
Linear regression and gradient descent

CSI 4106 - Fall 2025

Marcel Turcotte

Version: Sep 16, 2025 17:58

Preamble

Message of the Day

World’s first AI minister will eliminate corruption, says Albania’s PM, by Guy Delauney,

BBC, 2025-09-12.

Albania has appointed an AI minister, Diella, to the role of minister for public

procurement. While the appointment is symbolic due to constitutional requirements,

Diella aims to eliminate corruption in public tenders by leveraging AI for faster, more

efficient, and accountable processes. The initiative has received mixed reactions, with

some viewing it as a publicity stunt while others see potential for improving transparency

and trust in public procurement.

Learning Objectives

Differentiate regression tasks from classification tasks.

https://www.bbc.com/news/articles/cm2znzgwj3xo

Articulate the training methodology for linear regression models.

Interpret the function of optimization algorithms in addressing linear regression.

Detail the significance of partial derivatives within the gradient descent algorithm.

Contrast the batch, stochastic, and mini-batch gradient descent methods.

In the previous lecture, we examined two distinct learning algorithms: -nearest

neighbors (KNN) and decision trees, each employing unique methods for model training

and representation. KNN does not involve explicit learning; instead, the data itself

constitutes the model. Conversely, decision trees utilize a greedy algorithm that begins

with an empty tree and the full training dataset. The algorithm incrementally adds

decision nodes, partitioning the parent dataset into subsets to achieve greater

homogeneity (or purity) within each resulting classification compared to the parent

node. This recursive process terminates when a node’s data satisfies predefined

stopping criteria, such as achieving a single class, reaching a minimum purity level, or

attaining a maximum tree depth. Once the decision tree is constructed, the original data

is no longer needed. This lecture aimed to demonstrate that supervised learning models

can be represented in various ways, with each “learning” algorithm tailored to its specific

model.

In today’s lecture, we will explore a training algorithm that is applicable to a diverse

range of models, including neural networks.

Linear Regression

Rationale

Linear regression is introduced to conveniently present a well-known training algorithm,

gradient descent. Additionally, it serves as a foundation for introducing logistic

regression–a classification algorithm—which further facilitates discussions on artificial

neural networks.

Linear Regression

Gradient Descent

Logistic Regression

Neural Networks

From 2 to 2 trillion parameters!

The training algorithms for machine learning models can vary significantly depending on

the model (e.g., decision trees, SVMs, etc.). In order to fit our schedule, we will

concentrate on this specific sequence.

The concept of linear regression can be traced back to the early work of Sir Francis

Galton in the late 19th century. Galton introduced the idea of “regression” in his 1886

k

paper, which focused on the relationship between the heights of parents and their

children. He observed that children’s heights tended to regress towards the average,

which led to the term “regression.”

However, the mathematical formulation of linear regression is closely associated with the

work of Karl Pearson, who in the early 20th century extended Galton’s ideas to create

the method of least squares for fitting a linear model. The method itself, though, was

developed earlier in 1805 by Adrien-Marie Legendre and independently by Carl Friedrich

Gauss for astronomical data analysis.

See: Stanton (2001).

Supervised Learning - Regression

The training data is a collection of labelled examples.

Each is a feature vector with dimensions.

 is the value of the feature of the example , for and

.

The label is a real number.

Problem: Given the data set as input, create a model that can be used to predict

the value of for an unseen .

Can you think of examples of regression tasks?

1. House Price Prediction:

Application: Estimating the market value of residential properties based on

features such as location, size, number of bedrooms, age, and amenities.

2. Stock Market Forecasting:

Application: Predicting future prices of stocks or indices based on historical

data, financial indicators, and economic variables.

3. Weather Prediction:

Application: Estimating future temperatures, rainfall, and other weather

conditions using historical weather data and atmospheric variables.

4. Sales Forecasting:

Application: Predicting future sales volumes for products or services by

analyzing past sales data, market trends, and seasonal patterns.

5. Energy Consumption Prediction:

Application: Forecasting future energy usage for households, industries, or

cities based on historical consumption data, weather conditions, and economic

factors.

6. Medical Cost Estimation:

{(xi, yi)}N
i=1

xi D

x
(j)
i j i j ∈ 1 … D

i ∈ 1 … N

yi

y x

Application: Predicting healthcare costs for patients based on their medical

history, demographic information, and treatment plans.

7. Traffic Flow Prediction:

Application: Estimating future traffic volumes and congestion levels on roads

and highways using historical traffic data and real-time sensor inputs.

8. Customer Lifetime Value (CLV) Estimation:

Application: Predicting the total revenue a business can expect from a

customer over the duration of their relationship, based on purchasing behavior

and demographic data.

9. Economic Indicators Forecasting:

Application: Predicting key economic indicators such as GDP growth,

unemployment rates, and inflation using historical economic data and market

trends.

10. Demand Forecasting:

Application: Estimating future demand for products or services in various

industries like retail, manufacturing, and logistics to optimize inventory and

supply chain management.

11. Real Estate Valuation:

Application: Assessing the market value of commercial properties like office

buildings, malls, and industrial spaces based on location, size, and market

conditions.

12. Insurance Risk Assessment:

Application: Predicting the risk associated with insuring individuals or

properties, which helps in determining premium rates, based on historical

claims data, and demographic factors.

13. Ad Click-Through Rate (CTR) Prediction:

Application: Estimating the likelihood that a user will click on an online

advertisement based on user behavior, ad characteristics, and contextual

factors.

