathematical concepts for

machine learning. I’m looking forward to sharing it with students, colleagues, and

anyone interested in building a solid understanding of the fundamentals.” Joelle

Pineau, McGill University and Facebook

References

Burkov, Andriy. 2019. The Hundred-Page Machine Learning Book. Andriy Burkov.

Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. 2020. Mathematics for

Machine Learning. Cambridge University Press. https://doi.org/10.1017/9781108679930.

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow. 3rd ed. O’Reilly Media, Inc.

Kingsford, C, and Steven L Salzberg. 2008. “What Are Decision Trees?” Nature

Biotechnology 26 (9): 1011–13. https://doi.org/10.1038/nbt0908-1011.

Mitchell, Tom M. 1997. Machine Learning. New York: McGraw-Hill.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

https://www.linkedin.com/in/aurelien-geron
https://mml-book.com/
https://mml-book.github.io/book/mml-book.pdf
https://doi.org/10.1017/9781108679930
https://doi.org/10.1038/nbt0908-1011
http://aima.cs.berkeley.edu/

Next lecture

Linear regression

Gradient descent

Appendix: Iris Data Set

Example: iris data set

Attribution: Diego Mariano, CC BY-SA 4.0, via Wikimedia Commons. See here for

information on this dataset.

Example: loading the data

from sklearn.datasets import load_iris

Load the Iris dataset

iris = load_iris()

Conveniently, scikit-learn comes with toy and real-world datasets to facilitate

experimentation. See here for a description of load_iris.

When using your own dataset, you will have to download the files as we have in the

Ottawa River Temperature Jupyter Notebook.

Example: Using a DecisionTree

In [22]:

https://creativecommons.org/licenses/by-sa/4.0
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://scikit-learn.org/stable/datasets/toy_dataset.html#toy-datasets
https://scikit-learn.org/stable/datasets/real_world.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris
file:///var/folders/gh/_site/lectures/02/01_ottawa_river_temperature.html

from sklearn import tree

clf = tree.DecisionTreeClassifier()

There are dozens of classifiers, including these ones: decision trees, support vector

machines, k-nearest neighbors, logistic regression, and neural networks.

Example: Training

It is customary to use X and y for the data and labels

X, y = iris.data, iris.target

Training

clf = clf.fit(X, y)

All the classifiers inherit from sklearn.base.BaseEstimator and

sklearn.base.ClassifierMixin . Accordingly, all the classifiers implement fit ,

predict , and score .

Le DecisionTreeClassifier de scikit-learn construit un arbre de décision en

divisant récursivement l’ensemble de données en sous-ensembles, basé sur l’attribut qui

résulte dans le gain d’information le plus élevé (par exemple, l’impureté de Gini,

l’entropie). Voici une description concise du processus :

1. Initialisation : L’algorithme commence avec l’ensemble de données entier comme

nœud racine.

2. Critères de division : Pour chaque nœud, il évalue toutes les divisions possibles à

travers toutes les attributs pour trouver celle qui sépare le mieux les classes. Cela

est généralement fait en minimisant un critère comme l’impureté de Gini ou

l’entropie.

3. Division récursive : L’ensemble de données est divisé en sous-ensembles basés

sur l’attribut et le seuil sélectionnés, créant des nœuds enfants. Ce processus est

répété récursivement pour chaque nœud enfant.

4. Conditions d’arrêt : La division s’arrête lorsqu’un critère prédéfini est atteint,

comme une profondeur maximale de l’arbre, un nombre minimum d’échantillons par

feuille, ou si une division supplémentaire n’améliore pas significativement le gain

d’information.

5. Nœuds terminaux : Une fois la division terminée, chaque nœud terminal se voit

attribuer une étiquette de classe basée sur la classe majoritaire des échantillons

dans ce nœud.

In [23]:

In [24]:

L’arbre résultant peut ensuite être utilisé pour classifier de nouveaux échantillons en

parcourant de la racine à un nœud terminal, en suivant les règles de décision définies à

chaque nœud.

Example: Visualizing the tree (1/2)

import matplotlib.pyplot as plt

tree.plot_tree(clf)
plt.show()

Example: Visualizing the tree (2/2)

tree.plot_tree(clf,
 feature_names=iris.feature_names,
 class_names=iris.target_names,
 label='none',
 filled=True)
plt.show()

In [25]:

In [26]:

In a DecisionTreeClassifier , each internal node of the tree represents a decision

based on a feature, each branch represents the outcome of that decision, and each leaf

node represents a class label. The decision tree makes predictions by traversing from

the root to a leaf node, following the decision rules defined at each node. Decision trees

are intuitive and easy to interpret but can be prone to overfitting if not properly

regulated.

