
Performance Evaluation

CSI 4106 - Fall 2025

Marcel Turcotte

Version: Oct 7, 2025 09:50

Preamble

Message of the Day

https://youtu.be/sDZ1j0J-fe8

Demis Hassabis: The CEO Working to Solve Cancer With AI, Bloomberg Technology,

2025-09-14.

In a recent interview with Bloomberg Technology, Demis Hassabis discussed the

innovative work of Isomorphic Labs in significantly expediting drug development

processes. Below is a summary of Hassabis’ notable achievements:

A chess prodigy from a young age, Hassabis began playing at four years old and

achieved an Elo rating of approximately 2300 by the age of 13.

He co-founded DeepMind in 2010 alongside Shane Legg and Mustafa Suleyman,

where he currently serves as CEO.

Under his leadership, DeepMind has pioneered several groundbreaking

advancements in artificial intelligence, including the development of AlphaGo and,

notably, AlphaFold and AlphaFold2, which are pivotal in protein structure prediction.

In recognition of his contributions to protein structure prediction, Hassabis was

awarded the Nobel Prize in Chemistry in 2024.

In 2021, he founded Isomorphic Labs, which concentrates on the application of AI in

drug discovery and translational science.

“The Thinking Game” is a documentary that explores the life of Demis Hassabis, the

evolution of DeepMind, and the pursuit of artificial general intelligence (AGI).

In a related vein, an article titled “Which diseases will you have in 20 years? This AI

accurately predicts your risks” was published in Nature on September 17, 2025. This

brief news piece discusses Delphi-2M, a large language model designed to analyze an

individual’s medical records and lifestyle factors to provide risk assessments for over

1,000 diseases. Complementing the article, a podcast is also available for further

insights.

https://youtu.be/sDZ1j0J-fe8
https://youtu.be/sDZ1j0J-fe8
https://deepmind.google/
https://deepmind.google/research/projects/alphago/
https://deepmind.google/science/alphafold/
https://www.nobelprize.org/prizes/chemistry/2024/hassabis/facts/
https://www.isomorphiclabs.com/
https://thinkinggamefilm.com/
https://www.nature.com/articles/d41586-025-02993-x
https://www.nature.com/articles/d41586-025-02993-x
https://www.nature.com/articles/d41586-025-03026-3

Summary

This lecture covers classification model evaluation, focusing on confusion matrices and

key metrics: accuracy, precision, recall, and F₁ score. It addresses accuracy’s limitations

in imbalanced datasets, introducing micro and macro averaging. The precision-recall

trade-off and ROC analysis, including AUC, are also explored. Practical insights are

provided through Python implementations like logistic regression via gradient descent.

Learning Outcomes

Describe the structure and role of the confusion matrix in model evaluation.

Compute and interpret accuracy, precision, recall, and score.

Identify the pitfalls of using accuracy with imbalanced datasets.

Differentiate between micro and macro averaging for performance metrics.

Analyze precision-recall trade-offs and construct ROC curves, including the

calculation of AUC.

Implement the calculation or ROC curves and AUC in Python.

Performance Metrics

Confusion Matrix

Positive (Predicted) Negative (Predicted)

Positive (Actual) True positive (TP) False negative (FN)

Negative (Actual) False positive (FP) True negative (TN)

A confusion matrix is a table summarizing the performance of a classification algorithm

(here for a binary classification task).

In statistical analysis, False Positives (FP) are commonly referred to as Type I

errors, and False Negatives (FN) are known as Type II errors.

The diagonal elements represent the correctly predicted outcomes, namely true

positives (TP) and true negatives (TN).

In contrast, the off-diagonal elements correspond to incorrect predictions,

specifically false positives (FP) and false negatives (FN).

The confusion matrix encapsulates all essential information required to assess the

performance of a classification model.

While the confusion matrix provides a comprehensive view, more concise metrics

such as accuracy, precision, recall, and the F score are often more intuitive and

practical for summarizing model performance.

