
Learning Algorithms

CSI 4106 - Fall 2025

Marcel Turcotte

Version: Sep 9, 2025 15:56

Preamble

Message of the Day

https://www.youtube.com/watch?v=OmzzoJM5YQM

Microsoft boss troubled by rise in reports of ‘AI psychosis’, BBC News, 2025-08-21.

Large language models exhibit remarkable linguistic capabilities, prompting an

increasing number of individuals to engage in personal dialogues with them. Murray

Shanahan, affiliated with Google DeepMind and Imperial College, introduces an

compelling framework for examining the “behavior” of these models. He conceptualizes

their interactions through the lens of role play, as discussed in his recent work published

in Nature.

Consciousness, reasoning and the philosophy of AI with Murray Shanahan, in this

Google DeepMind podcast, Hannah Fry interviews Murray Shanahan, 2025-04-24.

Depending on the context of their interaction prompts, these models can adopt

personas that simulate malevolent individuals, potentially offering advice with harmful

consequences.

OpenAI Eagerly Trying To Reduce AI Psychosis And Squash Co-Creation Of Human-

AI Delusions When Using ChatGPT And GPT-5, by Lance Eliot, Forbes, 2025-09-02.

What to know about ‘AI psychosis’ and the effect of AI chatbots on mental health,

PBS News, 2025-08-31.

Here is a reminder for the University of Ottawa’s wellness page, which offers a

comprehensive array of resources, including medical and mental health-care services,

designed to support your well-being and that of those around you.

Student Health and Wellness

Learning outcomes

https://www.youtube.com/watch?v=OmzzoJM5YQM
https://www.youtube.com/watch?v=OmzzoJM5YQM
https://www.nature.com/articles/s41586-023-06647-8
https://www.nature.com/articles/s41586-023-06647-8
https://www.youtube.com/watch?v=v1Py_hWcmkU
file:///var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/T/tmpcr7f5sdi.html
file:///var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/T/tmpcr7f5sdi.html
https://www.pbs.org/newshour/show/what-to-know-about-ai-psychosis-and-the-effect-of-ai-chatbots-on-mental-health
https://www.uottawa.ca/campus-life/health-wellness

Differentiate between model, objective, and optimizer in learning algorithms.

Explain KNN for classification and regression, including uniform and distance-

weighted prediction.

Describe decision trees and apply the split criterion using impurity measures such

as Gini.

Interpret decision boundaries and the concept of linear separability.

Formulate linear regression with an intercept/bias term and evaluate it using RMSE.

KNN

k-nearest neighbours

KNeighborsClassifier, examples

KNeighborsRegressor, exemples

Attribution: Nearest Neighbors Classification.

As indicated in the introductory lecture, I aim to present a series of concepts leading to

deep learning. As a starting point, linear regression would be a logical choice as a

primary learning algorithm to examine. Nonetheless, it is equally critical to possess a

high-level understanding of various other learning algorithms, as they differ significantly

in model structures and training processes. Therefore, I will briefly discuss k-nearest

neighbours and decision trees, before introducing linear regression.

The k-nearest neighbour (KNN) algorithm is a simple, non-parametric, instance-

based learning method used for classification and regression. It classifies a data point

based on the majority label of its nearest neighbours in the feature space, where is a

user-defined constant. Distance metrics like Euclidean distance are commonly used to

determine the nearest neighbours. In the re

k k

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_regression.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html

In the context of regression, the predicted value is calculated as a weighted sum of

the labels of its nearest neighbours. The weights can be uniform or based on distance,

reflecting the proximity of each neighbour to the query point .

For a query point , let its nearest neighbours have targets and distances

.

Uniform weights (default):

Distance weights (the built-in option "distance"):

In the above, as the distance between the example and the example increases,

the reciprocal decreases. Consequently, examples that are farther from exert less

influence on the predicted outcome, .