14. Loan Default Prediction:

Application: Predicting the probability of a borrower defaulting on a loan based

on credit history, income, loan amount, and other financial indicators.

Focusing on applications possibly running on a mobile device.

1. Battery Life Prediction:

Application: Estimating remaining battery life based on usage patterns, running

applications, and device settings.

2. Health and Fitness Tracking:

Application: Predicting calorie burn, heart rate, or sleep quality based on user

activity, biometrics, and historical health data.

3. Personal Finance Management:

Application: Forecasting future expenses or savings based on spending habits,

income patterns, and budget goals.

4. Weather Forecasting:

Application: Providing personalized weather forecasts based on current

location and historical weather data.

5. Traffic and Commute Time Estimation:

Application: Predicting travel times and suggesting optimal routes based on

historical traffic data, real-time conditions, and user behavior.

6. Image and Video Quality Enhancement:

Application: Adjusting image or video quality settings (e.g., brightness,

contrast) based on lighting conditions and user preferences.

7. Fitness Goal Achievement:

Application: Estimating the time needed to achieve fitness goals such as

weight loss or muscle gain based on user activity and dietary input.

8. Mobile Device Performance Optimization:

Application: Predicting the optimal settings for device performance and battery

life based on usage patterns and app activity.

Old Faithful Eruptions

import pandas as pd

WOLFRAM_CSV = "https://raw.githubusercontent.com/turcotte/csi4106-f25/refs/h
df = pd.read_csv(WOLFRAM_CSV)

Renaming the columns
df = df.rename(columns={"Duration": "eruptions", "WaitingTime": "waiting"})
print(df.shape)
df.head(6)

(272, 2)

Attribution: Wolfram Research, “Sample Data: Old Faithful Eruptions” from the Wolfram

Data Repository (2016) doi: 10.24097/wolfram.50727.data

The dataset used in this presentation was sourced from the Wolfram Research Data

Repository, with its initial publication detailed in Azzalini and Bowman (1990).

Old Faithful Geyser

https://youtu.be/Qxf3xzirBrs

Attribution: Yellowstone National Park Trips

Old Faithful, situated in Yellowstone National Park, is renowned as the world’s most

famous geyser. It can reach eruption heights of up to 140 feet. Notably, its eruption

In [1]:

https://doi.org/10.24097/wolfram.50727.data
https://youtu.be/Qxf3xzirBrs

intervals range between 60 and 110 minutes, contingent upon the duration of the

preceding eruption.

Quick Visualization

import matplotlib.pyplot as plt

plt.figure(figsize=(6,4))
plt.scatter(df["eruptions"], df["waiting"], s=20)
plt.xlabel("Eruption duration (min)")
plt.ylabel("Waiting time to next eruption (min)")
plt.title("Old Faithful: eruptions vs waiting")
plt.tight_layout()
plt.show()

The duration of the current eruption appears to have a linear relationship with the

subsequent wait time: shorter eruption durations tend to precede shorter wait times,

while longer eruption durations are associated with longer wait times.

Problem

Predict the waiting time until the next eruption (min), , based on the duration of

the current eruption (min), .

Selecting a problem characterized by a single attribute allows us to better focus our

discussion and enhance the clarity of visualization.

In [2]:

y

x

https://youtu.be/qxo8p8PtFeA?si=Buy1DF-T1qPsVE2S

Linear Regression

A linear model assumes that the value of the label, , can be expressed as a linear

combination of the feature values, :

. . .

Here, is the th parameter of the (linear) model, with being the bias

term/parameter, and being the feature weights.

In my presentations, I use and synonymously.

In statistical contexts, the notation is employed to denote the estimator of the true

value . This represents the predicted or estimated outcome based on a given model.

Conversely, in machine learning, the notation is used, where represents the

hypothesis function or model applied to the input data . The hypothesis function is

derived from a predefined hypothesis space, which encompasses the set of all possible

models that can be used to map input data to predicted outcomes.

The parameter is called the bias term (also “intercept”) because:

It shifts the prediction independently of the inputs.

Geometrically, it moves the regression hyperplane up or down (or left/right in

classification), so the model is not forced to pass through the origin.

In machine learning terms, it acts like a constant offset, compensating for

systematic effects not explained by the features.

So it’s called “bias” because it introduces a fixed baseline to which the contributions of

the other parameters are added.

In a machine learning model, the parameters are the weights and the biases.

Definition

Problem: find values for all the model parameters so that the model “best fits” the

training data.

. . .

The Root Mean Square Error is a common performance measure for regression

problems.

ŷi

x
(j)
i

ŷi = θ0 + θ1x
(1)
i + θ2x

(2)
i + … + θDx

(D)
i

θj j θ0

θ1 … θD

ŷi h(xi)

ŷi

yi

h(xi) h

xi h

θ0

https://youtu.be/qxo8p8PtFeA?si=Buy1DF-T1qPsVE2S

In practical implementation, algorithms typically optimize the mean squared error (MSE)

due to its mathematical tractability and the fact that it converges to the same parameter

estimates as other error measures. While our current focus is on using MSE, the

algorithm can be adapted to work with a range of objective functions.

