
Cross-entropy, geometric interpretation, and
implementation

CSI 4106 - Fall 2025

Marcel Turcotte

Version: Sep 27, 2025 10:05

Preamble

Message of the Day

https://www.youtube.com/watch?v=I_cvKK7LanI

AI’s “Significant Effect” on Entry-Level Work, TIME, 2025-09-05. (13m 55s)

TIME conducted interviews with the authors of a recent report from the Stanford Digital

Economy Lab, titled “Canaries in the Coal Mine? Six Facts about the Recent

Employment Effects of Artificial Intelligence.” The report is available here and here is the

abstract:

This paper examines changes in the labor market for occupations exposed

to generative artificial intelligence using high-frequency administrative

data from the largest payroll software provider in the United States. We

present six facts that characterize these shifts. We find that since the

widespread adoption of generative AI, early-career workers (ages 22-25)

in the most AI-exposed occupations have experienced a 13 percent

relative decline in employment even after controlling for firm-level shocks.

In contrast, employment for workers in less exposed fields and more

experienced workers in the same occupations has remained stable or

continued to grow. We also find that adjustments occur primarily through

employment rather than compensation. Furthermore, employment declines

are concentrated in occupations where AI is more likely to automate,

ratherthanaugment, humanlabor.

Ourresultsarerobusttoalternativeexplanations, such as excluding

technology-related firms and excluding occupations amenable to remote

work. These six facts provide early, large-scale evidence consistent with

the hypothesis that the AI revolution is beginning to have a significant and

disproportionate impact on entry-level workers in the American labor

market.

https://www.youtube.com/watch?v=I_cvKK7LanI
https://www.youtube.com/watch?v=I_cvKK7LanI
https://www.rivista.ai/wp-content/uploads/2025/09/1756729755699.pdf

Message of the Day (continued)

https://www.youtube.com/watch?v=p_kF_SDB0-c

How AI is changing the job market, What in the World podcast, BBC World Service,

2025-09-16.

A wealth of videos, news articles, and academic publications are available online,

exploring the impact of artificial intelligence (AI) on the job market. Notably, the following

source provides a more optimistic perspective, highlighting instances where companies

are increasingly hiring recent graduates for senior roles with the intention of providing

on-the-job training.

How AI Is Crushing Junior Developers, Economy Media, posted on 2025-09-04.

Learning Outcomes

By the end of this presentation, you should be able to:

Differentiate between MSE and cross-entropy as loss functions.

Relate maximum likelihood estimation to parameter learning in logistic regression.

Interpret the geometric view of logistic regression as a linear decision boundary.

Implement logistic regression with gradient descent on simple data.

Linear Regression

Problem

General Case: , where is a class label.

Binary Case:

Predict

For a new instance , determine the probability that it belongs to class , denoted as

.

Logistic Regression

The Logistic Regression model is defined as:

Predictions are made as follows:

P(y = k ∣ x, θ) k

y ∈ 0, 1

P(y = 1 ∣ x, θ)

xnew k

P(y = k ∣ xnew, θ)

hθ(xi) = σ(θxi) =
1

1 + e−θxi

https://www.youtube.com/watch?v=p_kF_SDB0-c
https://www.youtube.com/watch?v=p_kF_SDB0-c
https://youtu.be/106DaA8WdHg

, if

, if

The problem is formulated as a binary classification task, wherein the model presumes

that the classes are separable by a linear function within the feature space.

In the previous lecture, we considered an example wherein logistic regression was used

to classify handwritten digits.

The classification problem was addressed using a one-vs-rest strategy, which

involved training ten separate logistic regression models, each dedicated to

recognizing a specific digit.

Each model consisted of 65 parameters: one bias term and 64 weights. Each

weight corresponded to a pixel (or attribute) of a pixel image.

This method demonstrated an excellent performance, achieving an overall accuracy

of 0.97.

Analyzing the weights provided insights into the areas of the image to which the

model was most responsive (what does it pay attention to?).

The model presented above is expressed in its vectorized form, allowing it to be applied

to problems involving multiple attributes. In the context of recognizing handwritten

digits, the model utilizes 64 attributes, corresponding to individual pixels. The function

employed in this model is the logistic, or sigmoid, function.

Loss Function

Model Overview

Our model is expressed in a vectorized form as:

Prediction:

Assign , if ; , if

The parameter vector is optimized using gradient descent.

