Cross-entropy, geometric interpretation, and
implementation

CSI 4106 - Fall 2025

Marcel Turcotte
Version: Sep 27, 2025 10:05

Preamble

Message of the Day

https://www.youtube.com/watch?v=I_cvKK7Lanl
Al's “Significant Effect” on Entry-Level Work, TIME, 2025-09-05. (13m 55s)

TIME conducted interviews with the authors of a recent report from the Stanford Digital
Economy Lab, titled “Canaries in the Coal Mine? Six Facts about the Recent
Employment Effects of Artificial Intelligence.” The report is available here and here is the
abstract:

This paper examines changes in the labor market for occupations exposed
to generative artificial intelligence using high-frequency administrative
data from the largest payroll software provider in the United States. We
present six facts that characterize these shifts. We find that since the
widespread adoption of generative Al, early-career workers (ages 22-25)
in the most Al-exposed occupations have experienced a 13 percent
relative decline in employment even after controlling for firm-level shocks.
In contrast, employment for workers in less exposed fields and more
experienced workers in the same occupations has remained stable or
continued to grow. We also find that adjustments occur primarily through
employment rather than compensation. Furthermore, employment declines
are concentrated in occupations where Al is more likely to automate,
ratherthanaugment, humanlabor.
Ourresultsarerobusttoalternativeexplanations, such as excluding
technology-related firms and excluding occupations amenable to remote
work. These six facts provide early, large-scale evidence consistent with
the hypothesis that the Al revolution is beginning to have a significant and
disproportionate impact on entry-level workers in the American labor
market.

https://www.youtube.com/watch?v=I_cvKK7LanI
https://www.youtube.com/watch?v=I_cvKK7LanI
https://www.rivista.ai/wp-content/uploads/2025/09/1756729755699.pdf

Message of the Day (continued)

https://www.youtube.com/watch?v=p_kF_SDBO0-c

How Al is changing the job market, What in the World podcast, BBC World Service,
2025-09-16.

A wealth of videos, news articles, and academic publications are available online,
exploring the impact of artificial intelligence (Al) on the job market. Notably, the following
source provides a more optimistic perspective, highlighting instances where companies
are increasingly hiring recent graduates for senior roles with the intention of providing
on-the-job training.

e How Al Is Crushing Junior Developers, Economy Media, posted on 2025-09-04.

Learning Outcomes

By the end of this presentation, you should be able to:

Differentiate between MSE and cross-entropy as loss functions.

Relate maximum likelihood estimation to parameter learning in logistic regression.

Interpret the geometric view of logistic regression as a linear decision boundary.

Implement logistic regression with gradient descent on simple data.

Linear Regression

Problem

e General Case: P(y = k | z,0), where k is a class label.
e Binary Case:y € 0,1
» Predict P(y=1|z,0)

For a new instance ., determine the probability that it belongs to class k, denoted as
P(y =k | new, 0).

Logistic Regression

The Logistic Regression model is defined as:

1

ha(a}i) = 0’(0332) = m

e Predictions are made as follows:

https://www.youtube.com/watch?v=p_kF_SDB0-c
https://www.youtube.com/watch?v=p_kF_SDB0-c
https://youtu.be/106DaA8WdHg

e y; =0,if hg(aci) < 0.5

The problem is formulated as a binary classification task, wherein the model presumes
that the classes are separable by a linear function within the feature space.

In the previous lecture, we considered an example wherein logistic regression was used
to classify handwritten digits.

e The classification problem was addressed using a one-vs-rest strategy, which
involved training ten separate logistic regression models, each dedicated to
recognizing a specific digit.

e Each model consisted of 65 parameters: one bias term and 64 weights. Each
weight corresponded to a pixel (or attribute) of a 64 x 64 pixel image.

e This method demonstrated an excellent performance, achieving an overall accuracy
of 0.97.

e Analyzing the weights provided insights into the areas of the image to which the
model was most responsive (what does it pay attention to?).