F1

1

ConfusionMatrixDisplay

import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

seed = 42

X, y = make_classification(n_samples = 500, random_state=seed)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, r

clf = LogisticRegression(random_state=seed)

clf.fit(X_train, y_train)

predictions = clf.predict(X_test)

cm = confusion_matrix(y_test, predictions, labels=[1, 0])

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=["Positive

disp.plot()
plt.show()

In [2]:

We employ the make_classification function to generate a synthetic dataset,

which are subsequently analyzed using a LogisticRegression model. For both

confusion_matrix and ConfusionMatrixDisplay , we configure the labels to

ensure that the ‘Positive’ class precedes, aligning with the tabular data presented in the

previous screen. The resulting confusion matrix yields the following values: True

Positives (TP) = 37, False Negatives (FN) = 10, False Positives (FP) = 3, and True

Negatives (TN) = 50.

Confusion Matrix

Given a test set with examples and a classifier

Where is matrix, for a dataset with classes.

A confusion matrix is defined such that each element represents the count of

observations actually belonging to class but predicted to belong to class .

Let us now examine the general case of a confusion matrix with classes, which may

initially appear “confusing” to comprehend.

Confusion Matrix

The total number of examples of the (actual) class is

The total number of examples assigned to the (predicted) class by classifier is

Confusion Matrix

Terms on the diagonal denote the total number of examples classified correctly by

classifier . Hence, the number of correctly classified examples is

N h(x) :

Ci,j =

N

∑
k=1

[yk = i ∧ h(xk) = j]

C l × l l

C Ci,j

i j

l

i

Ci⋅ =
l

∑
j=1

Ci,j

j h

C⋅j =
l

∑
i=1

Ci,j

h

l

∑
i=1

Ci,i

Non-diagonal terms represent misclassifications.

Confusion Matrix - Multi-Class

To evaluate performance in a multi-class setting, one typically derives “one-vs-all”

metrics for each class from the confusion matrix. These metrics are then averaged

using specific weighting schemes.

Confusion Matrix - Multi-Class

Using data from the 20 newsgroups text dataset from scikit-learn.org.

Confusion Matrix - True Positive

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups
https://scikit-learn.org/

comp.graphics is the true class ().

Confusion Matrix - False Positive

i

comp.graphics is the true class ().

Confusion Matrix - False Negative

i

comp.graphics is the true class ().

Confusion Matrix - True Negative

i

comp.graphics is the true class ().

Confusion Matrix - Multi-Class

i

comp.graphics is the true class ().

Multi-Class

To evaluate performance in a multi-class setting, one typically derives “one-vs-all”

metrics for each class from the confusion matrix. These metrics are then averaged using

specific weighting schemes.

True Positives (): Diagonal entry

False Positives (): Sum of column excluding

False Negatives (): Sum of row excluding

True Negatives ():

Multi-Class

To evaluate performance in a multi-class setting, one typically derives “one-vs-all”

metrics for each class from the confusion matrix. These metrics are then averaged using

specific weighting schemes.

sklearn.metrics.confusion_matrix

from sklearn.metrics import confusion_matrix

y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 1, 1, 0, 0, 0, 1, 1, 1, 1]

confusion_matrix(y_actual,y_pred)

array([[1, 2],
 [3, 4]])

. . .

tn, fp, fn, tp = confusion_matrix(y_actual, y_pred).ravel().tolist()
(tn, fp, fn, tp)

(1, 2, 3, 4)

By default, sklearn.metrics.confusion_matrix determines the set of labels from

the data (), and then:

i

TPi Ci,i

FPi i Ci,i

FNi i Ci,i

TNi N − (TPi + FPi + FNi)

TPi = Ci,i

FPi = ∑k≠i Ck,i

FNi = ∑k≠i Ci,k

TNi = ∑j≠i ∑k≠i Cj,k

In [3]:

In [4]:

y_true ∪ y_pred

It sorts them in ascending order (which for strings or mixed types corresponds to

Python’s lexicographic ordering).

It then builds the matrix so that row i corresponds to the true class with label

labels[i] , and column j corresponds to the predicted class with label

labels[j] .

So if you don’t pass labels=... , you may get a confusion matrix with class order that

is not what you expect — especially if your classes are strings, or if you assume the

order follows the order of appearance in the dataset.

