
Logististic regression

CSI 4106 - Fall 2025

Marcel Turcotte

Version: Sep 16, 2025 10:40

Preamble

Message of the Day

AI and the Rise of Techno-Fascism in the United States by Gary Kasparov, The Atlantic,

2025-09-05. (31m 13s)

A 30 minutes podcast where Garry Kasparov is joined by cognitive scientist Gary

Marcus.

Garry Kasparov (b. 1963) is a Russian chess grandmaster and former World Chess

Champion, widely regarded as one of the greatest players in history. He held the world’s

top ranking for nearly two decades and is also known for his matches against IBM’s Deep

Blue and his later political activism and writing.

Gary Marcus (b. 1965) is an American cognitive scientist, author, and entrepreneur. He is

known for his critiques of deep learning, his work on language acquisition and cognitive

development, and for founding several AI startups.

https://www.theatlantic.com/podcasts/archive/2025/09/ai-and-the-fight-between-democracy-and-autocracy/684095/
https://www.kasparov.com/
http://garymarcus.com/

Kasparov and Marcus agree that AI is a tool—neither inherently utopian nor

dystopian—and that the real risks stem from how it is used and by whom.

Marcus emphasizes current AI systems still lack genuine understanding;

they work by pattern recognition over vast datasets, not by grasping rules

or concepts, which leads to alignment problems: machines frequently err

or act in unforeseen ways. A major concern is how AI amplifies political

deception, surveillance, and information manipulation—tools favored by

autocratic or oligarchic interests. On the brighter side, they argue that we

are not powerless: democratic societies still have levers—legal regulation,

mass action, resistance, insistence on accountability—and might yet steer

AI toward benefiting rather than undermining democracy. The default path

is dangerous, but with political will, things need not slide irreversibly

toward techno-fascism. (Summary generated by ChatGPT 5 on 2025-09-

16)

Learning Objectives

Differentiate between binary classification and multi-class classification paradigms.

Describe a methodology for converting multi-class classification problems into

binary classification tasks.

Implement a logistic regression algorithm, focusing on its application in

classification problems.

Classification tasks

Definitions

Binary classification is a supervised learning task where the objective is to

categorize instances (examples) into one of two discrete classes.

A multi-class classification task is a type of supervised learning problem where

the objective is to categorize instances into one of three or more discrete classes.

Caveat: Multi-class classification should not be confused with multi-label

classification, which allows an instance to be associated with multiple classes. The

algorithms designed to address these tasks differ significantly.

An example of a binary classification task is the prediction of disease status using

genomic data (Wu et al. 2018).

Researchers often seek to accurately classify the type, subtype, or stage of cancer

using gene expression data. For example, in the Pan-Cancer Atlas, specific cancers

such as Breast Cancer (BRCA), Colon Adenocarcinoma (COAD), Lung

Adenocarcinoma (LUAD), Ovarian Cancer (OV), and Thyroid Cancer (THCA) can be

differentiated based on their unique gene expression profiles (Alharbi and Vakanski

2023).

Binary classification

Some machine learning algorithms are specifically designed to solve binary

classification problems.

Logistic regression and support vector machines (SVMs) are such examples.

Later in the presentation, make sure to understand why the logistic regression is

specifically designed to solve binary classification problems.

Multi-class classification

Any multi-class classification problem can be transformed into a binary

classification problem.

One-vs-All (OvA)

A separate binary classifier is trained for each class.

For each classifier, one class is treated as the positive class, and all other

classes are treated as the negative class.

The final assignment of a class label is made based on the classifier that

outputs the highest confidence score for a given input.

Scikit-learn offers OneVsRestClassifier , a utility designed to extend binary

classifiers for multi-class classification tasks via the One-vs-Rest strategy.

A complete example will be presented at the end of the lecture.