Minimizing RMSE

Attribution: Krishnavedala, CC BY-SA 3.0, via Wikimedia Commons

Learning

from sklearn.linear_model import SGDRegressor
from sklearn.model_selection import train_test_split

⎷
N

∑
1

[h(xi) − yi]
21

N

In [3]:

https://commons.wikimedia.org/wiki/File:Linear_least_squares_example2.svg
https://creativecommons.org/licenses/by-sa/3.0

from sklearn.metrics import mean_squared_error, r2_score

Prepare data
X = df[["eruptions"]].values # shape (n_samples, 1)
y = df["waiting"].values # shape (n_samples,)

X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=42
)

Fit via SGDRegressor — linear model via gradient descent
sgd = SGDRegressor(
 loss="squared_error",
 penalty=None,
 learning_rate="constant",
 eta0=0.01,
 max_iter=2000,
 tol=None,
 random_state=42
)

sgd.fit(X_train, y_train)

print("Learned parameters:")
print(f" intercept = {sgd.intercept_[0]:.3f}")
print(f" slope = {sgd.coef_[0]:.3f}")

y_pred = sgd.predict(X_test)
print(f"Test MSE = {mean_squared_error(y_test, y_pred):.2f}")
print(f"Test R² = {r2_score(y_test, y_pred):.3f}")

Learned parameters:
 intercept = 32.910
 slope = 10.503
Test MSE = 43.02
Test R² = 0.671

Visualization

import numpy as np

Scatter the data
plt.figure(figsize=(6,4))
plt.scatter(X, y, color="steelblue", s=30, alpha=0.7, label="data")

Plot the fitted line
x_line = np.linspace(0, X.max(), 100).reshape(-1, 1)
y_line = sgd.predict(x_line)
plt.plot(x_line, y_line, color="red", linewidth=2, label="fitted line")

plt.xlabel("Eruption duration (min)")
plt.ylabel("Waiting time to next eruption (min)")
plt.title("Old Faithful: Linear regression via SGD")
plt.legend()

In [4]:

plt.tight_layout()
plt.show()

In the plot above, the line is included to facilitate the visualization of the intercept,

which is given by .

Characteristics

A typical learning algorithm comprises the following components:

1. A model, often consisting of a set of parameters whose values will be “learnt”.

2. An objective function.

In the case of regression, this is often a loss function, a function that

quantifies misclassification. The Root Mean Square Error is a common loss

function for regression problems.

3. Optimization algorithm

Optimization

Until some termination criteria is met[1]:

Evaluate the loss function, comparing to .

x = 0
θ0 = 32.910

⎷
N

∑
1

[h(xi) − yi]2
1
N

h(xi) yi

Make small changes to the parameters, in a way that reduces the value of the loss

function.

Remarks

It is important to separate the optimization algorithm from the problem it

addresses.

For linear regression, an exact analytical solution exists, but it presents certain

limitations.

Gradient descent serves as a general algorithm applicable not only to linear

regression, but also to logistic regression, deep learning, t-SNE (t-distributed

Stochastic Neighbor Embedding), among various other problems.

There exists a diverse range of optimization algorithms that do not rely on

gradient-based methods.

Optimization — single feature

Model (hypothesis):

Loss/cost function:

Goal: find that minimize , by iteratively updating the parameters.

This screen is paramount for our presentation, and it is essential to grasp its content

fully, as it often causes confusion.

In machine learning, an algorithm generates a model, denoted as . This model is

derived from the training data, represented by . After the model is trained, it can be

utilized to predict outcomes for new, unseen data points, denoted by . Once trained,

the model’s parameters, , become fixed. The model functions by mapping each input

to a predicted output , .

The cost function is used to determine the optimal parameter values, , for the model .

On this screen, the loss is specified as the mean squared error. Our goal is to identify

such that the model minimizes its error on the training dataset . The loss function

maps the parameter pair to a non-negative real number , ,

which aggregates errors across all data points.

h(xi; θ) = θ0 + θ1x
(1)
i

J(θ0, θ1) =
N

∑
i=1

[h(xi; θ) − yi]2
1
N

θ0, θ1 J

h

X

xnew

θ xi

ŷ i xi ↦ ŷ i

θ h

θ

h X

(θ0, θ1) R≥0 (θ0, θ1) ↦ R≥0

Gradient descent is a process that operates in the parameter space, where it adjusts to

minimize the loss, rather than in the feature space of the data.

The notation indicates that the value of the function (of the model) depends

on the input example as well as the parameters . The semicolon is used to

semantically differentiate these two sets of values. This convention comes from the field

of statistics. In machine learning, we also use the notation , which can be

considered more appropriate. In this context, we refer to an indexed family of functions,

where specifically determines which function should be used. This notation is read

as follows: “the function , parameterized by , applied to the input .”

Hypothesis vs Parameter Space

[1] E.g. the value of the loss function no longer decreases or the maximum number of

iterations.

In this example, we use the Old Faithful geyser eruption dataset.

The figure on the left illustrates the data within its feature space, where each line

represents a distinct hypothesis. For instance, the horizontal blue line corresponds to

the hypothesis defined by parameters , while the orange line

corresponds to . The sequence of model parameters, or hypotheses,

has been deliberately designed to elucidate the underlying concepts.

Conversely, the figure on the right depicts the parameter space, which is where

optimization is performed. In this space, the vertical axis indicates the Mean Squared

Error (MSE) for all combinations of and . Specifically, a model characterized by

these parameters would incur this level of error with the specified training data. During

the training process, the data remains constant, whereas the parameters and are

adjusted to minimize the error.