The model presented above is expressed in its vectorized form, allowing it to be applied
to problems involving multiple attributes. In the context of recognizing handwritten
digits, the model utilizes 64 attributes, corresponding to individual pixels. The function o
employed in this model is the logistic, or sigmoid, function.

Loss Function

Model Overview

e Our model is expressed in a vectorized form as:

1

¢ Prediction:

» Assigny; = 0, if hg(z;) < 0.5; y; = 1, if hg(x;) > 0.5
e The parameter vector 6 is optimized using gradient descent.

e Which loss function should be used and why?

In logistic regression, the output is regarded as a probability, with particular emphasis on
the interpretation process.

Remarks

¢ |n constructing machine learning models with libraries like scikit-learn or
keras , one has to select a loss function or accept the default one.

e Initially, the terminology can be confusing, as identical functions may be
referenced by various names.

e Our aim is to elucidate these complexities.

e |tis actually not that complicated!

Parameter Estimation

e Logistic regression is statistical model.

e ltsoutputisy = P(y = 1|z,).

e P(y=0Jz,0)=1—9.

e Assumes that y values come from a Bernoulli distribution.
e @ is commonly found by Maximum Likelihood Estimation.

The expressions ¥, hy(x;), and o(0x;) represent the same concept, albeit at varying
levels of abstraction and specificity.

Parameter Estimation

Maximum Likelihood Estimation (MLE) is a statistical method used to estimate the
parameters of a probabilistic model.

It identifies the parameter values that maximize the likelihood function, which
measures how well the model explains the observed data.

Likelihood Function

Assuming the y values are independent and identically distributed (i.i.d.), the likelihood
function is expressed as the product of individual probabilities.

In other words, given our data, {(z;, yi)}ij\il, the likelihood function is given by this
equation.

N

L) =] Py | z:,0)

=1

Maximum Likelihood

N
f = argmax((§) = arg maXH P(y; | x;,0)
0cO fcO i=1

e Observations:

1. Maximizing a function is equivalent to minimizing its negative.
2. The logarithm of a product equals the sum of its logarithms.

Negative Log-Likelihood

Maximum likelihood

N
§ = argmax/L(0) = arg maXH P(y; | x;,6)
6cO 0cO i=1
becomes negative log-likelihood
N N
6 = argmin — log £(0) = arg min — 10gH P(y; | ;,0) = arg min — Z log P(y; | =,
0cO 0cO i=1 0cO i=1

Mathematical Reformulation

For binary outcomes, the probability P(y | z, 0) is:

| o(bz), ify=1
Ply|z,0)= { 1—-o0(0z), ify=0

This can be compactly expressed as:
P(y| ,6) = o(6z)"(1 — o(fz))" "

This “mathematical hack” validates the rationale for the label encoding.

Loss Function

We are now ready to write our loss function.
N
J(0) = —log L(0) = —) log P(y; | i, 0)
i=1

where P(y | z,0) = o(8z)¥(1 — o(fz))' Y.

Consequently,

J(0) = = loglo(6z:)¥ (1 — o(0z:))" V]

=1

Loss Function (continued)

Simplifying the equation.

J(6) = = log[o(6z;)% (1 — o(8z;))"]

i=1
by distributing the log into the square parenthesis.

J(0) = — Z[log o(z;)¥ + log(1 — o(fz;)) %]

=1

Loss Function (continued)

Simplifying the equation further.

J(0) = = [logo(6z) + log(1 — o(6z:))" V]

i=1
by moving the exponents in front of the logs.

J(6) = =) [yilogo(9z:) + (1 — ;) log(1 — o(6z;))]

=1

The rationale for these additional simplifications will be elucidated shortly.

One More Thing

¢ Decision tree algorithms often employ entropy, a measure from information
theory, to evaluate the quality of splits or partitions in decision rules.

e Entropy quantifies the uncertainty or impurity associated with the potential
outcomes of a random variable.