In both cases, convex combination property guarantees that:

A non-parametric algorithm does not make any assumptions about the underlying data

distribution and does not learn a fixed set of parameters or a model during the training

phase. Instead, it relies directly on the training data to make decisions at the time of

classification or regression, making it flexible and adaptive to various data shapes but

potentially computationally expensive at prediction time.

KNN has clear limitations:

1. Computational cost

Prediction requires computing distances to all training points, per query.

2. Curse of dimensionality

In high-dimensional spaces, distance metrics lose discriminative power.

3. Choice of and distance metric

Small : high variance, sensitive to noise/outliers.

Large : high bias, oversmoothing.

4. Sensitivity to feature scaling

Distances are scale-dependent; variables with larger ranges dominate unless

features are normalized/standardized.

5. Imbalanced data

ŷ(x)

k

x

x k y1, … , yk
d1, … , dk

ŷ(x) =
k

∑
i=1

yi
1

k

ŷ(x) =
∑

k

i=1 yi
1
di

∑
k

i=1
1
di

di xi x
1

di
x

ŷ(x)

min(y1, … , yk) ≤ ŷ(x) ≤ max(y1, … , yk).

O(n)

k

k

k

In classification, if one class is much more frequent, KNN can be biased toward

that class since neighbours are more likely to belong to it.

6. Not extrapolative

Predictions are always convex combinations (in regression) or majority votes (in

classification) of training labels.

This means KNN cannot extrapolate trends outside the range of observed

training data.

In scikit-learn, several models are commonly used for regression tasks. Here are some of

the main models:

1. Linear Regression (LinearRegression):

A simple linear approach that models the relationship between the independent

variables and the dependent variable by fitting a linear equation to the observed

data.

2. Support Vector Regression (SVR):

An extension of Support Vector Machines (SVM) for regression tasks, which

tries to fit the best line within a specified margin of tolerance.

3. Decision Tree Regression (DecisionTreeRegressor):

Uses decision trees to model the relationship between the input features and

the target variable by recursively splitting the data into subsets.

4. Random Forest Regression (RandomForestRegressor):

An ensemble method that uses multiple decision trees to improve predictive

accuracy and control overfitting.

5. Gradient Boosting Regression (GradientBoostingRegressor):

Another ensemble method that builds sequential decision trees, where each

tree corrects the errors of the previous one.

6. K-Nearest Neighbors Regression (KNeighborsRegressor):

A non-parametric method that predicts the target variable based on the average

of the k-nearest neighbours in the feature space.

These models offer a range of approaches to handle different types of regression

problems, each with its own strengths and suitable applications.

Decision Tree

Interpretable

Attribution: Public Health Agency of Canada

Decision trees are valuable because they clearly delineate the rules learned by the

model. The decision tree above illustrates the results of a study examining clinically

significant anxiety symptoms. In this instance, the initial determinant was whether

students reported having a positive home environment.

What is a Decision Tree?

A decision tree is a hierarchical structure represented as a directed acyclic graph,

used for classification and regression tasks.

Each internal node performs a binary test on a particular feature (), such as

evaluating whether the number of connections at a school surpasses a specified

threshold.

The leaves function as decision nodes.

The tree’s structure is inferred (learnt) from the training data.

Decision trees can extend beyond binary splits, as exemplified by algorithms like ID3,

which accommodate nodes with multiple children.

Classifying New Instances (Inference)

Begin at the root node of the decision tree. Proceed by answering a sequence of

binary questions until a leaf node is reached. The label associated with this leaf

denotes the classification of the instance.

Alternatively, some algorithms may store a probability distribution at the leaf,

representing the fraction of training samples corresponding to each class , across

j

k

https://www.canada.ca/en/public-health/services/reports-publications/health-promotion-chronic-disease-prevention-canada-research-policy-practice/vol-43-no-2-2023/decision-trees-population-health-surveillance-research-youth-mental-health-compass-study.html

all possible classes .

When a decision tree is used to solve a regression task, each leaf node stores a

prediction value. Specifically:

where is the number of training samples that ended up in that leaf, and are their

target values.