Example

from sklearn.metrics import confusion_matrix

y_true = ["dog", "cat", "cat", "dog"]
y_pred = ["dog", "dog", "cat", "cat"]

print(confusion_matrix(y_true, y_pred))
Output:

[[1 1]
 [1 1]]

Here the rows/columns are in lexicographic order: ["cat", "dog"] . So the matrix is:

Row 0: true = “cat”

Row 1: true = “dog”

Controlling order

To force a specific order, you should pass the labels argument:

confusion_matrix(y_true, y_pred, labels=["dog", "cat"])
This will swap the row/column order accordingly.

Perfect Prediction

y_actual = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]
y_pred = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]

confusion_matrix(y_actual,y_pred)

array([[4, 0],
 [0, 6]])

. . .

tn, fp, fn, tp = confusion_matrix(y_actual, y_pred).ravel().tolist()
(tn, fp, fn, tp)

In [5]:

In [6]:

(4, 0, 0, 6)

When an algorithm achieves perfect classification accuracy, all non-zero values in the

confusion matrix appear exclusively along its diagonal.

All off-diagonal entries, which represent misclassifications, will be zero.

Confusion Matrix - Multiple Classes

from sklearn.datasets import load_digits

import numpy as np
np.random.seed(42)

digits = load_digits()

X = digits.data
y = digits.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)

from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier

clf = OneVsRestClassifier(LogisticRegression())

clf = clf.fit(X_train, y_train)

import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay

X_test = scaler.transform(X_test)
y_pred = clf.predict(X_test)

ConfusionMatrixDisplay.from_predictions(y_test, y_pred)
plt.show()

In [7]:

Confusion matrix for the digits example presented in the previous lecture.

The image displays a heatmap of the confusion matrix for the digit classification task.

This task, a multiclass classification problem, was addressed using

OneVsRestClassifier and LogisticRegression .

The confusion matrix summarizes the predictions made on the test set, which is a

subset of the data that was neither used for training nor for preprocessing with

StandardScaler .

The confusion matrix encapsulates all the results from applying the classifier to the test

set. However, to summarize this information more succinctly, we often refer to

performance metrics.

Visualizing errors

mask = (y_test == 9) & (y_pred == 8)

X_9_as_8 = X_test[mask]

y_9_as_8 = y_test[mask]

import numpy as np
np.random.seed(42)

In [8]:

In [9]:

from sklearn.datasets import load_digits
digits = load_digits()

X = digits.data
y = digits.target

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)

from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier

clf = OneVsRestClassifier(LogisticRegression())

clf = clf.fit(X_train, y_train)

X_test = scaler.transform(X_test)
y_pred = clf.predict(X_test)

mask = (y_test == 9) & (y_pred == 8)

X_9_as_8 = X_test[mask]

y_9_as_8 = y_test[mask]

import matplotlib.pyplot as plt

plt.figure(figsize=(4,2))

for index, (image, label) in enumerate(zip(X_9_as_8, y_9_as_8)):
 plt.subplot(1, len(X_9_as_8), index + 1)
 plt.imshow(np.reshape(image, (8,8)), cmap=plt.cm.gray)
 plt.title(f'y = {label}')

In the confusion matrix on the previous screen, we had seen that there were examples

for which the true label was 9, but the prediction was was 8. We can visualize the

examples to see if we understand the nature of those errors.

Confusion Matrix - Multiple Classes

It is often preferable to summarize the classifier’s performance with a single metric.

Accuracy

How accurate is this result?

from sklearn.metrics import accuracy_score

y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 1, 1, 0, 0, 0, 1, 1, 1, 1]

accuracy_score(y_actual,y_pred)

0.5

Accuracy is the ratio of correctly predicted instances to the total number of predictions.

In [10]:

accuracy = =
TP + TN

TP + TN + FP + FN

TP + TN

N

In [11]:

Accuracy

y_actual = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]
y_pred = [1, 0, 1, 1, 0, 0, 0, 1, 0, 0]

accuracy_score(y_actual,y_pred)

0.0

y_actual = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]
y_pred = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]

accuracy_score(y_actual,y_pred)

1.0

Accuracy is a number between 0 (all wrong) and 1 (perfect).