Logistic Regression

Data and Problem

Dataset: Palmer Penguins

Task: Binary classification to distinguish Gentoo penguins from non-Gentoo species

Feature of Interest: Flipper length

Histogram

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [1]:

https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html#sklearn.multiclass.OneVsRestClassifier

try:
 from palmerpenguins import load_penguins
except ImportError:
 ! pip install palmerpenguins
 from palmerpenguins import load_penguins

Load the Palmer Penguins dataset
df = load_penguins()

Keep only 'flipper_length_mm' and 'species'
df = df[['flipper_length_mm', 'species']]

Drop rows with missing values (NaNs)
df.dropna(inplace=True)

Create a binary label: 1 if Gentoo, 0 otherwise
df['is_gentoo'] = (df['species'] == 'Gentoo').astype(int)

Separate features (X) and labels (y)
X = df[['flipper_length_mm']]
y = df['is_gentoo']

Plot the distribution of flipper lengths by binary species label
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='flipper_length_mm', hue='is_gentoo', kde=True, bins
plt.title('Distribution of Flipper Length (Gentoo vs. Others)')
plt.xlabel('Flipper Length (mm)')
plt.ylabel('Frequency')
plt.legend(title='Species', labels=['Gentoo', 'Non Gentoo'])
plt.show()

Logistic (Logit) Regression

Despite its name, logistic regression serves as a classification algorithm rather

than a regression technique.

The labels in logistic regression are binary values, denoted as , making it

a binary classification task.

The primary objective of logistic regression is to determine the probability that a

given instance belongs to the positive class, i.e., .

The representation of the two classes, negative and positive, by the values 0 and 1,

respectively, is not arbitrary. This choice is intrinsically connected to our objective of

determining the probability that an instance belongs to the positive class.

While this learning algorithm may initially seem unremarkable, it is essential to continue

engaging with it, as logistic regression will later prove to be crucial in the discussion on

artificial neural networks.

Model

General Case: , where is a class label.

Binary Case:

Predict

Visualizing our data

Scatter plot of flipper length vs. binary label (Gentoo or Not Gentoo)
plt.figure(figsize=(10, 6))

Plot points labeled as Gentoo (is_gentoo = 1)
plt.scatter(
 df.loc[df['is_gentoo'] == 1, 'flipper_length_mm'],
 df.loc[df['is_gentoo'] == 1, 'is_gentoo'],
 color='blue',
 label='Gentoo'
)

Plot points labeled as Not Gentoo (is_gentoo = 0)
plt.scatter(
 df.loc[df['is_gentoo'] == 0, 'flipper_length_mm'],
 df.loc[df['is_gentoo'] == 0, 'is_gentoo'],
 color='red',
 label='Not Gentoo'
)

plt.title('Flipper Length vs. Gentoo Indicator')

yi ∈ {0, 1}

xi yi = 1

xi

P(y = k|x, θ) k

y ∈ 0, 1

P(y = 1|x, θ)

In [2]:

plt.xlabel('Flipper Length (mm)')
plt.ylabel('Binary Label (1 = Gentoo, 0 = Not Gentoo)')
plt.legend(loc='best')
plt.grid(True)
plt.show()

Intuition

Fitting a linear regression is not the answer, but

from sklearn.linear_model import LinearRegression
import pandas as pd

lin_reg = LinearRegression()
lin_reg.fit(X, y)

X_new = pd.DataFrame([X.min(), X.max()], columns=X.columns)

y_pred = lin_reg.predict(X_new)

Plot the scatter plot
plt.figure(figsize=(5, 3))
plt.scatter(X, y, c=y, cmap='bwr', edgecolor='k')
plt.plot(X_new, y_pred, "r-")
plt.xlabel('Flipper Length (mm)')
plt.ylabel('Binary Label (Gentoo or Not Gentoo)')
plt.title('Flipper Length vs. Binary Label (Gentoo or Not Gentoo)')
plt.yticks([0, 1], ['Not Gentoo', 'Gentoo'])
plt.grid(True)
plt.show()

…

In [3]:

Intuition (continued)

A high flipper_length_mm typically results in a model output approaching 1.

Conversely, a low flipper_length_mm generally yields a model output near 0.

Notably, the model outputs are not confined to the [0, 1] interval and may

occasionally fall below 0 or surpass 1.

Intuition (continued)

For a single feature, the decision boundary is a specific point.

In this case, the decision boundary is approximately 205.

Intuition (continued)

As flipper_length_mm increases from 205 to 230, confidence in classifying the

example as Gentoo rises.

Conversely, as flipper_length_mm decreases from 205 to 170, confidence in

classifying the example as non-Gentoo rises.