Which loss function should be used and why?

In logistic regression, the output is regarded as a probability, with particular emphasis on

the interpretation process.

Remarks

yi = 0 hθ(xi) < 0.5

yi = 1 hθ(xi) ≥ 0.5

64 × 64

σ

hθ(xi) = σ(θxi) =
1

1 + e−θxi

yi = 0 hθ(xi) < 0.5 yi = 1 hθ(xi) ≥ 0.5

θ

In constructing machine learning models with libraries like scikit-learn or

keras , one has to select a loss function or accept the default one.

Initially, the terminology can be confusing, as identical functions may be

referenced by various names.

Our aim is to elucidate these complexities.

It is actually not that complicated!

Parameter Estimation

Logistic regression is statistical model.

Its output is .

.

Assumes that values come from a Bernoulli distribution.

 is commonly found by Maximum Likelihood Estimation.

The expressions , , and represent the same concept, albeit at varying

levels of abstraction and specificity.

Parameter Estimation

Maximum Likelihood Estimation (MLE) is a statistical method used to estimate the

parameters of a probabilistic model.

It identifies the parameter values that maximize the likelihood function, which

measures how well the model explains the observed data.

Likelihood Function

Assuming the values are independent and identically distributed (i.i.d.), the likelihood

function is expressed as the product of individual probabilities.

In other words, given our data, , the likelihood function is given by this

equation.

Maximum Likelihood

ŷ = P(y = 1|x, θ)

P(y = 0|x, θ) = 1 − ŷ

y

θ

ŷ hθ(xi) σ(θxi)

y

{(xi, yi)}N
i=1

L(θ) =
N

∏
i=1

P(yi ∣ xi, θ)

Observations:

1. Maximizing a function is equivalent to minimizing its negative.

2. The logarithm of a product equals the sum of its logarithms.

Negative Log-Likelihood

Maximum likelihood

becomes negative log-likelihood

Mathematical Reformulation

For binary outcomes, the probability is:

. . .

This can be compactly expressed as:

This “mathematical hack” validates the rationale for the label encoding.

Loss Function

We are now ready to write our loss function.

where .

Consequently,

θ̂ = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

N

∏
i=1

P(yi ∣ xi, θ)

θ̂ = arg max
θ∈Θ

L(θ) = arg max
θ∈Θ

N

∏
i=1

P(yi ∣ xi, θ)

θ̂ = arg min
θ∈Θ

− logL(θ) = arg min
θ∈Θ

− log
N

∏
i=1

P(yi ∣ xi, θ) = arg min
θ∈Θ

−
N

∑
i=1

logP(yi ∣ xi

P(y ∣ x, θ)

P(y ∣ x, θ) = {σ(θx), if y = 1
1 − σ(θx), if y = 0

P(y ∣ x, θ) = σ(θx)y(1 − σ(θx))1−y

J(θ) = − logL(θ) = −
N

∑
i=1

logP(yi ∣ xi, θ)

P(y ∣ x, θ) = σ(θx)y(1 − σ(θx))1−y

Loss Function (continued)

Simplifying the equation.

by distributing the into the square parenthesis.

Loss Function (continued)

Simplifying the equation further.

by moving the exponents in front of the s.

The rationale for these additional simplifications will be elucidated shortly.

One More Thing

Decision tree algorithms often employ entropy, a measure from information

theory, to evaluate the quality of splits or partitions in decision rules.

Entropy quantifies the uncertainty or impurity associated with the potential

outcomes of a random variable.

Entropy

Entropy in information theory quantifies the uncertainty or unpredictability of a random

variable’s possible outcomes. It measures the average amount of information produced

by a stochastic source of data and is typically expressed in bits for binary systems. The

J(θ) = −
N

∑
i=1

log[σ(θxi)
yi(1 − σ(θxi))1−yi]

J(θ) = −
N

∑
i=1

log[σ(θxi)
yi(1 − σ(θxi))1−yi]

log

J(θ) = −
N

∑
i=1

[logσ(θxi)
yi + log(1 − σ(θxi))1−yi]

J(θ) = −
N

∑
i=1

[logσ(θxi)
yi + log(1 − σ(θxi))1−yi]

log

J(θ) = −
N

∑
i=1

[yi logσ(θxi) + (1 − yi) log(1 − σ(θxi))]

entropy of a discrete random variable with possible outcomes

and probability mass function is given by:

Cross-Entropy

Cross-entropy quantifies the difference between two probability distributions,

typically the true distribution and a predicted distribution.

where is the true probability distribution, and is the predicted probability

distribution.