Accuracy can be misleading

y_actual = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
y_pred = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

accuracy_score(y_actual,y_pred)

0.8

Why is it problematic?

Accuracy can be misleading in the context of class imbalance, as it disproportionately

reflects the performance on the majority class, thereby masking poor performance on

the minority class.

As class imbalance increases, the accuracy metric becomes increasingly misleading.

Precision

AKA, positive predictive value (PPV).

from sklearn.metrics import precision_score

y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 1, 1, 0, 0, 0, 1, 1, 1, 1]

precision_score(y_actual, y_pred)

0.6666666666666666

In [12]:

In [13]:

In [14]:

precision =
TP

TP + FP

In [15]:

Precision is the proportion of true positive predictions among all positive

predictions.

Can you think of a problem or situation where precision is paramount?

A classic example: medical screening for a rare but serious disease.

Suppose you have a test for a disease with very low prevalence (say 1 in 10,000).

If your model predicts “positive” too loosely, you will generate many false positives.

Here, precision (the proportion of predicted positives that are actually true

positives) is crucial:

A high precision means that when the test says “positive,” it is very likely correct.

This reduces unnecessary anxiety, costs, and follow-up procedures for patients

incorrectly flagged.

Other real-world settings where precision is key:

Spam detection: High precision ensures that emails classified as spam are really

spam (minimizing false positives that would hide real emails).

Legal document search / e-discovery: High precision ensures that returned

documents are relevant, reducing time wasted on irrelevant results.

Recommender systems: High precision means that recommended items are very

likely to be of interest, improving user trust.

Precision alone is not enough

y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

precision_score(y_actual,y_pred)

1.0

An algorithm that makes a small number of high-confidence predictions might achieve a

high precision score, but this may not necessarily be useful.

Recall

AKA sensitivity or true positive rate (TPR)

Precision =
TP

TP + FP

In [16]:

recall =
TP

TP + FN

from sklearn.metrics import recall_score

y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 1, 1, 0, 0, 0, 1, 1, 1, 1]

recall_score(y_actual,y_pred)

0.5714285714285714

Recall is the proportion of true positive instances correctly identified among all actual

positive instances.

Can you think of a problem or situation where recall is paramount?

An example where recall is the critical measure: cancer diagnosis (screening for

malignant tumors).

Here, false negatives (missing an actual cancer case) are far more dangerous than

false positives.

Recall measures the proportion of actual positives correctly identified:

A high recall means the test finds nearly all patients with cancer, even if it also

produces some false alarms.

Missing a true case (low recall) could mean a patient doesn’t receive treatment in

time — a much more serious error than investigating a few extra false positives.

Other real-world settings where recall matters most:

Security / Intrusion detection: Better to flag all suspicious activity (even with false

positives) than miss a real attack.

Search engines: For certain queries (e.g., legal precedent search, medical literature

search), recall ensures you retrieve all relevant documents.

Emergency response systems: For natural disaster warnings, high recall ensures no

real threat goes unnoticed.

F score

from sklearn.metrics import f1_score

In [17]:

Recall =
TP

TP + FN

1

F1 score = = 2 ×

=

2

+1

precision

1

recall

precision × recall

precision + recall

TP

TP + FN+FP

2

In [18]:

y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 1, 1, 0, 0, 0, 1, 1, 1, 1]

f1_score(y_actual,y_pred)

0.6153846153846154

F is the harmonic mean of precision and recall.

The harmonic mean places greater emphasis on lower values, while the arithmetic

mean treats all values equally.

Using the harmonic mean ensures that a high score is only achieved when both

precision and recall are high, thus providing a more holistic measure of a classifier’s

performance in scenarios with imbalanced datasets.

The F score favors classifiers that achieve a balance between precision and recall.

Increasing recall often results in a decrease in precision, and vice versa. This

phenomenon is known as the precision/recall trade-off.

Micro and Macro Averaging

Definition

The class imbablance problem is a scenario where the number of instances in one

class significantly outnumbers the instances in other classes.

. . .

Models tend to be biased towards the majority class, leading to poor performance on

the minority class.