Intuition (continued)

For values near the decision boundary, 205, some examples classify as Gentoo

while others do not, leading to a classification uncertainty comparable to a coin flip

(0.5 probability).

Logistic Function

Logistic Function

In mathematics, the standard logistic function maps a real-valued input from to the

open interval . The function is defined as:

Sigmoid function
def sigmoid(t):
 return 1 / (1 + np.exp(-t))

Generate t values
t = np.linspace(-6, 6, 1000)

Compute y values for the sigmoid function
sigma = sigmoid(t)

Create a figure
fig, ax = plt.subplots()
ax.plot(t, sigma, color='blue', linewidth=2) # Keep the curve
opaque

Draw vertical axis at x = 0
ax.axvline(x=0, color='black', linewidth=1)

R

(0, 1)

σ(t) =
1

1 + e−t

Add labels on the vertical axis
ax.set_yticks([0, 0.5, 1.0])

Add labels to the axes
ax.set_xlabel('t')
ax.set_ylabel(r'$\sigma(t)$')

plt.grid(True)
plt.show()

When the input variable is 0, the output of the logistic function is 0.5.

Indeed, and thus

As increases, the output value approaches 1.

As , .

Conversely, as becomes more negative, the output value approaches 0.

As , (the two negative signs cancel out).

The standard logistic function is also commonly referred to as the sigmoid function.

Logistic Regression (intuition)

t

e−t = e0 = 1 = = .1

1+e−t

1
1+1

1
2

t

t → ∞ e−t → 0

t

t → −∞ e−t → ∞

When the distance to the decision boundary is zero, uncertainty is high, making a

probability of 0.5 appropriate.

As we move away from the decision boundary, confidence increases, warranting

higher or lower probabilities accordingly.

Logistic function

An S-shaped curve, such as the standard logistic function (aka sigmoid), is termed a

squashing function because it maps a wide input domain to a constrained output

range.

Create a figure
fig, ax = plt.subplots()
ax.plot(t, sigma, color='blue', linewidth=2) # Keep the curve
opaque

Draw vertical axis at x = 0
ax.axvline(x=0, color='black', linewidth=1)

Add labels on the vertical axis
ax.set_yticks([0, 0.5, 1.0])

Add labels to the axes
ax.set_xlabel('t')
ax.set_ylabel(r'$\sigma(t)$')

plt.grid(True)
plt.show()

Logistic (Logit) Regression

σ(t) =
1

1 + e−t

Analogous to linear regression, logistic regression computes a weighted sum of

the input features, expressed as:

However, using the sigmoid function limits its output to the range :

Notation

Equation for the logistic regression:

Multipling (intercept/bias) by 1:

Multipling by :

Logistic regression

The Logistic Regression model, in its vectorized form, is defined as:

An extra feature, , has been added to , and is the intercept/bias term.

Logistic regression (two attributes)

θ0 + θ1x
(1)
i

+ θ2x
(2)
i

+ … + θDx
(D)
i

(0, 1)

σ(θ0 + θ1x
(1)
i + θ2x

(2)
i + … + θDx

(D)
i)

σ(θ0 + θ1x
(1)
i + θ2x

(2)
i + … + θDx

(D)
i)

θ0

σ(θ0 × 1 + θ1x
(1)
i + θ2x

(2)
i + … + θDx

(D)
i)

θ0 x
(0)
i

= 1

σ(θ0x
(0)
i + θ1x

(1)
i + θ2x

(2)
i + … + θDx

(D)
i)

hθ(xi) = σ(θxi) =
1

1 + e−θxi

x
(0)
i = 1 xi θ0

In logistic regression, the probability of correctly classifying an example

increases as its distance from the decision boundary increases.

This principle holds for both positive and negative classes.

An example lying on the decision boundary has a 50% probability of belonging to

either class.

Logistic regression

The Logistic Regression model, in its vectorized form, is defined as:

Predictions are made as follows:

, if

, if

. . .

The values of are learned using gradient descent.

https://youtu.be/yIYKR4sgzI8

Attribution: StatQuest: Logistic Regression by Josh Starmer.