Cross-Entropy

Consider as the true probability distribution and as the predicted probability

distribution.

Cross-entropy quantifies the discrepancy between these two distributions.

Cross-Entropy

Consider the negative log-likelihood loss function:

By substituting with , the function becomes:

This expression illustrates that the negative log-likelihood is optimized by minimizing

the cross-entropy.

Cross-entropy, log loss, and negative log-likelihood refer to the same concept.

Interpret the final equation as applying to all examples from 1 to and all classes from 1

to . Here, because we are addressing a binary classification problem.

For Each Example

H X {x1,x2, … ,xn}

P(X)

H(X) = −
n

∑
i=1

P(xi) log2 P(xi)

H(p, q) = −∑
i

p(xi) log q(xi)

p(xi) q(xi)

y ŷ

J(θ) = −
N

∑
i=1

[yi logσ(θxi) + (1 − yi) log(1 − σ(θxi))]

σ(θxi) ŷi

J(θ) = −
N

∑
i=1

[yi log ŷi + (1 − yi) log(1 − ŷi)]

N

k k = 0

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(42)

Generate an array of p values from just above 0 to 1
p_values = np.linspace(0.001, 1, 1000)

Compute the natural logarithm of each p value
ln_p_values = - np.log(p_values)

Plot the graph
plt.figure(figsize=(5, 4))
plt.plot(p_values, ln_p_values, label=r'$-\log(\hat{y})$', color='b')

Add labels and title
plt.xlabel(r'\hat{y}')
plt.ylabel(r'J')
plt.title(r'Graph of $-\log(\hat{y})$ for \hat{y} from 0 to 1')
plt.grid(True)
plt.axhline(0, color='gray', lw=0.5) # Add horizontal line at y=0
plt.axvline(0, color='gray', lw=0.5) # Add vertical line at x=0

Display the plot
plt.legend()
plt.show()

In [2]:

J(θ) = −
N

∑
i=1

[yi log ŷi + (1 − yi) log(1 − ŷi)]

For each example:

Only one of the two terms in the summation is not zero.

 is .

As tends to 1.0, tends to zero.

As tends to 0.0, indicating an incorrect prediction, tends to .

This substantial penalty allows cross-entropy loss to converge more quickly than

mean squared error.

Remarks

Cross-entropy loss is particularly well-suited for probabilistic classification tasks

due to its alignment with maximum likelihood estimation.

In logistic regression, cross-entropy loss preserves convexity, contrasting with

the non-convex nature of mean squared error (MSE)[1].

We will revisite cross-entropy loss when studying deep learning, especially in

conjunction with the softmax function.

If you train logistic regression with the mean squared error (MSE) loss:

The composition of the sigmoid (nonlinear, S-shaped) with the quadratic loss

produces a non-convex objective.

This leads to multiple local minima and poor optimization behavior.

By contrast, using the log-loss (cross-entropy) yields a convex objective in the

parameters, making optimization well-behaved with gradient methods.

Remarks

For classification problems, cross-entropy loss often achieves faster convergence

compared to MSE, enhancing model efficiency.

Within deep learning architectures, MSE can exacerbate the vanishing gradient

problem, an issue we will address in a subsequent discussion.

Why not MSE as a Loss Function?

https://www.youtube.com/watch?v=m0ZeT1EWjjI

What is the Difference?

https://www.youtube.com/watch?v=ziq967YrSsc

1 − ŷi P(y = 0 ∣ x, θ)

ŷi − log(ŷ)

ŷi − log(ŷ) ∞

https://www.youtube.com/watch?v=m0ZeT1EWjjI
https://www.youtube.com/watch?v=ziq967YrSsc

Geometric Interpretation

Geometric Interpretation

Do you recognize this equation?

This is the dot product of and , .

What is the geometric interpretation of the dot product?

. . .

In certain contexts, it is advantageous to use in place of .

Geometric Interpretation

The dot product determines the angle between vectors.

It quantifies how much one vector extends in the direction of another.

Its value is zero, if the vectors are perpendicular .

Geometric Interpretation

Logistic regression uses a linear combination of the input features, , as

the argument to the sigmoid (logistic) function.