Entropy

Entropy in information theory quantifies the uncertainty or unpredictability of a random
variable's possible outcomes. It measures the average amount of information produced
by a stochastic source of data and is typically expressed in bits for binary systems. The

entropy H of a discrete random variable X with possible outcomes {z1, 2, ..., Zn}
and probability mass function P(X) is given by:

H(X) = ZPmnlogQ P(z;)

Cross-Entropy

Cross-entropy quantifies the difference between two probability distributions,
typically the true distribution and a predicted distribution.

H(p,q) = —) _p(x:)logq(z:)

where p(z;) is the true probability distribution, and g(z;) is the predicted probability
distribution.

Cross-Entropy

e Consider y as the true probability distribution and ¢ as the predicted probability
distribution.
e Cross-entropy quantifies the discrepancy between these two distributions.

Cross-Entropy

Consider the negative log-likelihood loss function:

N
Z yilogo(0z;) + (1 — y;) log(1 — o(6z;))]
=1

By substituting o(fz;) with g;, the function becomes:
N
— > [vilogd; + (1 — ;) log(1 — 3;)]
i=1

This expression illustrates that the negative log-likelihood is optimized by minimizing
the cross-entropy.

Cross-entropy, log loss, and negative log-likelihood refer to the same concept.

Interpret the final equation as applying to all examples from 1to N and all classes from 1
to k. Here, k = 0 because we are addressing a binary classification problem.

For Each Example

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(42)

Generate an array of p values from just above @ to 1
p_values = np.linspace(0.001, 1, 1000)

Compute the natural logarithm of each p value
In_p_values = - np.log(p_values)

Plot the graph
plt.figure(figsize=(5, 4))
plt.plot(p_values, ln_p_values, label=r'$-\log(\hat{y})$', color='b")

Add labels and title

plt.xlabel(r'\hat{y}")

plt.ylabel(r'J")

plt.title(r'Graph of $-\log(\hat{y})$ for \hat{y} from @ to 1')
plt.grid(True)

plt.axhline(@, color='gray', w=0.5) # Add horizontal line at y=0
plt.axvline(@, color='gray', w=0.5) # Add vertical line at x=0

Display the plot

plt.legend()
plt.show()

Graph of —log(y) for y from 0 to 1

— —logly)

0.0 0.2 0.4 0.6 0.8 1.0

=

yilogyi + (1 — yi) log(1 —)]

J(0) = —Z

[

For each example:

e Only one of the two terms in the summation is not zero.

e 1—ygiisP(y=0]z,0).

e As g; tends to 1.0, — log(7) tends to zero.

e As y; tends to 0.0, indicating an incorrect prediction, — log(y) tends to co.

e This substantial penalty allows cross-entropy loss to converge more quickly than
mean squared error.

Remarks

e Cross-entropy loss is particularly well-suited for probabilistic classification tasks

due to its alignment with maximum likelihood estimation.

¢ Inlogistic regression, cross-entropy loss preserves convexity, contrasting with
the non-convex nature of mean squared error (MSE)[1].

We will revisite cross-entropy loss when studying deep learning, especially in
conjunction with the softmax function.

If you train logistic regression with the mean squared error (MSE) loss:

e The composition of the sigmoid (nonlinear, S-shaped) with the quadratic loss
produces a non-convex objective.

e This leads to multiple local minima and poor optimization behavior.

e By contrast, using the log-loss (cross-entropy) yields a convex objective in the
parameters, making optimization well-behaved with gradient methods.

Remarks

e For classification problems, cross-entropy loss often achieves faster convergence
compared to MSE, enhancing model efficiency.

e Within deep learning architectures, MSE can exacerbate the vanishing gradient
problem, an issue we will address in a subsequent discussion.

Why not MSE as a Loss Function?

https://www.youtube.com/watch?v=mO0ZeT1EWjjl

What is the Difference?

https://www.youtube.com/watch?v=ziq967YrSsc

https://www.youtube.com/watch?v=m0ZeT1EWjjI
https://www.youtube.com/watch?v=ziq967YrSsc

Geometric Interpretation

Geometric Interpretation
e Do you recognize this equation?
W1T1 + WLy + ...+ WpTy
e This is the dot product of w and x, w - X.