Decision Boundary

Palmer Pinguins Dataset

Loading our dataset

try:
 from palmerpenguins import load_penguins
except:
 ! pip install palmerpenguins
 from palmerpenguins import load_penguins

penguins = load_penguins()

Pairplot using seaborn

import matplotlib.pyplot as plt
import seaborn as sns

sns.pairplot(penguins, hue='species', markers=["o", "s", "D"])
plt.suptitle("Pairwise Scatter Plots of Penguins Features")
plt.show()

k

ŷ leaf = ∑
i∈leaf

yi,
1

Nleaf

Nleaf yi

In [1]:

Binary Classification Problem

Several scatter plots reveal a distinct clustering of Gentoo instances.

To illustrate our next exemple, we propose a binary classification model: Gentoo

versus non-Gentoo.

Our analysis will concentrate on two key features: body mass and bill depth.

Definition

A decision boundary is a “boundary” that partitions the underlying feature space into

regions corresponding to different class labels.

The term boundary will be clarified over the next slides.

Decision Boundary

The decision boundary between these attributes can be represented as a line.

Import necessary libraries
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

try:
 from palmerpenguins import load_penguins
except:
 ! pip install palmerpenguins
 from palmerpenguins import load_penguins

Load the Palmer Penguins dataset
df = load_penguins()

Preserve only the necessary features: 'bill_depth_mm' and 'body_mass_g'
features = ['bill_depth_mm', 'body_mass_g']
df = df[features + ['species']]

Drop rows with missing values
df.dropna(inplace=True)

Create a binary problem: 'Gentoo' vs 'Not Gentoo'
df['species_binary'] = df['species'].apply(lambda x: 1 if x == 'Gentoo' else

Define feature matrix X and target vector y
X = df[features].values
y = df['species_binary'].values

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ran

Function to plot initial scatter of data
def plot_scatter(X, y):
 plt.figure(figsize=(9, 5))
 plt.scatter(X[y == 1, 0], X[y == 1, 1], color='orange', edgecolors='k',
 plt.scatter(X[y == 0, 0], X[y == 0, 1], color='blue', edgecolors='k', ma
 plt.xlabel('Bill Depth (mm)')
 plt.ylabel('Body Mass (g)')
 plt.title('Scatter Plot of Bill Depth vs. Body Mass')
 plt.legend()
 plt.show()

Plot the initial scatter plot
plot_scatter(X_train, y_train)

In [2]:

Decision Boundary

The decision boundary between these attributes can be represented as a line.

Train a logistic regression model
model = LogisticRegression()
model.fit(X_train, y_train)

Function to plot decision boundary
def plot_decision_boundary(X, y, model):
 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
 np.arange(y_min, y_max, 0.1))
 Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
 Z = Z.reshape(xx.shape)

 plt.figure(figsize=(9, 5))
 plt.contourf(xx, yy, Z, alpha=0.3, cmap='RdYlBu')
 plt.scatter(X[y == 1, 0], X[y == 1, 1], color='orange', edgecolors='k',
 plt.scatter(X[y == 0, 0], X[y == 0, 1], color='blue', edgecolors='k', ma
 plt.xlabel('Bill Depth (mm)')
 plt.ylabel('Body Mass (g)')
 plt.title('Logistic Regression Decision Boundary')
 plt.legend()
 plt.show()

Plot the decision boundary on the training set
plot_decision_boundary(X_train, y_train, model)

In [3]:

Definition

We say that the data is linearly separable when two classes of data can be perfectly

separated by a single linear boundary, such as a line in two-dimensional space or a

hyperplane in higher dimensions.

Simple Decision Doundary

(a) training data, (b) quadratic curve, and (c) linear function.

Attribution: (Geurts, Irrthum, and Wehenkel 2009)

The table on the left presents training data for a hypothetical binary classification task

in a medical context, where the two attributes, and , are used to predict the target

variable, , which can take on two values: sick and healthy. You can imagine that and

 are measurements, such as blood pressure and heart rate or cholesterol and glucose

levels.