Standard evaluation metrics like accuracy may be misleading in the presence of class

imbalance.

Micro Performance Metrics

Micro performance metrics aggregate the contributions of all instances to

compute average performance metrics like precision, recall, or F1 score.

This approach treats each individual prediction equally, regardless of its class, as

it considers the total number of true positives, false positives, and false negatives

across all classes.

Consequently, micro metrics are particularly sensitive to the performance on

frequent classes because they are more numerous and thus have a greater

influence on the overall metric.

1

1

Macro Performance Metrics

Macro performance metrics compute the performance metric independently for

each class and then average these metrics.

This approach treats each class equally, regardless of its frequency, providing an

evaluation that equally considers performance across both frequent and infrequent

classes.

Consequently, macro metrics are less sensitive to the performance on frequent

classes.

Multi-Class

When calculating precision, recall, and , one usually compute “one-vs-all” metrics

for each class. Then, average them using weighting schemes (macro, micro).

True Positives (): Diagonal entry

False Positives (): Sum of column excluding

False Negatives (): Sum of row excluding

True Negatives ():

Multi-Class

When calculating precision, recall, and , one usually compute “one-vs-all” metrics

for each class. Then, average them using weighting schemes (macro, micro).

Micro/Macro Metrics

from sklearn.metrics import ConfusionMatrixDisplay

Sample data
y_true = ['Cat'] * 42 + ['Dog'] * 7 + ['Fox'] * 11
y_pred = ['Cat'] * 39 + ['Dog'] * 1 + ['Fox'] * 2 + \
 ['Cat'] * 4 + ['Dog'] * 3 + ['Fox'] * 0 + \
 ['Cat'] * 5 + ['Dog'] * 1 + ['Fox'] * 5

ConfusionMatrixDisplay.from_predictions(y_true, y_pred)

F1

TPi Ci,i

FPi i Ci,i

FNi i Ci,i

TNi N − (TPi + FPi + FNi)

F1

TPi = Ci,i

FPi = ∑k≠i Ck,i

FNi = ∑
k≠i

Ci,k

TNi = ∑j≠i ∑k≠i Cj,k

In [19]:

The dataset can be conceptualized as resulting from an image classification task,

involving images of cats, dogs, and foxes. Reflecting common trends observed on the

internet, images of cats are disproportionately represented, leading to a class

imbalance issue.

Micro/Macro Precision

from sklearn.metrics import classification_report, precision_score

print(classification_report(y_true, y_pred), "\n")

print("Micro precision: {:.2f}".format(precision_score(y_true, y_pred, avera
print("Macro precision: {:.2f}".format(precision_score(y_true, y_pred, avera

 precision recall f1-score support

 Cat 0.81 0.93 0.87 42
 Dog 0.60 0.43 0.50 7
 Fox 0.71 0.45 0.56 11

 accuracy 0.78 60
 macro avg 0.71 0.60 0.64 60
weighted avg 0.77 0.78 0.77 60

Micro precision: 0.78
Macro precision: 0.71

In [20]:

Micro/Macro Precision

Macro-average precision is calculated as the mean of the precision scores[1] for

each class: .

Whereas, the micro-average precision is calculated using the formala, and

the data from the entire confusion matrix

The high micro-average precision observed here is primarily due to the high precision

and large number of examples in the majority class, Cat. This masks the classifier’s

relatively poor performance on the minority classes, Dog and Fox.

In a balanced dataset, both micro-average and macro-average metrics yield similar

scores.

However, in an imbalanced dataset, significant disparities in classifier performance

between the majority and minority classes will result in divergent micro-average and

macro-average scores. Specifically, the classifier tends to underperform on the minority

class(es), leading to these discrepancies.

In macro-average metrics, each class contributes equally to the final metric

calculation, irrespective of the number of examples it contains. This means that the

performance metric for each class are computed independently and then averaged,

without considering the proportion of instances that each class represents in the

dataset. Consequently, macro-averaging ensures that each class has an equal impact

on the overall metric, which can be particularly useful in cases where the class

distribution is imbalanced.

Micro/Macro Recall

[1] Therefore, macro-average precision remains unaffected by the varying number of

examples across different classes.