“StatQuest breaks down complicated Statistics and Machine Learning methods into

small, bite-sized pieces that are easy to understand. StatQuest doesn’t dumb down the

material, instead, it builds you up so that you are smarter and have a better

hθ(xi) = σ(θxi)

hθ(xi) = σ(θxi) =
1

1 + e−θxi

yi = 0 hθ(xi) < 0.5

yi = 1 hθ(xi) ≥ 0.5

θ

https://youtu.be/yIYKR4sgzI8
https://youtu.be/yIYKR4sgzI8

understanding of Statistics and Machine Learning.” It is often a good place to start to get

the intuition to understand statistical and machine learning concepts.

Digits example

1989 Yann LeCun

https://www.youtube.com/watch?v=H0oEr40YhrQ

Handwritten Digit Recognition

Aims:

Developing a logistic regression model for the recognition of handwritten digits.

Visualize the insights and patterns the model has acquired.

We are using the UCI ML hand-written digits datasets.

UCI ML hand-written digits datasets

Loading the dataset

from sklearn.datasets import load_digits

digits = load_digits()

What is the type of digits.data

type(digits.data)

numpy.ndarray

Developing a logistic regression model for the recognition of handwritten digits.

UCI ML hand-written digits datasets

How many examples (N) and how many attributes (D)?

digits.data.shape

(1797, 64)

Assigning N and D

In [14]:

In [15]:

In [16]:

https://www.youtube.com/watch?v=H0oEr40YhrQ
https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits

N, D = digits.data.shape

target has the same number of entries (examples) as data ?

digits.target.shape

(1797,)

UCI ML hand-written digits datasets

What are the width and height of those images?

digits.images.shape

(1797, 8, 8)

Assigning width and height

_, width, height = digits.images.shape

UCI ML hand-written digits datasets

Assigning X and y

X = digits.data
y = digits.target

UCI ML hand-written digits datasets

X[0] is a vector of size width * height = D ().

X[0]

array([0., 0., 5., 13., 9., 1., 0., 0., 0., 0., 13., 15., 10.,
 15., 5., 0., 0., 3., 15., 2., 0., 11., 8., 0., 0., 4.,
 12., 0., 0., 8., 8., 0., 0., 5., 8., 0., 0., 9., 8.,
 0., 0., 4., 11., 0., 1., 12., 7., 0., 0., 2., 14., 5.,
 10., 12., 0., 0., 0., 0., 6., 13., 10., 0., 0., 0.])

. . .

It corresponds to an image.

X[0].reshape(width, height)

In [17]:

In [18]:

In [19]:

In [20]:

In [21]:

8 × 8 = 64

In [22]:

8 × 8 = 64

In [23]:

array([[0., 0., 5., 13., 9., 1., 0., 0.],
 [0., 0., 13., 15., 10., 15., 5., 0.],
 [0., 3., 15., 2., 0., 11., 8., 0.],
 [0., 4., 12., 0., 0., 8., 8., 0.],
 [0., 5., 8., 0., 0., 9., 8., 0.],
 [0., 4., 11., 0., 1., 12., 7., 0.],
 [0., 2., 14., 5., 10., 12., 0., 0.],
 [0., 0., 6., 13., 10., 0., 0., 0.]])

UCI ML hand-written digits datasets

Plot the first n=5 examples

import matplotlib.pyplot as plt
import numpy as np

plt.figure(figsize=(10,2))
n = 5

for index, (image, label) in enumerate(zip(X[0:n], y[0:n])):
 plt.subplot(1, n, index + 1)
 plt.imshow(np.reshape(image, (width,width)), cmap=plt.cm.gray)
 plt.title(f'y = {label}')

Intensity values close to 0 are represented in black, while high values are represented in

white.

Use cmap=plt.cm.binary to invert the images (intensity values close to 0 in white,

high values in black).

UCI ML hand-written digits datasets

import matplotlib.pyplot as plt

plt.figure(figsize=(10,2))
n = 5

for index, (image, label) in enumerate(zip(X[0:n], y[0:n])):
 plt.subplot(1, n, index + 1)
 plt.imshow(np.reshape(image, (width,width)), cmap=plt.cm.gray)
 plt.title(f'y = {label}')

In [24]:

In [25]:

In our dataset, each is an attribute vector of size .

This vector is formed by concatenating the rows of an image.