X1 X2

y X1

X2

Logistic regression (c) employs a linear decision boundary. In this specific example,

the decision boundary is represented by a straight line. Employing logistic regression for

this problem results in several classification errors: red dots above the line, which should

be classified as ‘sick’, are incorrectly predicted as ‘healthy’. Conversely, green dots below

the line, which should be classified as ‘healthy’, are incorrectly predicted as ‘sick’.

Complex Decision Boundary

Decision trees are capable of generating irregular and non-linear decision boundaries.

Attribution: ibidem.

Make sure to understand the relationships between the eight decision rules delineated in

the decision tree and the nine line segments represented in the scatter plot.

Definition (revised)

A decision boundary is a hypersurface that partitions the underlying feature space into

regions corresponding to different class labels.

Decision Tree (contd)

Constructing a Decision Tree

How to construct (learnt) a decision tree?

Are there some trees that are “better” than others?

Is it feasible to construct an optimal decision tree with computational efficiency?

(Hyafil and Rivest 1976)

Optimality

Let be a finite set of objects.

Let be a finite set of tests.

For each object and test, we have:

 is either true or false.

An optimal tree is one that completely identifies all the objects in and is

minimum.

(Hyafil and Rivest 1976)

Constructing a Decision Tree

Iterative development: Initiate with an empty tree. Progressively introduce nodes,

each informed by the training dataset, continuing until the dataset is completely

classified or alternative termination criteria, such as maximum tree depth, are

met.

Learning is the process of building the tree from training data.

Constructing a Decision Tree

Initial Node Construction:

To establish the root node, evaluate all available features.

For each feature, assess various threshold values derived from the

observed data within the training set.

Constructing a Decision Tree

For a numerical feature, the algorithm considers all possible split points

(thresholds) in the feature’s range.

These split points are typically the midpoints between two consecutive, sorted

unique values of the feature.

Constructing a Decision Tree

X = {x1, … ,xn}

T = {T1, … ,Tt}

Ti(xj)

X |T |

D

For a categorical feature with unique values, the algorithm considers all possible

ways of splitting the categories into two groups.

For instance, if the feature (forecast) has values, ‘Rainy’, ‘Cloudy’, and ‘Sunny’, it

evaluates the following splits:

 vs. ,

 vs. ,

 vs. .

Evaluation

What defines a “good” data split?

 vs. : and .

 vs. : and .

Where indicates that the subgroup contains 20 examples of the ‘Poor’, 10 for

‘Average’, and 5 for ‘Excellent’, for our predictive model to classify the likelihood of a

successful fishing day.

Evaluation

Heterogeneity (also referred to as impurity) and homogeneity are critical metrics

for evaluating the composition of resulting data partitions.

Optimally, each of these partitions should contain data entries from a single class

to achieve maximum homogeneity.

Entropy and the Gini index are two widely utilized metrics for assessing these

characteristics.

Evalution

Objective function for sklearn.tree.DecisionTreeClassifier (CART):

The cost of partitioning the data using feature and threshold .

 and is the number of examples in the left and right subsets,

respectively, and is the number of examples before splitting the data.

 and is the impurity of the left and right subsets, respectively.

Minimize or maximize ?

k

{Rainy} {Cloudy, Sunny}

{Cloudy} {Rainy, Sunny}

{Sunny} {Rainy, Cloudy}

{Rainy} {Cloudy, Sunny} [20, 10, 5] [10, 10, 15]

{Cloudy} {Rainy, Sunny} [40, 0, 0] [0, 30, 0]

[20, 10, 5]

J(k, tk) = Gleft + Gright
mleft

m

mright

m

k tk

mleft mright

m

Gleft Gright

J

What would happen had been defined as ?

The split criterion is a weighted average of child impurities; weighting by node size

prevents the tree from favoring splits that isolate only a few samples.

Gini Index

Gini index (default)

 is the proportion of the examples from this class in the node .

What is the maximum value of the Gini index?