= 0.710.81+0.60+0.71

3

TP

TP+FP

= = 0.7839+3+5

39+3+5+9+2+2

47

60

In [21]:

 precision recall f1-score support

 Cat 0.81 0.93 0.87 42
 Dog 0.60 0.43 0.50 7
 Fox 0.71 0.45 0.56 11

 accuracy 0.78 60
 macro avg 0.71 0.60 0.64 60
weighted avg 0.77 0.78 0.77 60

Micro recall: 0.78
Macro recall: 0.60

Micro/Macro Recall

Macro-average recall is calculated as the mean of the recall scores for each

class: .

Whereas, the micro-average recall is calculated using the formala, and the

data from the entire confusion matrix

Example

In [22]:

= 0.600.93+0.43+0.45

3

TP

TP+FN

= = 0.7839+3+5

39+3+5+3+4+6

39

60

Using the 20 newsgroups text dataset from scikit-learn.org.

Comprises around 18,000 newsgroups posts on 20 topics.

https://scikit-learn.org/stable/auto_examples/text/plot_document_classifi

from time import time

Load Dataset

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer

categories = [
 "alt.atheism",
 "talk.religion.misc",
 "comp.graphics",
 "sci.space",
]

def size_mb(docs):
 return sum(len(s.encode("utf-8")) for s in docs) / 1e6

def load_dataset(verbose=False, remove=()):
 """Load and vectorize the 20 newsgroups dataset."""

 data_train = fetch_20newsgroups(
 subset="train",
 categories=categories,
 shuffle=True,
 random_state=42,
 remove=remove,
)

 data_test = fetch_20newsgroups(
 subset="test",
 categories=categories,
 shuffle=True,
 random_state=42,
 remove=remove,
)

 # order of labels in `target_names` can be different from `categories`
 target_names = data_train.target_names

 # split target in a training set and a test set
 y_train, y_test = data_train.target, data_test.target

 # Extracting features from the training data using a sparse vectorizer
 t0 = time()
 vectorizer = TfidfVectorizer(
 sublinear_tf=True, max_df=0.5, min_df=5, stop_words="english"
)
 X_train = vectorizer.fit_transform(data_train.data)
 duration_train = time() - t0

In [23]:

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups
https://scikit-learn.org/

 # Extracting features from the test data using the same vectorizer
 t0 = time()
 X_test = vectorizer.transform(data_test.data)
 duration_test = time() - t0

 feature_names = vectorizer.get_feature_names_out()

 if verbose:
 # compute size of loaded data
 data_train_size_mb = size_mb(data_train.data)
 data_test_size_mb = size_mb(data_test.data)

 # print(
 # f"{len(data_train.data)} documents - "
 # f"{data_train_size_mb:.2f}MB (training set)"
 #)
 # print(f"{len(data_test.data)} documents - {data_test_size_mb:.2f}M
 # print(f"{len(target_names)} categories")
 # print(
 # f"vectorize training done in {duration_train:.3f}s "
 # f"at {data_train_size_mb / duration_train:.3f}MB/s"
 #)
 # print(f"n_samples: {X_train.shape[0]}, n_features: {X_train.shape[
 # print(
 # f"vectorize testing done in {duration_test:.3f}s "
 # f"at {data_test_size_mb / duration_test:.3f}MB/s"
 #)
 # print(f"n_samples: {X_test.shape[0]}, n_features: {X_test.shape[1]

 return X_train, X_test, y_train, y_test, feature_names, target_names

X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset
 verbose=True
)

Training and Prediction

from sklearn.linear_model import RidgeClassifier

clf = RidgeClassifier(tol=1e-2, solver="sparse_cg")
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

Display the Confusion Matrix

from sklearn.metrics import ConfusionMatrixDisplay

fig, ax = plt.subplots(figsize=(10, 5))
ConfusionMatrixDisplay.from_predictions(y_test, y_pred, ax=ax)
ax.xaxis.set_ticklabels(target_names)
ax.yaxis.set_ticklabels(target_names)
_ = ax.set_title(
 f"Confusion Matrix for {clf.__class__.__name__}"
)