¢ What is the geometric interpretation of the dot product?

w - x = ||w]||||x| cos

In certain contexts, it is advantageous to use w in place of 6.

Geometric Interpretation
w - x = |[wl|[|x[| cos §
e The dot product determines the angle (0) between vectors.
¢ |t quantifies how much one vector extends in the direction of another.

e lIts value is zero, if the vectors are perpendicular (6 = 90°).

Geometric Interpretation

e Logistic regression uses a linear combination of the input features, w - x + b, as
the argument to the sigmoid (logistic) function.

e Geometrically, w can be viewed as a vector normal to a hyperplane in the feature
space, and any point x is projected onto w via the dot product w - x.

Geometric Interpretation

e The decision boundary is where this linear combination equals zero, i.e.,
w-x+b=0.

e Points on one side of the boundary have a positive dot product and are more likely
to be classified as the positive class (1).

e Points on the other side have a negative dot product and are more likely to be in
the opposite class (0).

¢ The sigmoid function simply turns this signed distance into a probability between
Oand 1.

Logistic Function

1

R

e Ast —o00,e ' — 0,s00(t) — 1.
e Ast — —00, et — 0o, making the denominator approach infinity, so o(t) — O.
e Whent =0, e ! = 0, resulting in a denominator of 2, so o(t) = 0.5.

Sigmoid function
def sigmoid(t):
return 1 / (1 + np.exp(-t))

Generate t values
t = np.linspace(-6, 6, 1000)

Compute y values for the sigmoid function
sigma = sigmoid(t)

Create a figure

fig, ax = plt.subplots()

ax.plot(t, sigma, color='blue', linewidth=2) # Keep the curve
opaque

Draw vertical axis at x = 0
ax.axvline(x=0, color='black', linewidth=1)

Add labels on the vertical axis
ax.set_yticks([0, 0.5, 1.0])

Add labels to the axes
ax.set_xlabel('t")
ax.set_ylabel(r'$\sigma(t)s$"')

plt.grid(True)
plt.show()

1.0

0.5 1

alt)

0.0 1

What's special about e?

1

)= ——
o(t) 1+et

¢ Instead of e, we might have used another constant, say 2.

« Derivative Simplicity: For the logistic function o(z) = , the derivative

1
1+e™®
simplifies to ’(z) = o(x)(1 — o(x)). This elegant form arises because the

exponential base e has the unique property that %ew = ¢e*, avoiding an extra

multiplicative constant.

import math

def logistic(x, e):
"""Compute a modified logistic function using b rather than

e.
return 1 / (1 + np.power(e, -x))

Define a range for x values.
X = np.linspace(-6, 6, 400)

Plot 1: Varying e.
plt.figure(figsize=(8, 6))
e_values = [2, math.e, 4, 8, 16] # different steepness values

for e in e_values:

plt.plot(x, logistic(x, e), label=f'e = {e}"')
plt.title('Effect of Varying e')
plt.xlabel('x")
plt.ylabel(r'$\frac{1}{1+e™{-x}}$")
plt.legend()
plt.grid(True)

Effect of Varying e

104+ — e=2
— g = 2,718281828459045
— e=4
— e=8
084 —— e=16
0.6 1
—17"
A
0.4 1
0.2 1
0.0 1
T T T T T T T
-6 —4 -2 2 4 6

In the context of logistic regression, the choice of the mathematical constant e is not
arbitrary but is supported by several compelling mathematical justifications. These
justifications primarily relate to the harmonious integration of the logistic function with
other mathematical frameworks. Although our primary focus was to visually demonstrate
the potential implications of substituting a different constant, the inherent advantages of
using e become evident upon closer examination of its mathematical properties and how
they facilitate seamless integration with existing theories and models.