The value of the Gini index is maximum when all the classes are equiprobable,

i.e. the proportions are the same.

For a binary classification, .

For the general case, , as , the Gini index tends to 1.

Gini Index

Considering a binary classification problem:

 (pure)

Based on the above, are we solving a minimization or maximization problem?

When the problem is formulated as follows:

For each candidate split , compute

The algorithm then chooses the split with the lowest , i.e. the split that yields the

smallest weighted impurity.

Many textbooks describe this as maximizing impurity reduction (information gain),

which is just

J J(k, tk) = Gleft + Gright

Gi = 1 −
n

∑
k=1

p2
i,k

pi,k k i

1 − \[
2

+
2
] = 0.51

2
1
2

1 − n ×
2

= 1 −1
n

1
n n → ∞

1 − (0/100)2 + (100/100)2 = 0

1 − (25/100)2 + (75/100)2 = 0.375

1 − (50/100)2 + (50/100)2 = 0.5

(k, tk)

J(k, tk) = Gleft + Gright.
mleft

m

mright

m

J

ΔG = Gparent − J(k, tk).

Minimizing and maximizing are equivalent problems.

Gini Index

def gini_index(p):
 """Calculate the Gini index."""
 return 1 - (p**2 + (1 - p)**2)

Probability values for class 1
p_values = np.linspace(0, 1, 100)

Calculate Gini index for each probability
gini_values = [gini_index(p) for p in p_values]

Plot the Gini index
plt.figure(figsize=(8, 6))
plt.plot(p_values, gini_values, label='Gini Index', color='b')
plt.title('Gini Index for Binary Classification')
plt.xlabel('Probability of Class 1 (p)')
plt.ylabel('Gini Index')
plt.grid(True)
plt.legend()
plt.show()

J ΔG

In [4]:

Iris Dataset

Attribution: (Géron 2019), Figures 6.1 and 6.2

Complete Example

https://www.youtube.com/watch?v=_L39rN6gz7Y

Decision and Classification Trees, Clearly Explained!!!, (18 m 7s) StatQuest, 2021-04-26

Stopping Criteria

All the examples in a given node belong to the same class.

Depth of the tree would exceed max_depth.

Number of examples in the node is min_sample_split or less.

None of the splits decreases impurity sufficiently (min_impurity_decrease).

See documentation for other criteria.

Limitations

Possibly creates large trees

Challenge for interpretation

Overfitting

Greedy algorithm, no guarantee to find the optimal tree. (Hyafil and Rivest 1976)

Small changes to the data set produce vastly different trees

Large Trees

(Stiglic et al. 2012)

Small Changes to the Dataset

from sklearn import tree
from sklearn.metrics import classification_report, accuracy_score

In [5]:

https://www.youtube.com/watch?v=_L39rN6gz7Y
https://www.youtube.com/watch?v=_L39rN6gz7Y
https://www.youtube.com/@statquest/videos

Loading the dataset

X, y = load_penguins(return_X_y = True)

target_names = ['Adelie','Chinstrap','Gentoo']

Split the dataset into training and testing sets

for seed in (4, 7, 90, 96, 99, 2):

 print(f'Seed: {seed}')

 # Create new training and test sets based on a different random seed

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, r

 # Creating a new classifier

 clf = tree.DecisionTreeClassifier(random_state=seed)

 # Training

 clf.fit(X_train, y_train)

 # Make predictions

 y_pred = clf.predict(X_test)

 # Plotting the tree

 tree.plot_tree(clf,
 feature_names = X.columns,
 class_names = target_names,
 filled = True)
 plt.show()

 # Evaluating the model

 accuracy = accuracy_score(y_test, y_pred)

 report = classification_report(y_test, y_pred, target_names=target_names)

 print(f'Accuracy: {accuracy:.2f}')
 print('Classification Report:')
 print(report)