θ

h(xi; θ) h

xi θ

hθ(xi)

θ hθ

h θ xi

In [5]:

(θ0 = 0, θ1 = 0)
(θ0 = 10, θ1 = 2)

θ0 θ1

θ0 θ1

In the figure on the right, the progression of model parameters, denoted as () with

the sequence

, illustrates a reduction in the mean squared error (MSE), .

Hypothesis vs Parameter Space

Thes figures illustrate the same concept, but using a contour plot.

Derivative

Derivative

θ0, θ1

{(0.000, 0.000), (10.000, 2.000), (20.000, 4.000), (30.000, 7.000), (32.910, 10.503)}
J(θ)

In [6]:

We will start with a single-variable function.

Think of this as our loss function, which we aim to minimize; to reduce the average

discrepancy between expected and predicted values.

Here, I am using to avoid any confusion with the attributes of our training

examples.

Source code

from sympy import *

x = symbols('t')

f = t**2 + 4*t + 7

plot(f)

On the previous slide, I’ve used SymPy, a library for symbolic mathematics.

Derivative

t

In [8]:

https://www.sympy.org/

The graph of the derivative, , is depicted in red.

The derivative indicates how changes in the input affect the output, .

The magnitude of the derivative at is .

This point corresponds to the minimum of our function.

Near , variations in have minimal impact on the output, .

Derivative

f
′
(t)

f(t)

t = −2 0

t = −2 t f(t)

When evaluated at a specific point, the derivative indicates the slope of the

tangent line to the graph of the function at that point.

At , the slope of the tangent line is 0.

Derivative

t = −2

A positive derivative indicates that increasing the input variable will increase the

output value.

Additionally, the magnitude of the derivative quantifies how rapidly the output

changes.

Derivative

A negative derivative indicates that increasing the input variable will decrease

the output value.

Additionally, the magnitude of the derivative quantifies how rapidly the output

changes.

Source code

import sympy as sp
import numpy as np
import matplotlib.pyplot as plt

Define the variable and function
t = sp.symbols('t')
f = t**2 + 4*t + 7

Compute the derivative
f_prime = sp.diff(f, t)

Lambdify the functions for numerical plotting
f_func = sp.lambdify(t, f, "numpy")
f_prime_func = sp.lambdify(t, f_prime, "numpy")

Generate t values for plotting
t_vals = np.linspace(-5, 2, 400)

In [13]:

Get y values for the function and its derivative
f_vals = f_func(t_vals)
f_prime_vals = f_prime_func(t_vals)

Plot the function and its derivative
plt.plot(t_vals, f_vals, label=r'$f(t) = t^2 + 4t + 7$', color='blue')
plt.plot(t_vals, f_prime_vals, label=r"$f'(t) = 2t + 4$", color='red')

Fill the area below the derivative where it's negative
plt.fill_between(t_vals, f_prime_vals, where=(f_prime_vals > 0), color='red'

Add labels and legend
plt.axhline(0, color='black',linewidth=1)
plt.axvline(0, color='black',linewidth=1)
plt.title('Function and Derivative')
plt.xlabel('t')
plt.ylabel('y')
plt.legend()

Show the plot
plt.grid(True)
plt.show()

Gradient Descent

Gradient Descent — Single Feature

Model (hypothesis):

Loss/cost function:

Gradient descent - intuition

https://youtu.be/i62czvwDlsw

Gradient Descent - Step-by-Step

https://www.youtube.com/watch?v=sDv4f4s2SB8

Gradient descent - single value

h(xi; θ) = θ0 + θ1x
(1)
i

J(θ0, θ1) =
N

∑
i=1

[h(xi; θ) − yi]
21

N

https://youtu.be/i62czvwDlsw
https://www.youtube.com/watch?v=sDv4f4s2SB8

Initialization: and - either with random values or zeros.

Loop:

repeat until convergence:

 is called the learning rate - this is the size of each step.

 is the partial derivative with respect to .

A partial derivative represents the rate of change of a multivariable function with

respect to one of its variables, while keeping the other variables constant.

For the algorithm to be mathematically sound, all the must be updated

simultaneously.

Gradient Descent - Single Value
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt

Define the variable and function
t = sp.symbols('t')
f = t**2 + 4*t + 7

Compute the derivative
f_prime = sp.diff(f, t)

Lambdify the functions for numerical plotting
f_func = sp.lambdify(t, f, "numpy")
f_prime_func = sp.lambdify(t, f_prime, "numpy")

Generate t values for plotting
t_vals = np.linspace(-5, 2, 400)

Get y values for the function and its derivative
f_vals = f_func(t_vals)
f_prime_vals = f_prime_func(t_vals)

Plot the function and its derivative
plt.plot(t_vals, f_vals, label=r'J', color='blue')
plt.plot(t_vals, f_prime_vals, label=r"$\frac {\partial}{\partial
\theta_j}J(\theta)$", color='red')

Add labels and legend
plt.axhline(0, color='black',linewidth=1)
plt.axvline(0, color='black',linewidth=1)
plt.title('Function and Derivative')

θ0 θ1

θj := θj − α J(θ0, θ1), for j = 0 and j = 1
∂

∂θj

α

J(θ0, θ1)∂
∂θj

θj

θj

plt.xlabel(r'θ_j')
plt.ylabel(r'J')
plt.legend()

Show the plot
plt.grid(True)
plt.show()

When the value of is in the range , has a negative value.