Geometrically, can be viewed as a vector normal to a hyperplane in the feature

space, and any point is projected onto via the dot product .

Geometric Interpretation

The decision boundary is where this linear combination equals zero, i.e.,

.

Points on one side of the boundary have a positive dot product and are more likely

to be classified as the positive class (1).

Points on the other side have a negative dot product and are more likely to be in

the opposite class (0).

w1x1 + w2x2 + … + wDx2

w x w ⋅ x

w ⋅ x = ∥w∥∥x∥ cos θ

w θ

w ⋅ x = ∥w∥∥x∥ cos θ

(θ)

(θ = 90∘)

w ⋅ x + b

w

x w w ⋅ x

w ⋅ x + b = 0

The sigmoid function simply turns this signed distance into a probability between

0 and 1.

Logistic Function

As , , so .

As , , making the denominator approach infinity, so .

When , , resulting in a denominator of 2, so .

Sigmoid function
def sigmoid(t):
 return 1 / (1 + np.exp(-t))

Generate t values
t = np.linspace(-6, 6, 1000)

Compute y values for the sigmoid function
sigma = sigmoid(t)

Create a figure
fig, ax = plt.subplots()
ax.plot(t, sigma, color='blue', linewidth=2) # Keep the curve
opaque

Draw vertical axis at x = 0
ax.axvline(x=0, color='black', linewidth=1)

Add labels on the vertical axis
ax.set_yticks([0, 0.5, 1.0])

Add labels to the axes
ax.set_xlabel('t')
ax.set_ylabel(r'$\sigma(t)$')

plt.grid(True)
plt.show()

σ(t) =
1

1 + e−t

t → ∞ e−t → 0 σ(t) → 1

t → −∞ e−t → ∞ σ(t) → 0

t = 0 e−t = 0 σ(t) = 0.5

What’s special about e?

Instead of , we might have used another constant, say 2.

Derivative Simplicity: For the logistic function , the derivative

simplifies to . This elegant form arises because the

exponential base has the unique property that , avoiding an extra

multiplicative constant.

import math

def logistic(x, e):
 """Compute a modified logistic function using b rather than
e."""
 return 1 / (1 + np.power(e, -x))

Define a range for x values.
x = np.linspace(-6, 6, 400)

Plot 1: Varying e.
plt.figure(figsize=(8, 6))
e_values = [2, math.e, 4, 8, 16] # different steepness values

σ(t) =
1

1 + e−t

e

σ(x) = 1
1+e−x

σ′(x) = σ(x)(1 − σ(x))

e ex = ex
d

dx

for e in e_values:
 plt.plot(x, logistic(x, e), label=f'e = {e}')
plt.title('Effect of Varying e')
plt.xlabel('x')
plt.ylabel(r'$\frac{1}{1+e^{-x}}$')
plt.legend()
plt.grid(True)

In the context of logistic regression, the choice of the mathematical constant is not

arbitrary but is supported by several compelling mathematical justifications. These

justifications primarily relate to the harmonious integration of the logistic function with

other mathematical frameworks. Although our primary focus was to visually demonstrate

the potential implications of substituting a different constant, the inherent advantages of

using become evident upon closer examination of its mathematical properties and how

they facilitate seamless integration with existing theories and models.

Varying w

def logistic(x, w, b):
 """Compute the logistic function with parameters w and b."""
 return 1 / (1 + np.exp(-(w * x + b)))

Define a range for x values.

e

e

σ(wx + b)

x = np.linspace(-10, 10, 400)

Plot 1: Varying w (steepness) with b fixed at 0.
plt.figure(figsize=(8, 6))
w_values = [0.5, 1, 2, 5] # different steepness values
b = 0 # fixed bias

for w in w_values:
 plt.plot(x, logistic(x, w, b), label=f'w = {w}, b = {b}')
plt.title('Effect of Varying w (with b = 0)')
plt.xlabel('x')
plt.ylabel(r'$\sigma(wx+b)$')
plt.legend()
plt.grid(True)
plt.show()

Varying b

Plot 2: Varying b (horizontal shift) with w fixed at 1.
plt.figure(figsize=(8, 6))
w = 1 # fixed steepness
b_values = [-5, -2, 0, 2, 5] # different bias values

for b in b_values:

σ(wx + b)

 plt.plot(x, logistic(x, w, b), label=f'w = {w}, b = {b}')
plt.title('Effect of Varying b (with w = 1)')
plt.xlabel('x')
plt.ylabel(r'$\sigma(wx+b)$')
plt.legend()
plt.grid(True)

plt.show()

Implementation

Implementation: Generating Data

[1] In linear regression, mean squared error loss is convex.