Example

cm = confusion_matrix(y_test, y_pred)

TP, FP, FN, TN

def true_positive(cm, i):
 return cm[i,i] # diagonal entry i,i

def false_positive(cm, i):
 return np.sum(cm[:, i]) - cm[i,i] # col - TP_i

def false_negative(cm, i):
 return np.sum(cm[i, :]) - cm[i,i] # row - TP_i

def true_negative(cm, i):
 N = cm.sum()
 TP = true_positive(cm, i)
 FP = false_positive(cm, i)
 FN = false_negative(cm, i)
 return N - (TP + FP + FN)

Precision

In [24]:

In [25]:

def precision_micro(cm):
 _, l = cm.shape
 tp = fp = 0
 for i in range(l):
 tp += true_positive(cm, i)
 fp += false_positive(cm, i)
 return tp / (tp+fp)

def precision_macro(cm):
 _, l = cm.shape
 precision = 0
 for i in range(l):
 tp = true_positive(cm, i)
 fp = false_positive(cm, i)
 precision += tp/(tp+fp)
 return precision/l

Precision Micro Average

where

40 = 2 + 1 + 37

38 = 7 + 22 + 9

22 = 12 + 4 + 6

45 = 42 + 3 + 0

89.28307465 %

Precision Macro Average

88.3614212 %

Recall

def recall_micro(cm):
 _, l = cm.shape

In [26]:

(258 + 380 + 371 + 199)

(258 + 380 + 371 + 199) + (40 + 38 + 22 + 45)

Precision0 = = 0.8657718121258

258+(2+1+37)

Precision1 = = 0.9090909091380

380+(7+22+9)

Precision2 = = 0.9440203562371

371+(12+4+6)

Precision3 = = 0.8155737705199

199+(42+3+0)

Precision3 = 0.8657718121+0.9090909091+0.9440203562+0.8155737705

4

In [27]:

 tp = fn = 0
 for i in range(l):
 tp += true_positive(cm, i)
 fn += false_negative(cm, i)
 return tp / (tp+fn)

def recall_macro(cm):
 _, l = cm.shape
 recall = 0
 for i in range(l):
 tp = true_positive(cm, i)
 fn = false_negative(cm, i)
 recall += tp / (tp+fn)
 return recall/l

Micro/Macro Metrics (Medical Data)

Consider a medical dataset, such as those involving diagnostic tests or imaging,

comprising 990 normal samples and 10 abnormal (tumor) samples. This represents the

ground truth.

Micro/macro metrics (medical data)

In [28]:

In [29]:

 precision recall f1-score support

 Normal 1.00 0.99 1.00 990
 Tumour 0.55 0.60 0.57 10

 accuracy 0.99 1000
 macro avg 0.77 0.80 0.78 1000
weighted avg 0.99 0.99 0.99 1000

Micro precision: 0.99
Macro precision: 0.77

Micro recall: 0.99
Macro recall: 0.80

The precision for the Tumour class is low. However, due to the small sample size, this

does not significantly impact the micro-averaged precision.

Precision-Recall Trade-Off

Hand-Written Digits (Revisited)

Loading the dataset

import numpy as np
np.random.seed(42)

from sklearn.datasets import fetch_openml

digits = fetch_openml('mnist_784', as_frame=False)
X, y = digits.data, digits.target

Plotting the first five examples

These images have dimensions of pixels.

Creating a Binary Classification Task

In [30]:

In [31]:

28 × 28

Creating a binary classification task (one vs the rest)

some_digit = X[0]
some_digit_y = y[0]

y = (y == some_digit_y)
y

array([True, False, False, ..., False, True, False], shape=(70000,))

. . .

Creating the training and test sets
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

SGDClassifier

from sklearn.linear_model import SGDClassifier

clf = SGDClassifier()
clf.fit(X_train, y_train)

clf.predict(X[0:5]) # small sanity check

array([True, False, False, False, False])

The SGDClassifier is a linear classifier that utilizes stochastic gradient descent

(SGD) for training. Compared to LogisticRegression , it can offer faster training

times, particularly for large datasets. Additionally, SGDClassifier allows for the

adjustment of the decision threshold in subsequent examples.