Therefore, is positive.

Accordingly, the value of is increased.

Updating rule: .

Gradient Descent - Single Value
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt

Define the variable and function
t = sp.symbols('t')
f = t**2 + 4*t + 7

θj [− inf, −2) J(θ)∂
∂θj

−α J(θ)∂
∂θj

θj

θj := θj − α J(θ0, θ1), for j = 0 and j = 1∂
∂θj

Compute the derivative
f_prime = sp.diff(f, t)

Lambdify the functions for numerical plotting
f_func = sp.lambdify(t, f, "numpy")
f_prime_func = sp.lambdify(t, f_prime, "numpy")

Generate t values for plotting
t_vals = np.linspace(-5, 2, 400)

Get y values for the function and its derivative
f_vals = f_func(t_vals)
f_prime_vals = f_prime_func(t_vals)

Plot the function and its derivative
plt.plot(t_vals, f_vals, label=r'J', color='blue')
plt.plot(t_vals, f_prime_vals, label=r"$\frac {\partial}{\partial
\theta_j}J(\theta)$", color='red')

Add labels and legend
plt.axhline(0, color='black',linewidth=1)
plt.axvline(0, color='black',linewidth=1)
plt.title('Function and Derivative')
plt.xlabel(r'θ_j')
plt.ylabel(r'J')
plt.legend()

Show the plot
plt.grid(True)
plt.show()

When the value of is in the range , has a positive value.

Therefore, is negative.

Accordingly, the value of is decreased.

Updating rule: .

Partial derivatives

Given

. . .

We have

. . .

θj (−2, ∞] J(θ)∂
∂θj

−α J(θ)∂
∂θj

θj

θj := θj − α J(θ0, θ1), for j = 0 and j = 1∂
∂θj

J(θ0, θ1) =
N

∑
1

[h(xi) − yi]2 =
N

∑
1

[θ0 + θ1xi − yi]2
1
N

1
N

J(θ0, θ1) =
N

∑
i=1

[θ0 − θ1xi − yi]
∂

∂θ0

2
N

and

Partial derivate (SymPy)

from IPython.display import Math, display
from sympy import *

Define the symbols

theta_0, theta_1, x_i, y_i = symbols('theta_0 theta_1 x_i y_i')

Define the hypothesis function:

h = theta_0 + theta_1 * x_i

print("Hypothesis function:")

display(Math('h(x) = ' + latex(h)))

Hypothesis function:

Partial derivate (SymPy)

N = Symbol('N', integer=True)

Define the loss function (mean squared error)

J = (1/N) * Sum((h - y_i)**2, (x_i, 1, N))

print("Loss function:")

display(Math('J = ' + latex(J)))

Loss function:

Partial derivate (SymPy)

Calculate the partial derivative with respect to theta_0

partial_derivative_theta_0 = diff(J, theta_0)

print("Partial derivative with respect to theta_0:")

display(Math(latex(partial_derivative_theta_0)))

Partial derivative with respect to theta_0:

J(θ0, θ1) =
N

∑
i=1

xi[θ0 + θ1xi − yi]
∂

∂θ1

2
N

In [16]:

In [17]:

In [18]:

Partial derivate (SymPy)

Calculate the partial derivative with respect to theta_1

partial_derivative_theta_1 = diff(J, theta_1)

print("\nPartial derivative with respect to theta_1:")

display(Math(latex(partial_derivative_theta_1)))

Partial derivative with respect to theta_1:

Multivariate linear regression

Gradient descent - multivariate

The new loss function is

Its partial derivative:

where , and are vectors, and is a vector operation!

Gradient vector

The vector containing the partial derivative of (with respect to , for)

is called the gradient vector.

In [19]:

h(xi) = θ0 + θ1x
(1)
i + θ2x

(2)
i + θ3x

(3)
i + ⋯ + θDx

(D)
i

x
(j)
i = value of the feature j in the ith example

D = the number of features

J(θ0, θ1, … , θD) =
N

∑
i=1

[h(xi) − yi]
21

N

J(θ) =
N

∑
i=1

x
(j)
i [θxi − yi]

∂
∂θj

2
N

θ xi yi θxi

J θj j ∈ {0, 1 … D}

∇θJ(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

J(θ)

J(θ)

⋮

J(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∂
∂θ0

∂
∂θ1

∂
∂θD

. . .

This vector gives the direction of the steepest ascent.

It gives its name to the gradient descent algorithm:

Gradient descent - multivariate

The gradient descent algorithm becomes:

Repeat until convergence:

Gradient descent - multivariate

Repeat until convergence:

Where .

Assumptions

What were our assumptions?

. . .

The (objective/loss) function is differentiable.

θ′ = θ − α∇θJ(θ)

{

θj :=θj − α J(θ0, θ1, … , θD)

for j ∈ [0, … , D] (update simultaneously)

}

∂
∂θj

{

θ0 := θ0 − α

N

∑
i=1

x0
i [h(xi) − yi]

θ1 := θ1 − α

N

∑
i=1

x1
i
[h(xi) − yi]

θ2 := θ2 − α

N

∑
i=1

x2
i [h(xi) − yi]

⋯
}

2
N

2
N

2
N

x0 = 1

Local vs. global

A function is convex if for any pair of points on the graph of the function, the line

connecting these two points lies above or on the graph.

A convex function has a single minimum.