Generate synthetic data for a binary classification problem

m = 100 # number of examples
d = 2 # number of featues

X = np.random.randn(m, d)

Define labels using a linear decision boundary with some noise:

noise = 0.5 * np.random.randn(m)

In [7]:

y = (X[:, 0] + X[:, 1] + noise > 0).astype(int)

Implementation: Vizualization

Visualize the decision boundary along with the data points
plt.figure(figsize=(8, 6))
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='red', label='Class 0')
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='blue', label='Class 1')

plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.title("Data")
plt.legend()
plt.show()

Implementation: Cost Function

Sigmoid function
def sigmoid(z):
 return 1 / (1 + np.exp(-z))

Cost function: binary cross-entropy
def cost_function(theta, X, y):

In [8]:

In [9]:

 m = len(y)
 h = sigmoid(X.dot(theta))
 epsilon = 1e-5 # avoid log(0)
 cost = -(1/m) * np.sum(y * np.log(h + epsilon) + (1 - y) * np.log(1 - h
 return cost

Gradient of the cost function
def gradient(theta, X, y):
 m = len(y)
 h = sigmoid(X.dot(theta))
 grad = (1/m) * X.T.dot(h - y)
 return grad

Implementation: Logistic Regression

Logistic regression training using gradient descent
def logistic_regression(X, y, learning_rate=0.1, iterations=1000):
 m, n = X.shape
 theta = np.zeros(n)
 cost_history = []

 for i in range(iterations):
 theta -= learning_rate * gradient(theta, X, y)
 cost_history.append(cost_function(theta, X, y))

 return theta, cost_history

Training

Add intercept term (bias)
X_with_intercept = np.hstack([np.ones((m, 1)), X])

Train the logistic regression model
theta, cost_history = logistic_regression(X_with_intercept, y, learning_rate

print("Optimized theta:", theta)

Optimized theta: [-0.28840995 2.80390104 2.45238752]

Cost Function Convergence

plt.figure(figsize=(8, 6))
plt.plot(cost_history, label="Cost")
plt.xlabel("Iteration")
plt.ylabel("Cost")
plt.title("Cost Function Convergence")
plt.legend()
plt.show()

In [10]:

In [11]:

In [12]:

Decision Boundary and Data Points

plt.figure(figsize=(8, 6))
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='red', label='Class 0')
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='blue', label='Class 1')

Decision boundary: theta0 + theta1*x1 + theta2*x2 = 0
x_vals = np.array([min(X[:, 0]) - 1, max(X[:, 0]) + 1])
y_vals = -(theta[0] + theta[1] * x_vals) / theta[2]
plt.plot(x_vals, y_vals, label='Decision Boundary', color='green')
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.title("Logistic Regression Decision Boundary")
plt.legend()
plt.show()

In [13]:

Implementation (continued)

Predict function: returns class labels and probabilities for new data
def predict(theta, X, threshold=0.5):
 probs = sigmoid(X.dot(theta))
 return (probs >= threshold).astype(int), probs

Predictions

New examples must include the intercept term.

Negative example (likely class 0): Choose a point far in the negative quad
example_neg = np.array([1, -3, -3])

Positive example (likely class 1): Choose a point far in the positive quad
example_pos = np.array([1, 3, 3])

Near decision boundary: Choose x1 = 0 and compute x2 from the decision bou
x1_near = 0
x2_near = -(theta[0] + theta[1] * x1_near) / theta[2]
example_near = np.array([1, x1_near, x2_near])

In [14]:

In [15]:

In the given example, each data point is characterized by two primary features. However,

the representation includes three components. Why?

This discrepancy arises from an earlier discussed mathematical technique, where each

instance is augmented with an additional term, . This augmentation facilitates

the expression of the model in a vectorized format, enhancing computational efficiency

and simplicity.