To build a decision tree, the method fit follows these steps:

1. Select the Best Attribute: Choose the attribute that best splits the data based on a

criterion like Entropy, Gini Index (default), or Log Loss.

2. Create a Node: Make this attribute the root node of the tree, and create branches

for each possible value of the attribute.

3. Split the Dataset: Divide the dataset into subsets, one for each branch, based on

the attribute’s values.

4. Repeat Recursively: For each subset, repeat steps 1-3 using only the data in that

subset and excluding the attribute used at the parent node.

5. Stop Conditions: Stop the recursion when one of the following conditions is met:

All instances in a subset belong to the same class.

No more attributes are available for splitting.

A predefined depth limit or minimum number of instances per node is reached.

6. Assign Labels: For each leaf node, assign a class label based on the majority class

of instances in that subset.

This process results in a tree where each path from the root to a leaf represents a

classification rule.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
file:///var/folders/gh/glossary/entropy

In the figure above, the decision nodes contain the following information. - The decision

rule, e.g. petal width (cm) <= 0.8 - The Geni score. - The number of examples in

the subset corresponding to this node of the tree. - The number of examples for each of

the classes, in the subset corresponding to this node of the tree. - A prediction.

Decision trees are constructed by incrementally adding decision nodes, guided by

labeled training examples to determine optimal splits. An effective decision rule ideally

segregates the training examples perfectly into their respective classes. For instance,

the rule petal width (cm) <= 0.8 exemplifies this: when the rule holds true (left

child), all instances are classified as Setosa. Conversely, when the rule does not hold

(right child), the subset contains only Versicolor and Virginica, with no Setosa instances.

In essence, a good decision rule is one that significantly reduces entropy.

See: - Kingsford and Salzberg (2008), you can access the paper here, html or PDF, from

a computer with a uOttawa IP address.

Example: Prediction

Creatingg 2 test examples
'sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width

X_test = [[5.1, 3.5, 1.4, 0.2],[6.7, 3.0, 5.2, 2.3]]

Prediction

y_test = clf.predict(X_test)

Printing the predicted labels for our two examples

print(iris.target_names[y_test])

['setosa' 'virginica']

Example: Complete

iris = load_iris()
clf = tree.DecisionTreeClassifier()
X, y = iris.data, iris.target
clf = clf.fit(X, y)
tree.plot_tree(clf)
X_test = [[5.1, 3.5, 1.4, 0.2],[6.7, 3.0, 5.2, 2.3]]
y_test = clf.predict(X_test)
print(iris.target_names[y_test])

['setosa' 'virginica']

In [27]:

In [28]:

https://turcotte.xyz/teaching/csi-4106/glossary/entropy.html
https://doi.org/10.1038/nbt0908-1011
https://doi.org/10.1038/nbt0908-1011

Example: Performance

from sklearn.metrics import classification_report, accuracy_score

Make predictions

y_pred = clf.predict(X)

Evaluate the model

accuracy = accuracy_score(y, y_pred)
report = classification_report(y, y_pred, target_names=iris.target_names)

print(f'Accuracy: {accuracy:.2f}')
print('Classification Report:')
print(report)

Accuracy: 1.00
Classification Report:
 precision recall f1-score support

 setosa 1.00 1.00 1.00 50
 versicolor 1.00 1.00 1.00 50
 virginica 1.00 1.00 1.00 50

 accuracy 1.00 150
 macro avg 1.00 1.00 1.00 150
weighted avg 1.00 1.00 1.00 150

The performance of this classifier appears to be perfect at first glance. However, is it

really?

In [29]:

Example: Discussion

We have demonstrated a complete example:

Loading the data

Selecting a classifier

Training the model

Visualizing the model

Making a prediction

However, several simplifications were made throughout this process.

Example: Take 2

from sklearn.metrics import classification_report, accuracy_score

Make predictions

y_pred = clf.predict(X)

Evaluate the model

accuracy = accuracy_score(y, y_pred)
report = classification_report(y, y_pred, target_names=iris.target_names)

print(f'Accuracy: {accuracy:.2f}')
print('Classification Report:')
print(report)

Important

This example is misleading, or even flawed!

The performance of this classifier appears to be perfect at first glance. However, is it

really?

Example: Exploration

print(f'Dataset Description:\n{iris["DESCR"]}\n')

In [30]:

In [31]:

Dataset Description:
.. _iris_dataset:

Iris plants dataset

Data Set Characteristics:

:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - class:
 - Iris-Setosa
 - Iris-Versicolour
 - Iris-Virginica

:Summary Statistics:

============== ==== ==== ======= ===== ====================
 Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================

:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is take
n
from Fisher's paper. Note that it's the same as in R, but not as in the UCI
Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field an
d
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to
a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

.. dropdown:: References

 - Fisher, R.A. "The use of multiple measurements in taxonomic problems"
 Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
 Mathematical Statistics" (John Wiley, NY, 1950).

 - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysi
s.
 (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
 - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
 Structure and Classification Rule for Recognition in Partially Exposed
 Environments". IEEE Transactions on Pattern Analysis and Machine
 Intelligence, Vol. PAMI-2, No. 1, 67-71.
 - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactio
ns
 on Information Theory, May 1972, 431-433.
 - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
 conceptual clustering system finds 3 classes in the data.
 - Many, many more ...

Example: Exploration

print(f'Feature Names: {iris.feature_names}')

Feature Names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (c
m)', 'petal width (cm)']

print(f'Target Names: {iris.target_names}')

Target Names: ['setosa' 'versicolor' 'virginica']

print(f'Data Shape: {iris.data.shape}')

Data Shape: (150, 4)

print(f'Target Shape: {iris.target.shape}')

Target Shape: (150,)

Example: Using Pandas (continued)

import pandas as pd

Create a DataFrame

df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['species'] = iris.target

Example: Using Pandas (continued)

Display the first few rows of the DataFrame

print(df.head())

In [32]:

In [33]:

In [34]:

In [35]:

In [36]:

In [37]:

 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
\
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2

 species
0 0
1 0
2 0
3 0
4 0

Example: Using Pandas (continued)

Summary statistics

print(df.describe())

 sepal length (cm) sepal width (cm) petal length (cm) \
count 150.000000 150.000000 150.000000
mean 5.843333 3.057333 3.758000
std 0.828066 0.435866 1.765298
min 4.300000 2.000000 1.000000
25% 5.100000 2.800000 1.600000
50% 5.800000 3.000000 4.350000
75% 6.400000 3.300000 5.100000
max 7.900000 4.400000 6.900000

 petal width (cm) species
count 150.000000 150.000000
mean 1.199333 1.000000
std 0.762238 0.819232
min 0.100000 0.000000
25% 0.300000 0.000000
50% 1.300000 1.000000
75% 1.800000 2.000000
max 2.500000 2.000000

Example: Using Seaborn

import seaborn as sns

Map target values to species names

df['species'] = df['species'].map({0: 'setosa', 1: 'versicolor', 2: 'virgini

Pairplot using seaborn

sns.pairplot(df, hue='species', markers=["o", "s", "D"])

In [38]:

In [39]:

plt.suptitle("Pairwise Scatter Plots of Iris Features", y=1.02)
plt.show()

What insights can be drawn from examining the graphs?

The image presents all pairwise scatter plots for the iris dataset features, with the

diagonal displaying histograms for each individual feature. Each dot represents an

example (), and the colors indicate the corresponding labels ().

Let’s first consider the diagonal elements:

Is it possible to classify the examples using a single feature?

We observe that sepal length or width alone cannot distinguish between the

classes.

However, petal length and width allow us to differentiate setosa from the other two

varieties, although they do not separate versicolor and virginica effectively.

The class setosa frequently forms a distinct cluster.

x y

Example: Training and test set

from sklearn.model_selection import train_test_split

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ran

Our initial classifier, a decision tree, was constructed using the entire dataset. While it

provides the “best” fit for the data, we cannot ascertain its predictive accuracy

without further evaluation.

We will have a lot more to say about testing in the coming weeks.

Practice: Experiment with different values for random_state . What do you observe?

Why do you think this occurs? Why is it important to set the random_state value?

Example: Creating a new classifier

Train the model
clf = tree.DecisionTreeClassifier()

Example: Training the new classifier

Train the model
clf.fit(X_train, y_train)

Example: Making predictions

Make predictions
y_pred = clf.predict(X_test)

Example: measuring the performance

from sklearn.metrics import classification_report, accuracy_score
Make predictions

Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, target_names=iris.target_name

print(f'Accuracy: {accuracy:.2f}')
print('Classification Report:')
print(report)

In [40]:

In [41]:

In [42]:

In [43]:

In [44]:

Accuracy: 0.90
Classification Report:
 precision recall f1-score support

 setosa 1.00 1.00 1.00 7
 versicolor 0.91 0.83 0.87 12
 virginica 0.83 0.91 0.87 11

 accuracy 0.90 30
 macro avg 0.91 0.91 0.91 30
weighted avg 0.90 0.90 0.90 30

Here is a discussion on model persistence for scikit-learn models.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

https://scikit-learn.org/stable/model_persistence.html
mailto:Marcel.Turcotte@uOttawa.ca