The loss function for the linear regression (MSE) is convex.

For functions that are not convex, the gradient descent algorithm converges to a

local minimum.

The loss function generally used with linear or logistic regressions, and Support

Vector Machines (SVM) are convex, but not the ones for artificial neural networks.

A function would be convex downward or concave if those lines were below or on the

graph of the function.

Local vs. global

−6

−4

−2

0

2

4

6

0 0.2 0.4 0.6 0.8 1 1.2

global maximum

global minimum

local maximum

local minimum

Attribution: commons.wikimedia.org/wiki/File:Extrema_example.svg

Convergence

https://commons.wikimedia.org/wiki/File:Extrema_example.svg

1. Define the symbolic variable and the function
x = sp.Symbol('x', real=True)
f_expr = 2*x**3 + 4*x**2 - 5*x + 1

2. Compute the derivative of f
f_prime_expr = sp.diff(f_expr, x)

3. Convert symbolic expressions to Python functions
f = sp.lambdify(x, f_expr, 'numpy')
f_prime = sp.lambdify(x, f_prime_expr, 'numpy')

4. Generate a range of x-values
x_vals = np.linspace(-4, 2, 1000)

5. Compute f and f' over this range
y_vals = f(x_vals)
y_prime_vals = f_prime(x_vals)

6. Prepare LaTeX strings for legend
f_label = rf'$f(x) = {sp.latex(f_expr)}$'
f_prime_label = rf'$f^\prime(x) = {sp.latex(f_prime_expr)}$'

7. Plot f and f', with equations in the legend
plt.figure(figsize=(8, 4))
plt.plot(x_vals, y_vals, label=f_label)
plt.plot(x_vals, y_prime_vals, label=f_prime_label)

8. Shade the region between x-axis and f'(x) for the entire domain
plt.fill_between(x_vals, y_prime_vals, 0, color='gray', alpha=0.2, interpola
 label='Region between 0 and f\'(x)')

9. Add reference line, labels, legend, etc.
plt.axhline(0, color='black', linewidth=0.5)
plt.title(rf'Function and its Derivative with Shading for $f^\prime(x)$')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.grid(True)
plt.show()

In [20]:

For functions lacking a global minimum, gradient descent can continue descending

indefinitely, preventing convergence.

The first objective of this example is to illustrate that gradient descent is applicable

to functions of arbitrary complexity, provided that the gradient can be computed or

approximated at each iteration.

Furthermore, the function must possesses at least one local minimum within the

interval of interest.

Learning Rate

Small steps, low values for , will make the algorithm converge slowly.

Large steps might cause the algorithm to diverge.

Notice how the algorithm slows down naturally when approaching a minimum.

Learning Rate

import numpy as np
import matplotlib.pyplot as plt

def f(x):
 return x**2

def grad_f(x):
 return 2*x

Initial guess, learning rate, and number of gradient-descent steps
x_current = 2.0
learning_rate = 1.1 # Too large => divergence
num_iterations = 5 # We'll do five updates

Store each x value in a list (trajectory) for plotting
trajectory = [x_current]

Perform gradient descent
for _ in range(num_iterations):

α

In [22]:

 g = grad_f(x_current)
 x_current = x_current - learning_rate * g
 trajectory.append(x_current)

Prepare data for plotting
x_vals = np.linspace(-5, 5, 1000)
y_vals = f(x_vals)

Plot the function f(x)
plt.figure(figsize=(6, 5))
plt.plot(x_vals, y_vals, label=r"$f(x) = x^2$")
plt.axhline(0, color='black', linewidth=0.5)

Plot the trajectory, labeling each iteration
for i, x_t in enumerate(trajectory):
 y_t = f(x_t)
 # Plot the point
 plt.plot(x_t, y_t, 'ro')
 # Label the iteration number
 plt.text(x_t, y_t, f" {i}", color='red')
 # Connect consecutive points
 if i > 0:
 x_prev = trajectory[i - 1]
 y_prev = f(x_prev)
 plt.plot([x_prev, x_t], [y_prev, y_t], 'r--')

Final touches
plt.title("Gradient Descent Divergence with a Large Learning Rate")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.grid(True)
plt.show()

Batch gradient descent

To be more precise, this algorithm is known as batch gradient descent since for

each iteration, it processes the “whole batch” of training examples.

. . .

Literature suggests that the algorithm might take more time to converge if the

features are on different scales.

Batch gradient descent - drawback

The batch gradient descent algorithm becomes very slow as the number of

training examples increases.

. . .

This is because all the training data is seen at each iteration. The algorithm is

generally run for a fixed number of iterations, say 1000.

Stochastic Gradient Descent

The stochastic gradient descent algorithm randomly selects one training instance to

calculate its gradient.

epochs = 10
for epoch in range(epochs):
 for i in range(N):
 selection = np.random.randint(N)
 # Calculate the gradient using selection
 # Update the parameters

This allows it to work with large training sets.

Its trajectory is not as regular as the batch algorithm.

Because of its bumpy trajectory, it is often better at finding the global minima,

when compared to batch.

Its bumpy trajectory makes it bounce around the local minima.

To mitigate the issue of oscillating around local minima, it is advisable to progressively

reduce the learning rate as the number of epochs increases. This technique, known as a

learning schedule, helps achieve more stable convergence.

It important that the examples are either selected randomly or shuffled before running

the algorithm to make sure that the algorithm converges towards the global minima.