The reshape function is employed to convert this 64-dimensional vector back into

its original image format.

UCI ML hand-written digits datasets

We will train 10 classifiers, each corresponding to a specific digit in a One-vs-All

(OvA) approach.

Each classifier will determine the optimal values of (associated with the pixel

features), allowing it to distinguish one digit from all other digits.

UCI ML hand-written digits datasets

Preparing for our machine learning experiment

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

UCI ML hand-written digits datasets

Optimization algorithms generally work best when the attributes have similar ranges.

xi D = 64

8 × 8

8 × 8

In [26]:

θj

In [27]:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Discussion: importance of applying fit_transform only to X_train

UCI ML hand-written digits datasets

from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier

clf = OneVsRestClassifier(LogisticRegression())
clf = clf.fit(X_train, y_train)

Asking the classifier to solve a multiclass task, using one-vs-rest (OvR), aka OvA.

Classfiers in sklearn have multi-learning support built-in.

Each logistic regression finds a hyperplane in a 64-dimensional space that separates

the data into two classes.

UCI ML hand-written digits datasets

Applying the classifier to our test set

from sklearn.metrics import classification_report

y_pred = clf.predict(X_test)

print(classification_report(y_test, y_pred))

 precision recall f1-score support

 0 1.00 1.00 1.00 19
 1 0.96 0.96 0.96 23
 2 1.00 1.00 1.00 20
 3 1.00 0.94 0.97 17
 4 1.00 1.00 1.00 15
 5 0.93 0.93 0.93 14
 6 1.00 0.94 0.97 17
 7 1.00 1.00 1.00 21
 8 0.95 1.00 0.98 21
 9 0.93 1.00 0.96 13

 accuracy 0.98 180
 macro avg 0.98 0.98 0.98 180
weighted avg 0.98 0.98 0.98 180

Visualization

In [28]:

In [29]:

In [30]:

https://scikit-learn.org/stable/modules/multiclass.html

How many classes?

clf.classes_

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

. . .

The coefficients and intercepts are in distinct arrays.

(clf.estimators_[0].coef_.shape, clf.estimators_[0].intercept_.shape)

((1, 64), (1,))

. . .

Intercepts are , where as coefficents are .

Adapted from MNIST digits classification using Logistic regression in Scikit-Learn,

visited 2024-09-23.

Visualization

clf.estimators_[0].coef_[0].round(2).reshape(width, height)

array([[0. , -0.15, -0.01, 0.24, -0.04, -0.71, -0.47, -0.05],
 [0.01, -0.27, -0.07, 0.45, 0.54, 0.89, 0.01, -0.18],
 [-0.03, 0.32, 0.37, -0.14, -0.98, 0.87, 0.07, -0.13],
 [-0.04, 0.22, 0.12, -0.63, -1.77, 0.12, 0.2 , -0.05],
 [0. , 0.39, 0.51, -0.6 , -1.68, -0.06, 0.05, 0.],
 [-0.15, -0.14, 0.88, -0.98, -0.77, 0.02, 0.27, 0.01],
 [-0.09, -0.24, 0.44, 0.07, 0.29, 0.04, -0.39, -0.49],
 [0. , -0.26, -0.4 , 0.45, -0.58, -0.1 , -0.29, -0.28]])

Visualization

coef = clf.estimators_[0].coef_
plt.imshow(coef[0].reshape(width,height))

In [31]:

In [32]:

θ0 θj, j ∈ [1, 64]

In [33]:

In [34]:

https://atmamani.github.io/projects/ml/mnist-digits-classification-using-logistic-regression-scikit-learn/

Visualization

plt.figure(figsize=(10,5))

for index in range(len(clf.classes_)):
 plt.subplot(2, 5, index + 1)
 plt.title(f'y = {clf.classes_[index]}')
 plt.imshow(clf.estimators_[index].coef_.reshape(width,width),
 cmap=plt.cm.RdBu)

In [35]:

Each LogisticRegression learns 64 parameters.

In the images above, red pixels correspond to negative coefficients, while blue pixels

correspond to positive coefficients.

For the first classifier, which predicts the digit ‘0’, the model assigns negative weights to

high-intensity pixels in the center of the image and positive weights to high-intensity

pixels in the oval region surrounding the center.