Seed: 4

Accuracy: 0.99
Classification Report:
 precision recall f1-score support

 Adelie 1.00 0.97 0.99 36
 Chinstrap 0.94 1.00 0.97 17
 Gentoo 1.00 1.00 1.00 16

 accuracy 0.99 69
 macro avg 0.98 0.99 0.99 69
weighted avg 0.99 0.99 0.99 69

Seed: 7

Accuracy: 0.91
Classification Report:
 precision recall f1-score support

 Adelie 0.96 0.83 0.89 30
 Chinstrap 0.83 1.00 0.91 15
 Gentoo 0.92 0.96 0.94 24

 accuracy 0.91 69
 macro avg 0.90 0.93 0.91 69
weighted avg 0.92 0.91 0.91 69

Seed: 90

Accuracy: 0.94
Classification Report:
 precision recall f1-score support

 Adelie 0.90 1.00 0.95 26
 Chinstrap 0.93 0.88 0.90 16
 Gentoo 1.00 0.93 0.96 27

 accuracy 0.94 69
 macro avg 0.94 0.93 0.94 69
weighted avg 0.95 0.94 0.94 69

Seed: 96

Accuracy: 0.90
Classification Report:
 precision recall f1-score support

 Adelie 0.83 0.97 0.89 30
 Chinstrap 1.00 0.67 0.80 15
 Gentoo 0.96 0.96 0.96 24

 accuracy 0.90 69
 macro avg 0.93 0.86 0.88 69
weighted avg 0.91 0.90 0.90 69

Seed: 99

Accuracy: 1.00
Classification Report:
 precision recall f1-score support

 Adelie 1.00 1.00 1.00 31
 Chinstrap 1.00 1.00 1.00 12
 Gentoo 1.00 1.00 1.00 26

 accuracy 1.00 69
 macro avg 1.00 1.00 1.00 69
weighted avg 1.00 1.00 1.00 69

Seed: 2

Accuracy: 0.55
Classification Report:
 precision recall f1-score support

 Adelie 0.62 0.97 0.75 30
 Chinstrap 0.43 0.90 0.58 10
 Gentoo 0.00 0.00 0.00 29

 accuracy 0.55 69
 macro avg 0.35 0.62 0.44 69
weighted avg 0.33 0.55 0.41 69

Linear Regression

Supervised Learning - Regression

The training data is a collection of labelled examples.

Each is a feature vector with dimensions.

 is the value of the feature of the example , for and

.

The label is a real number.

Problem: Given the data set as input, create a model that can be used to predict

the value of for an unseen .

Can you think of examples of regression tasks?

{(xi, yi)}Ni=1

xi D

x
(j)
i j i j ∈ 1 …D

i ∈ 1 …N

yi

y x

. . .

1. House Price Prediction:

Application: Estimating the market value of residential properties based on

features such as location, size, number of bedrooms, age, and amenities.

2. Stock Market Forecasting:

Application: Predicting future prices of stocks or indices based on historical

data, financial indicators, and economic variables.

3. Weather Prediction:

Application: Estimating future temperatures, rainfall, and other weather

conditions using historical weather data and atmospheric variables.

4. Sales Forecasting:

Application: Predicting future sales volumes for products or services by

analyzing past sales data, market trends, and seasonal patterns.

5. Energy Consumption Prediction:

Application: Forecasting future energy usage for households, industries, or

cities based on historical consumption data, weather conditions, and economic

factors.

6. Medical Cost Estimation:

Application: Predicting healthcare costs for patients based on their medical

history, demographic information, and treatment plans.

7. Traffic Flow Prediction:

Application: Estimating future traffic volumes and congestion levels on roads

and highways using historical traffic data and real-time sensor inputs.

8. Customer Lifetime Value (CLV) Estimation:

Application: Predicting the total revenue a business can expect from a

customer over the duration of their relationship, based on purchasing behavior

and demographic data.

9. Economic Indicators Forecasting:

Application: Predicting key economic indicators such as GDP growth,

unemployment rates, and inflation using historical economic data and market

trends.