Varying w
o(wz + b)
def logistic(x, w, b):
""Compute the logistic function with parameters w and b."""

return 1 / (1 + np.exp(=(w % x + b)))

Define a range for x values.

x = np.linspace(-10, 10, 400)

Plot 1: Varying w (steepness) with b fixed at @.
plt.figure(figsize=(8, 6))

w_values = [0.5, 1, 2, 5] # different steepness values
b =0 # fixed bias

for w in w_values:

plt.plot(x, logistic(x, w, b), label=f'w = {w}, b = {b}"')

plt.title('Effect of Varying w (with b = 0)"')
plt.xlabel('x")

plt.ylabel(r'$\sigma(wx+b)$")

plt.legend()

plt.grid(True)

plt.show()
Effect of Varying w (with b = 0)
104+ — w=05b=0
— w=1b=0
— w=2b=0
— w=5b=0
0.8
0.6
=y
+
g
B
0.4
0.2
0.0 |
~10.0 7.5 5.0 2.5 0.0 2.5 5.0 75 10.0
x
Varying b

o(wz + b)

Plot 2: Varying b (horizontal shift) with w fixed at 1.
plt.figure(figsize=(8, 6))

w =1 # fixed steepness

b_values = [-5, -2, 0, 2, 5] # different bias values

for b in b_values:

plt.plot(x, logistic(x, w, b), label=f'w = {w}, b = {b}')
plt.title('Effect of Varying b (with w =1)")
plt.xlabel('x")
plt.ylabel(r'$\sigma(wx+b)$")
plt.legend()
plt.grid(True)

plt.show()

Effect of Varying b (with w = 1)

alwx + b)

1.5 10.0

Implementation

Implementation: Generating Data

[1] In linear regression, mean squared error loss is convex.

Generate synthetic data for a binary classification problem

m = 100 # number of examples
d =2 # number of featues
X = np.random.randn(m, d)

Define labels using a linear decision boundary with some noise:

noise = 0.5 * np.random.randn(m)

y = (X[:, 0] + X[:, 1] + noise > 0).astype(int)

Implementation: Vizualization

Visualize the decision boundary along with the data points

plt.figure(figsize=(8, 6))
plt.scatter(X[y == @][:, @], X[y == 0][:, 1], color='red', label='Class 0')
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='blue', label='Class 1')
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.title("Data")
plt.legend()
plt.show()
Data
[] @ Class0
® @ Classl
!
2 " °
® L e @
o . o
1 ® oo 0 .
° * ® . o °
¥ e o
E ®e € % o ¢
o ™ ®
u .. o] .
L 0 [] LI Y
-..' .0 . o
e e® ° ° °
«*
L ®
[] e ® 9
_1—
L] :. ™
°* . °
O b ¢
®
-2 4 .'
T T T T T
—3 -1 0 1 2
Feature 1

Implementation: Cost Function

Sigmoid function
def sigmoid(z):
return 1 / (1 + np.exp(-z))

Cost function: binary cross—entropy
def cost_function(theta, X, y):

m = len(y)

h = sigmoid(X.dot(theta))

epsilon = 1le-5 # avoid log(0)

cost = =(1/m) * np.sum(y * np.log(h + epsilon) + (1 - y) * np.log(1l - h
return cost

Gradient of the cost function
def gradient(theta, X, y):
m = len(y)
h = sigmoid(X.dot(theta))
grad = (1/m) * X.T.dot(h - y)
return grad

Implementation: Logistic Regression

Logistic regression training using gradient descent

def logistic_regression(X, y, learning_rate=0.1, iterations=1000):
m, n = X.shape
theta = np.zeros(n)
cost_history = []

for i in range(iterations):
theta —= learning_rate * gradient(theta, X, y)
cost_history.append(cost_function(theta, X, y))

return theta, cost_history

Training

Add intercept term (bias)
X_with_intercept = np.hstack([np.ones((m, 1)), XI)

Train the logistic regression model
theta, cost_history = logistic_regression(X_with_intercept, y, learning_rate

print("Optimized theta:", theta)
Optimized theta: [-0.28840995 2.80390104 2.45238752]

Cost Function Convergence

plt.figure(figsize=(8, 6))
plt.plot(cost_history, label="Cost")
plt.xlabel("Iteration")
plt.ylabel("Cost")

plt.title("Cost Function Convergence")
plt.legend()

plt.show()