Visualization

plt.figure(figsize=(10,5))

for index in range(len(clf.classes_)):
 plt.subplot(2, 5, index + 1)
 plt.title(f'y = {clf.classes_[index]}')
 plt.imshow(clf.estimators_[index].coef_.reshape(width,width),
 cmap=plt.cm.RdBu,
 interpolation='bilinear')

https://youtu.be/AX-ZEC-71DI

Attribution: Machine Learning and Logistic Regression, IBM Technology, 2024-07-19.

Prologue

References

θi

In [36]:

https://youtu.be/AX-ZEC-71DI
https://youtu.be/AX-ZEC-71DI

Alharbi, Fadi, and Aleksandar Vakanski. 2023. “Machine Learning Methods for Cancer

Classification Using Gene Expression Data: A Review.” Bioengineering 10 (2): 173.

https://doi.org/10.3390/bioengineering10020173.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Wu, Qianfan, Adel Boueiz, Alican Bozkurt, Arya Masoomi, Allan Wang, Dawn L DeMeo,

Scott T Weiss, and Weiliang Qiu. 2018. “Deep Learning Methods for Predicting Disease

Status Using Genomic Data.” Journal of Biometrics & Biostatistics 9 (5).

Resources

Logistic Regression 3-class Classifier from sklearn
Plot the decision surface of decision trees trained on the iris dataset from

sklearn
Decision trees by Jan Kirenz, a Professor at HdM Stuttgart

CS 320 Apr12-2021 (Part 2) - Decision Boundaries by Tyler Caraza-Harter, an

Instructor at UW-Madison

Next lecture

Cross evaluation and performance measures

One-vs-All

One-vs-All classifier (complete)

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize

Load the Iris dataset
iris = load_iris()
X, y = iris.data, iris.target

Binarize the output
y_bin = label_binarize(y, classes=[0, 1, 2])

Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y_bin, test_size=0.2,

One-vs-All classifier (complete)

In [37]:

https://doi.org/10.3390/bioengineering10020173
http://aima.cs.berkeley.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6530791
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6530791
https://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html
https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html
https://kirenz.github.io/classification/docs/trees.html
https://kirenz.github.io/
https://www.youtube.com/watch?v=cWYgtUU9COg
https://tyler.caraza-harter.com/

Train a One-vs-All classifier for each class

classifiers = []
for i in range(3):
 clf = LogisticRegression()
 clf.fit(X_train, y_train[:, i])
 classifiers.append(clf)

Each logistic regression finds a hyperplane in a 4-dimensional space that separates

the data into two classes.

One-vs-All classifier (complete)

Predict on a new sample
new_sample = X_test[0].reshape(1, -1)
confidences = [clf.decision_function(new_sample) for clf in classifiers]

Final assignment
final_class = np.argmax(confidences)

Printing the result
print(f"Final class assigned: {iris.target_names[final_class]}")
print(f"True class: {iris.target_names[np.argmax(y_test[0])]}")

Final class assigned: versicolor
True class: versicolor

label_binarized

from sklearn.preprocessing import label_binarize

Original class labels
y_train = np.array([0, 1, 2, 0, 1, 2, 1, 0])

Binarize the labels
y_train_binarized = label_binarize(y_train, classes=[0, 1, 2])

Assume y_train_binarized contains the binarized labels
print("Binarized labels:\n", y_train_binarized)

Convert binarized labels back to the original numerical values
original_labels = [np.argmax(b) for b in y_train_binarized]
print("Original labels:\n", original_labels)

In [38]:

In [39]:

In [40]:

Binarized labels:
[[1 0 0]
[0 1 0]
[0 0 1]
[1 0 0]
[0 1 0]
[0 0 1]
[0 1 0]
[1 0 0]]

Original labels:
[np.int64(0), np.int64(1), np.int64(2), np.int64(0), np.int64(1), np.int64

(2), np.int64(1), np.int64(0)]

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

mailto:Marcel.Turcotte@uOttawa.ca

Attribution: “An image of a sad Chihuahua amigurumi with a birthday hat.” Generated by

DALL-E, via ChatGPT (GPT-4), OpenAI, September 16, 2024.