10. Demand Forecasting:

Application: Estimating future demand for products or services in various

industries like retail, manufacturing, and logistics to optimize inventory and

supply chain management.

11. Real Estate Valuation:

Application: Assessing the market value of commercial properties like office

buildings, malls, and industrial spaces based on location, size, and market

conditions.

12. Insurance Risk Assessment:

Application: Predicting the risk associated with insuring individuals or

properties, which helps in determining premium rates, based on historical

claims data, and demographic factors.

13. Ad Click-Through Rate (CTR) Prediction:

Application: Estimating the likelihood that a user will click on an online

advertisement based on user behavior, ad characteristics, and contextual

factors.

14. Loan Default Prediction:

Application: Predicting the probability of a borrower defaulting on a loan based

on credit history, income, loan amount, and other financial indicators.

Focusing on applications possibly running on a mobile device.

1. Battery Life Prediction:

Application: Estimating remaining battery life based on usage patterns, running

applications, and device settings.

2. Health and Fitness Tracking:

Application: Predicting calorie burn, heart rate, or sleep quality based on user

activity, biometrics, and historical health data.

3. Personal Finance Management:

Application: Forecasting future expenses or savings based on spending habits,

income patterns, and budget goals.

4. Weather Forecasting:

Application: Providing personalized weather forecasts based on current

location and historical weather data.

5. Traffic and Commute Time Estimation:

Application: Predicting travel times and suggesting optimal routes based on

historical traffic data, real-time conditions, and user behavior.

6. Image and Video Quality Enhancement:

Application: Adjusting image or video quality settings (e.g., brightness,

contrast) based on lighting conditions and user preferences.

7. Fitness Goal Achievement:

Application: Estimating the time needed to achieve fitness goals such as

weight loss or muscle gain based on user activity and dietary input.

8. Mobile Device Performance Optimization:

Application: Predicting the optimal settings for device performance and battery

life based on usage patterns and app activity.

https://youtu.be/qxo8p8PtFeA?si=Buy1DF-T1qPsVE2S

Rationale

Linear regression is introduced to conveniently present a well-known training algorithm,

gradient descent. Additionally, it serves as a foundation for introducing logistic

https://youtu.be/qxo8p8PtFeA?si=Buy1DF-T1qPsVE2S

regression–a classification algorithm—which further facilitates discussions on artificial

neural networks.

Linear Regression

Gradient Descent

Logistic Regression

Neural Networks

The training algorithms for machine learning models can vary significantly depending on

the model (e.g., decision trees, SVMs, etc.). In order to fit our schedule, we will

concentrate on this specific sequence.

The concept of linear regression can be traced back to the early work of Sir Francis

Galton in the late 19th century. Galton introduced the idea of “regression” in his 1886

paper, which focused on the relationship between the heights of parents and their

children. He observed that children’s heights tended to regress towards the average,

which led to the term “regression.”

However, the mathematical formulation of linear regression is closely associated with the

work of Karl Pearson, who in the early 20th century extended Galton’s ideas to create

the method of least squares for fitting a linear model. The method itself, though, was

developed earlier in 1805 by Adrien-Marie Legendre and independently by Carl Friedrich

Gauss for astronomical data analysis.

See: Stanton (2001).

Linear Regression

A linear model assumes that the value of the label, , can be expressed as a linear

combination of the feature values, :

. . .

Here, is the th parameter of the (linear) model, with being the bias

term/parameter, and being the feature weights.

In my presentations, I use and synonymously.

In statistical contexts, the notation is employed to denote the estimator of the true

value . This represents the predicted or estimated outcome based on a given model.

Conversely, in machine learning, the notation is used, where represents the

hypothesis function or model applied to the input data . The hypothesis function is

ŷi

x
(j)
i

ŷi = θ0 + θ1x
(1)
i + θ2x

(2)
i + … + θDx

(D)
i

θj j θ0

θ1 … θD

ŷi h(xi)

ŷi

yi

h(xi) h

xi h

derived from a predefined hypothesis space, which encompasses the set of all possible

models that can be used to map input data to predicted outcomes.