0.70 Cost Function Convergence

—— Cost

0.65

0.60

0.55

0.50 ~

Cost

0.45 4

0.40

0.35

0.30 +

T T
0 200 400 600 800 1000
lteration

Decision Boundary and Data Points

plt.figure(figsize=(8, 6))
plt.scatter(X[y == @][:, 0], X[y == 0][:, 1], color='red', label='Class 0')
plt.scatter(X[y == 1][:, 0], X[y == 1][:, 1], color='blue', label='Class 1')

Decision boundary: theta® + thetalxxl + thetaZ*x2 = 0

x_vals = np.array([min(X[:, 0]1) = 1, max(X[:, @]) + 1])

y_vals = =(thetal[0] + thetal[l] * x_vals) / thetal[2]
plt.plot(x_vals, y_vals, label='Decision Boundary', color='green')
plt.xlabel("Feature 1")

plt.ylabel("Feature 2")

plt.title("Logistic Regression Decision Boundary")

plt.legend()

plt.show()

Logistic Regression Decision Boundary

@ Class0
47 @ Class1
—— Decision Boundary
3 -
2 -
™ l -
g
=
[13]
& A
_l -
_2 -
_3 -
T T T T T T T
-3 -2 -1 0 1 2 3
Feature 1

Implementation (continued)

Predict function: returns class labels and probabilities for new data
def predict(theta, X, threshold=0.5):

probs = sigmoid(X.dot(theta))

return (probs >= threshold).astype(int), probs

Predictions

New examples must include the intercept term.

Negative example (likely class 0): Choose a point far in the negative quac
example_neg = np.array([1, -3, -3])

Positive example (likely class 1): Choose a point far in the positive quac
example_pos = np.array([1, 3, 31)

Near decision boundary: Choose x1 = @ and compute x2 from the decision bot
x1l_near = 0

x2_near = —(theta[0] + thetall] * x1_near) / thetal2]

example_near = np.array([1, x1_near, x2_near])

In the given example, each data point is characterized by two primary features. However,
the representation includes three components. Why?

This discrepancy arises from an earlier discussed mathematical technique, where each
instance is augmented with an additional term, a:Z(O) = 1. This augmentation facilitates
the expression of the model in a vectorized format, enhancing computational efficiency
and simplicity.

Predictions (continued)

Combine the examples into one array for prediction.
new_examples = np.vstack([example_neg, example_pos, example_near])

labels, probabilities = predict(theta, new_examples)

print("\nPredictions on new examples:")

print("Negative example {} -> Prediction: {} (Probability: {:.4f})".format(e
print("Positive example {} —> Prediction: {} (Probability: {:.4f})".format(e

print("Near-boundary example {} —> Prediction: {} (Probability: {:.4f})".for

Predictions on new examples:

Negative example [-3 -3] —> Prediction: @ (Probability: 0.0000)

Positive example [3 3] —-> Prediction: 1 (Probability: 1.0000)

Near-boundary example [0. 0.11760374] —> Prediction: 1 (Probability:
0.5000)

Visualizing the Weight Vector

In the previous lecture, we established that logistic regression determines a weight
vector that is orthogonal to the decision boundary.

Conversely, the decision boundary itself is orthogonal to the weight vector, which is
derived through gradient descent optimization.

Visualizing the Weight Vector

Plot decision boundary and data points

plt.figure(figsize=(8, 6))

plt.scatter(X[y == 0][:, 0], X[y == 0][:, 1], color='red', label='Class 0')
plt.scatter(X[y == 1]1[:, 0], X[y == 1][:, 1], color="'blue', label='Class 1')

Decision boundary: theta@® + thetalxxl + thetaZ2*x2 = 0

x_vals = np.array([min(X[:, 01) = 1, max(X[:, @]1) + 1])

y_vals = =(thetal[0] + thetall] * x_vals) / thetal2]
plt.plot(x_vals, y_vals, label='Decision Boundary', color='green')

—— Dra

w the normal vector —-—

The normal vector is (theta[l], theta[2]).