Mini-batch gradient descent

At each step, rather than selecting one training example as SGD does, mini-batch

gradient descent randomly selects a small number of training examples to

compute the gradients.

Its trajectory is more regular compared to SGD.

As the size of the mini-batches increases, the algorithm becomes increasingly

similar to batch gradient descent, which uses all the examples at each step.

It can take advantage of the hardware acceleration of matrix operations, particularly

with GPUs.

Quick Visualization

import matplotlib.pyplot as plt

plt.figure(figsize=(6,4))
plt.scatter(df["eruptions"], df["waiting"], s=20)
plt.xlabel("Eruption duration (min)")
plt.ylabel("Waiting time to next eruption (min)")
plt.title("Old Faithful: eruptions vs waiting")
plt.tight_layout()
plt.show()

In [23]:

Stochastic, Mini-Batch, Batch

Attribution: Géron (2022), Figure 4.10, 04_training_linear_models.ipynb

Summary

Batch gradient descent is inherently slow and impractical for large datasets

requiring out-of-core support, though it is capable of handling a substantial

number of features.

Stochastic gradient descent is fast and well-suited for processing a large volume

of examples efficiently.

https://github.com/ageron/handson-ml3/blob/main/04_training_linear_models.ipynb

Mini-batch gradient descent combines the benefits of both batch and stochastic

methods; it is fast, capable of managing large datasets, and leverages hardware

acceleration, particularly with GPUs.

The typical size of a mini-batch when applying stochastic gradient descent (SGD) can

vary depending on the specific application and dataset, but common sizes often range

between 32 and 512 samples. Here are some common mini-batch sizes used in practice:

1. Small Mini-Batches: Sizes such as 16, 32, or 64 are often used when working with

smaller datasets or when memory constraints are a concern.

2. Medium Mini-Batches: Sizes like 128, 256, or 512 are commonly used and can

provide a good balance between computational efficiency and convergence speed.

3. Large Mini-Batches: Sizes like 1024, 2048, or larger might be used in large-scale

machine learning tasks, especially when sufficient computational resources are

available.

The choice of mini-batch size can influence several factors such as:

Training Speed: Larger mini-batches can make better use of parallel processing

capabilities, potentially speeding up training.

Convergence: Smaller mini-batches can introduce more noise in the gradient

estimation, which can sometimes help escape local minima and improve

generalization.

Memory Usage: Larger mini-batches require more memory, which might be a

limiting factor, especially on GPUs with limited VRAM.

Ultimately, the optimal mini-batch size is task-specific and often determined empirically

through experimentation.

All three are implemented by SGDRegressor in Scikit-Learn .

Optimization and deep nets

We will briefly revisit the subject when discussing deep artificial neural networks, for

which specialized optimization algorithms exist.

Momentum Optimization

Nesterov Accelerated Gradient

AdaGrad

RMSProp

Adam and Nadam

Final word

Optimization is a vast subject. Other algorithms exist and are used in other contexts.

Including:

Particle swarm optimization (PSO), genetic algorithms (GAs), and artificial

bee colony (ABC) algorithms.

Prologue

Linear regression - summary

A linear model assumes that the value of the label, , can be expressed as a linear

combination of the feature values, :

The Mean Squared Error (MSE) is:

Batch, stochastic, or mini-batch gradient descent can be used to find “optimal”

values for the parameters, for .

The result is a regressor, a function that can be used to predict the value (the

label) for some unseen example .

Andrew Ng

Gradient Descent (Math)

(11:30 m)

Intuition

(11:51 m)

ŷi

x
(j)
i

ŷi = h(xi) = θ0 + θ1x(1)
i

+ θ2x(2)
i

+ … + θDx(D)
i

∑
N

1 [h(xi) − yi]2
1
N

θj j ∈ 0, 1, … , D

y

x

https://youtu.be/sOou4izGINg?si=_Fz1V1tbGk8usJR0
https://youtu.be/DS83GeqWQqs?si=kOfDpHT_4t8hl_YL

Linear Regression

(10:20 m)

ML-005 | Stanford | Andrew Ng

(19 videos)

Andrew Ng is presenting the gradient descent algorithm using a linear regression with

one variable.

Andrew Ng is Founder of DeepLearning.AI, Founder & CEO of Landing AI, General

Partner at AI Fund, Chairman and Co-Founder of Coursera and an Adjunct Professor at

Stanford University’s Computer Science Department.

Ng was also a cofounder and head of Google Brain and was the former Chief Scientist at

Baidu.

Fundamentals by Herman Kamper

https://www.youtube.com/watch?

v=BlnLoqn3ZBo&list=PLmZlBIcArwhOr0ysO1Hg4Wfoww0dZnHz4

Mathematics

3Blue1Brown

Essence of linear algebra

A series of 16 videos (10 to 15 minutes per video) providing “a geometric

understanding of matrices, determinants, eigen-stuffs and more.”

6,662,732 views as of September 30, 2019.

Essence of calculus

A series of 12 videos (15 to 20 minutes per video): “The goal here is to make

calculus feel like something that you yourself could have discovered.”

2,309,726 views as of September 30, 2019.