The parameter is called the bias term (also “intercept”) because:

It shifts the prediction independently of the inputs.

Geometrically, it moves the regression hyperplane up or down (or left/right in

classification), so the model is not forced to pass through the origin.

In machine learning terms, it acts like a constant offset, compensating for

systematic effects not explained by the features.

So it’s called “bias” because it introduces a fixed baseline to which the contributions of

the other parameters are added.

Definition

Problem: find values for all the model parameters so that the model “best fits” the

training data.

. . .

The Root Mean Square Error is a common performance measure for regression

problems.

Minimizing RMSE

θ0


⎷

N

∑
1

[h(xi) − yi]
21

N

Attribution: Krishnavedala, CC BY-SA 3.0, via Wikimedia Commons

Characteristics

A typical learning algorithm comprises the following components:

1. A model, often consisting of a set of weights whose values will be “learnt”.

2. An objective function.

In the case of regression, this is often a loss function, a function that

quantifies misclassification. The Root Mean Square Error is a common loss

function for regression problems.

3. Optimization algorithm

Optimization

Until some termination criteria is met[1]:

√ ∑
N

1 [h(xi) − yi]2
1
N

https://commons.wikimedia.org/wiki/File:Linear_least_squares_example2.svg
https://creativecommons.org/licenses/by-sa/3.0

Evaluate the loss function, comparing to .

Make small changes to the weights, in a way that reduces the value of the loss

function.

Remarks

It is crucial to separate the optimization algorithm from the problem it addresses.

For linear regression, an exact analytical solution exists, but it presents certain

limitations.

Gradient descent serves as a general algorithm applicable not only to linear

regression, but also to logistic regression, deep learning, t-SNE (t-distributed

Stochastic Neighbor Embedding), among various other problems.

There exists a diverse range of optimization algorithms that do not rely on

gradient-based methods.

Summary

The lecture surveyed three learning algorithms, k-nearest neighbours (KNN),

decision trees, and linear regression, and framed them via model, objective, and

optimization.

We then constructed decision trees, showed that regression leaves returned the

sample mean, minimized the weighted impurity , and analyzed the Gini index.

Decision boundaries were illustrated for linear and non-linear models.

Finally, we formulated linear regression with a bias term.

Prologue

References

Géron, Aurélien. 2019. Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow. 2nd ed. O’Reilly Media.

Geurts, Pierre, Alexandre Irrthum, and Louis Wehenkel. 2009. “Supervised Learning with

Decision Tree-Based Methods in Computational and Systems Biology.” Molecular

bioSystems 5 (12): 1593–1605. https://doi.org/10.1039/b907946g.

Hyafil, Laurent, and Ronald L. Rivest. 1976. “Constructing Optimal Binary Decision Trees

Is NP-Complete.” Inf. Process. Lett. 5 (1): 15–17. https://doi.org/10.1016/0020-

0190(76)90095-8.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

h(xi) yi

J

https://doi.org/10.1039/b907946g
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1016/0020-0190(76)90095-8
http://aima.cs.berkeley.edu/

Stanton, Jeffrey M. 2001. “Galton, Pearson, and the Peas: A Brief History of Linear

Regression for Statistics Instructors.” Journal of Statistics Education 9 (3).

https://doi.org/10.1080/10691898.2001.11910537.

Stiglic, Gregor, Simon Kocbek, Igor Pernek, and Peter Kokol. 2012. “Comprehensive

Decision Tree Models in Bioinformatics.” Edited by Ahmed Moustafa. PLoS ONE 7 (3):

e33812. https://doi.org/10.1371/journal.pone.0033812.

Next lecture

Training a linear model

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

[1] E.g. the value of the loss function no longer decreases or the maximum number of

iterations.

https://doi.org/10.1080/10691898.2001.11910537
https://doi.org/10.1371/journal.pone.0033812
mailto:Marcel.Turcotte@uOttawa.ca