Choose
x_ref =0
y_ref = -

Create
normal =

a reference point on the decision boundary. Here, we use x1 =

thetal[0] / thetal2] # when x1=0, theta® + theta2xx2=0 => x2=-the

the normal vector from (theta[l], theta[2]).
np.array([theta[l], thetal2]])

Normalize and scale for display

normal_no

rm = np.linalg.norm(normal)

if normal_norm != 0:

norma

else:
norma

scale = 2

1l _unit

normal / normal_norm

1l_unit = normal
adjust scale as needed

normal_display = normal_unit * scale

Draw an
plt.arrow

arrow starting at the reference point
(x_ref, y_ref, normal_display[@], normal_displayl[1],
head_width=0.1, head_length=0.2, fc='black', ec='black')

plt.text(x_ref + normal_display[0]l*1.1, y_ref + normal_display[1]*1.1,

r'(θ_1, θ_2)', color='black', fontsize=12)

plt.xlabel("Feature 1")
plt.ylabel("Feature 2")

plt.title

("Logistic Regression Decision Boundary and Normal Vector")

plt.legend()

plt.gca()

.set_aspect('equal', adjustable='box")

plt.ylim(-3, 3)

plt.show(

)

Logistic Regression Decision Boundary and Normal Vector

3
® ® Class0
® ® Class1
® —— Decision Boundary
2 o °
‘ ® @ {Elf 62]
@ &
1 -
L
[
v
2 0- ®
(1]
&
L
L
_1 —
_2 —
_3 T T T T T T T
-3 —2 =1] 1 2 3
Feature 1

Near the Decision Boundary

——— Visualization Setup ——-

Create
x1_range
X2_range
xx1, xx2

a

grid over the feature space
np.linspace(X[:, 0].min()-1, X[:, 0].max()+1, 100)
np.linspace(X[:, 1].min()-1, X[:, 1].max()+1, 100)

np.meshgrid(x1_range, X2_range)

Construct the grid input (with intercept) for predictions

grid = np.c_[np.ones(xx1l.ravel().shape), xx1l.ravel(), xx2.ravel()]
Compute predicted probabilities over the grid

probs = sigmoid(grid.dot(theta)).reshape(xx1l.shape)

——— Approach 2: 2D Contour (Heatmap) Plot ——-
plt.figure(figsize=(8, 6))

contour = plt.contourf(xxl, xx2, probs, cmap='spring', levels=50)
plt.colorbar(contour)

plt.xlabel('Feature x1')

plt.ylabel('Feature x2')

plt.title('Contour Plot (Heatmap) of Predicted Probabilities"')

Overlay training data
plt.scatter(X[y == 0][:, 0], Xly
plt.scatter(X[y == 11[:, 0], Xly

= 0Q][:, 1], color='red', edgecolor='k', 1
11[:, 11, color='blue', edgecolor='k',

c
1

In

[19]:

plt.legend()
plt.show()

Contour Plot (Heatmap) of Predicted Probabilities

@ Class0
@ Class1

Feature x2

-3 -2 -1 a 1 2
Feature x1

Near the Decision Boundary

——— Approach 1: 3D Surface Plot ——

fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot(111, projection='3d")

surface = ax.plot_surface(xxl, xx2, probs, cmap='spring', alpha=0.8)
ax.set_xlabel('Feature x1')

ax.set_ylabel('Feature x2')

ax.set_zlabel('Probability")

ax.set_title('3D Surface Plot of Logistic Regression Model')
fig.colorbar(surface, shrink=0.5, aspect=5)

plt.show()

- 0.96

- 0.84

-0.72

0.60

0.48

0.36

0.24

0.1z

0.00

3D Surface Plot of Logistic Regression Model

Probability

Prologue

Summary

In this presentation, we:

e Derived the likelihood and negative log-likelihood formulations.

- 0.8

- 0.6

0.4

0.2

¢ |llustrated the geometric interpretation of decision boundaries and weight vectors.

¢ Implemented logistic regression with gradient descent and visualized results.

Next lecture

e Performance measures and cross-evaluation

References

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th
ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca
School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