Next lecture

Logistic regression

Appendix

LinearRegression

https://www.youtube.com/watch?v=nOMy9LIcIkI&list=PLb0Gp98iu3OyY9zWJfSMq26nmkNKztNhA&index=6
https://www.youtube.com/playlist?list=PLoR5VjrKytrCv-Vxnhp5UyS1UjZsXP0Kj
https://www.andrewng.org/
https://www.deeplearning.ai/
https://landing.ai/
https://aifund.ai/
https://www.coursera.org/
https://en.wikipedia.org/wiki/Google_Brain
https://en.wikipedia.org/wiki/Baidu
https://www.youtube.com/watch?v=BlnLoqn3ZBo&list=PLmZlBIcArwhOr0ysO1Hg4Wfoww0dZnHz4
https://www.youtube.com/watch?v=BlnLoqn3ZBo&list=PLmZlBIcArwhOr0ysO1Hg4Wfoww0dZnHz4
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr
https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(X, y)

Herein, we examine a straightforward model involving a single variable.

Source code

import numpy as np

X = 6 * np.random.rand(100, 1) - 4
y = X ** 2 - 4 * X + 5 + np.random.randn(100, 1)

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(X, y)

X_new = np.array([[-4], [2]])
y_pred = lin_reg.predict(X_new)

This slide contains an anomaly. Can you identify it?

In [24]:

In [25]:

In [26]:

The data have been generated from a quadratic model, , with Gaussian

noise added to make the synthetic data more realistic.

This example illustrates that, in practice, we often have limited knowledge about the

underlying model that generated the data.

Despite this uncertainty, we make assumptions—in this case, assuming linearity—when

building our models.

Later, we will refer to this as bias (distinct from the bias parameter in our regression

model). Both bias and variance influence the performance of our models.

GPT 4o interactions (2024-09-14)

User: Explain the code on the previous slide line by line.

. . .

AI: Certainly! Here is a line-by-line explanation of the provided code:

import numpy as np

Explanation: This line imports the NumPy library, which is a fundamental package

for numerical computations in Python. It is commonly used for working with arrays

and matrices, as well as for performing a variety of mathematical operations.

X = 6 * np.random.rand(100, 1) - 4

Explanation: This line generates a NumPy array X containing 100 rows and 1

column of random numbers. The np.random.rand(100, 1) function generates

uniformly distributed random numbers between 0 and 1. Multiplying by 6 scales

these numbers to the range [0, 6), and subtracting 4 shifts the range to [-4, 2).

y = X ** 2 - 4 * X + 5 + np.random.randn(100, 1)

Explanation: This line generates the target variable y based on a quadratic

equation with some added noise. Specifically:

X ** 2 computes the square of each element in X .

- 4 * X subtracts four times each element in X .

+ 5 adds a constant term of 5.

+ np.random.randn(100, 1) adds Gaussian noise with a mean of 0 and

standard deviation of 1 to each element, making the data more realistic by

introducing some randomness.

x2 − 4x + 5

In [27]:

In [28]:

In [29]:

from sklearn.linear_model import LinearRegression

Explanation: This line imports the LinearRegression class from the

sklearn.linear_model module, which is part of the Scikit-Learn library. Scikit-

Learn is widely used for machine learning in Python.

lin_reg = LinearRegression()

Explanation: This line creates an instance of the LinearRegression class and

assigns it to the variable lin_reg . This object will be used to fit the linear

regression model to the data.

lin_reg.fit(X, y)

Explanation: This line fits the linear regression model to the data by finding the

best-fitting line through the points (X, y) . The fit method trains the model

using the provided features X and target variable y .

X_new = np.array([[-4], [2]])

Explanation: This line creates a new NumPy array X_new with two values: -4 and

2. These values represent new data points for which we want to predict the target

variable using the trained model.

y_pred = lin_reg.predict(X_new)

Explanation: This line uses the trained linear regression model to predict the target

variable y_pred for the new data points in X_new . The predict method

returns the predicted values based on the fitted model.

In summary, this script generates synthetic data, fits a linear regression model to it, and

then uses the model to make predictions on new data points.

Source code (continued)

import os
import matplotlib as mpl
import matplotlib.pyplot as plt

def save_fig(fig_id, tight_layout=True, fig_extension="pdf", resolution=300)
 path = os.path.join(fig_id + "." + fig_extension)
 print("Saving figure", fig_id)
 if tight_layout:

In [30]:

In [31]:

In [32]:

In [33]:

In [34]:

In [35]:

 plt.tight_layout()
 plt.savefig(path, format=fig_extension, dpi=resolution)

Source code (continued)

plt.plot(X, y, "b.")
plt.plot(X_new, y_pred, "r-")
plt.xlabel("x", fontsize=18)
plt.ylabel("y", rotation=0, fontsize=18)
plt.axis([-4, 2, -1, 35])
save_fig("regression_linear-01")
plt.show()

References

Azzalini, A., and A. W. Bowman. 1990. “A Look at Some Data on the Old Faithful Geyser.”

Journal of the Royal Statistical Society Series C: Applied Statistics 39 (3): 357–65.

https://doi.org/10.2307/2347385.

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow. 3rd ed. O’Reilly Media, Inc.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Stanton, Jeffrey M. 2001. “Galton, Pearson, and the Peas: A Brief History of Linear

Regression for Statistics Instructors.” Journal of Statistics Education 9 (3).

https://doi.org/10.1080/10691898.2001.11910537.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

In [36]:

https://doi.org/10.2307/2347385
http://aima.cs.berkeley.edu/
https://doi.org/10.1080/10691898.2001.11910537
mailto:Marcel.Turcotte@uOttawa.ca