Predictions (continued)

Combine the examples into one array for prediction.
new_examples = np.vstack([example_neg, example_pos, example_near])

labels, probabilities = predict(theta, new_examples)

print("\nPredictions on new examples:")

print("Negative example {} -> Prediction: {} (Probability: {:.4f})".format(e

print("Positive example {} -> Prediction: {} (Probability: {:.4f})".format(e

print("Near-boundary example {} -> Prediction: {} (Probability: {:.4f})".for

Predictions on new examples:
Negative example [-3 -3] -> Prediction: 0 (Probability: 0.0000)
Positive example [3 3] -> Prediction: 1 (Probability: 1.0000)
Near-boundary example [0. 0.11760374] -> Prediction: 1 (Probability:
0.5000)

Visualizing the Weight Vector

In the previous lecture, we established that logistic regression determines a weight

vector that is orthogonal to the decision boundary.

Conversely, the decision boundary itself is orthogonal to the weight vector, which is

derived through gradient descent optimization.

Visualizing the Weight Vector

Plot decision boundary and data points
plt.figure(figsize=(8, 6))
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='red', label='Class 0')
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='blue', label='Class 1')

Decision boundary: theta0 + theta1*x1 + theta2*x2 = 0
x_vals = np.array([min(X[:, 0]) - 1, max(X[:, 0]) + 1])
y_vals = -(theta[0] + theta[1] * x_vals) / theta[2]
plt.plot(x_vals, y_vals, label='Decision Boundary', color='green')

x
(0)
i = 1

In [16]:

In [17]:

--- Draw the normal vector ---
The normal vector is (theta[1], theta[2]).
Choose a reference point on the decision boundary. Here, we use x1 = 0:
x_ref = 0
y_ref = -theta[0] / theta[2] # when x1=0, theta0 + theta2*x2=0 => x2=-the

Create the normal vector from (theta[1], theta[2]).
normal = np.array([theta[1], theta[2]])

Normalize and scale for display
normal_norm = np.linalg.norm(normal)
if normal_norm != 0:
 normal_unit = normal / normal_norm
else:
 normal_unit = normal
scale = 2 # adjust scale as needed
normal_display = normal_unit * scale

Draw an arrow starting at the reference point
plt.arrow(x_ref, y_ref, normal_display[0], normal_display[1],
 head_width=0.1, head_length=0.2, fc='black', ec='black')
plt.text(x_ref + normal_display[0]*1.1, y_ref + normal_display[1]*1.1,
 r'(θ_1, θ_2)', color='black', fontsize=12)

plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.title("Logistic Regression Decision Boundary and Normal Vector")
plt.legend()
plt.gca().set_aspect('equal', adjustable='box')
plt.ylim(-3, 3)
plt.show()

Near the Decision Boundary

--- Visualization Setup ---
Create a grid over the feature space
x1_range = np.linspace(X[:, 0].min()-1, X[:, 0].max()+1, 100)
x2_range = np.linspace(X[:, 1].min()-1, X[:, 1].max()+1, 100)
xx1, xx2 = np.meshgrid(x1_range, x2_range)

Construct the grid input (with intercept) for predictions
grid = np.c_[np.ones(xx1.ravel().shape), xx1.ravel(), xx2.ravel()]
Compute predicted probabilities over the grid
probs = sigmoid(grid.dot(theta)).reshape(xx1.shape)
--- Approach 2: 2D Contour (Heatmap) Plot ---
plt.figure(figsize=(8, 6))
contour = plt.contourf(xx1, xx2, probs, cmap='spring', levels=50)
plt.colorbar(contour)
plt.xlabel('Feature x1')
plt.ylabel('Feature x2')
plt.title('Contour Plot (Heatmap) of Predicted Probabilities')
Overlay training data
plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='red', edgecolor='k', la
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='blue', edgecolor='k', l

In [18]:

plt.legend()
plt.show()

Near the Decision Boundary

--- Approach 1: 3D Surface Plot ---
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
surface = ax.plot_surface(xx1, xx2, probs, cmap='spring', alpha=0.8)
ax.set_xlabel('Feature x1')
ax.set_ylabel('Feature x2')
ax.set_zlabel('Probability')
ax.set_title('3D Surface Plot of Logistic Regression Model')
fig.colorbar(surface, shrink=0.5, aspect=5)
plt.show()

In [19]:

Prologue

Summary

In this presentation, we:

Derived the likelihood and negative log-likelihood formulations.

Illustrated the geometric interpretation of decision boundaries and weight vectors.

Implemented logistic regression with gradient descent and visualized results.

Next lecture

Performance measures and cross-evaluation

References

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