Performance

from sklearn.metrics import accuracy_score

y_pred = clf.predict(X_test)

accuracy_score(y_test, y_pred)

0.9572857142857143

Wow!

Not so Fast

from sklearn.dummy import DummyClassifier

In [32]:

In [33]:

In [34]:

In [35]:

In [36]:

dummy_clf = DummyClassifier()

dummy_clf.fit(X_train, y_train)

. . .

y_pred = dummy_clf.predict(X_test)

accuracy_score(y_test, y_pred)

0.906

The DummyClassifier in scikit-learn generates predictions without considering the input

features. By default, it consistently predicts the most frequent class label in the training

data. It is a simple baseline classifier.

Why is the accuracy so high despite this classifier ignoring the input data?

The high accuracy is attributed to the class distribution within the dataset.

Approximately 10% of the samples correspond to the digit ‘5’, which is the positive class

in our binary classification task. Consequently, about 90% of the samples are ‘not 5’ and

belong to the negative class. Since the DummyClassifier always predicts the majority

class, its accuracy is expected to be around 90%.

This underscores the point that accuracy is often not the best metric, particularly when

dealing with imbalanced datasets.

Precision-Recall Trade-Off

Attribution: Géron (2022) Figure 3.4

Precision-Recall Trade-Off

from sklearn.model_selection import cross_val_predict
y_scores = cross_val_predict(clf, X_train, y_train, cv=3, method="decision_f

In [37]:

In [38]:

https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html

from sklearn.metrics import precision_recall_curve

precisions, recalls, thresholds = precision_recall_curve(y_train, y_scores)

threshold = 3000

plt.figure(figsize=(8, 4)) # extra code – it's not needed, just formatting
plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2)
plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2)
plt.vlines(threshold, 0, 1.0, "k", "dotted", label="threshold")

extra code – this section just beautifies and saves Figure 3–5
idx = (thresholds >= threshold).argmax() # first index ≥ threshold
plt.plot(thresholds[idx], precisions[idx], "bo")
plt.plot(thresholds[idx], recalls[idx], "go")
plt.axis([-50000, 50000, 0, 1])
plt.grid()
plt.xlabel("Threshold")
plt.legend(loc="center right")

plt.show()

SGDClassifier is used because it allows to vary the decision treshold (boundary) to

produce a plot illustrating the precision-recall tradeoff. (Géron 2022)

03_classification.ipynb .

As the decision threshold decreases, a higher number of examples are predicted as

positive, potentially leading the classifier to eventually label all instances as positive.

Conversely, as the decision threshold increases, fewer examples are classified as

positive, which may result in the classifier predicting no positive instances at all.

https://github.com/ageron/handson-ml3/blob/main/03_classification.ipynb

For certain applications, a classifier with high precision is essential. For example,

consider a scenario where each prediction necessitates a costly laboratory experiment

to verify its accuracy, such as in a pharmaceutical company aiming to discover new

drugs. Here, the classifier predicts whether a compound is active. Given the high cost of

experiments to validate candidates, the company would prioritize focusing on the most

promising compounds first.

In contrast, consider a scenario involving cancer screening, such as using mammograms

to detect breast cancer. In this case, it may be preferable to lower the decision

threshold, thereby increasing the number of false-positive predictions. Although this

approach results in more patients undergoing additional tests, such as biopsies, it can

potentially save more lives by ensuring that fewer cases of cancer go undetected.

Precision/Recall Curve

import matplotlib.patches as patches # extra code – for the curved arrow

plt.figure(figsize=(5, 5)) # extra code – not needed, just formatting

plt.plot(recalls, precisions, linewidth=2, label="Precision/Recall Curve")

extra code – just beautifies and saves Figure 3–6
plt.plot([recalls[idx], recalls[idx]], [0., precisions[idx]], "k:")
plt.plot([0.0, recalls[idx]], [precisions[idx], precisions[idx]], "k:")
plt.plot([recalls[idx]], [precisions[idx]], "ko",
 label="Point at threshold 3,000")
plt.gca().add_patch(patches.FancyArrowPatch(
 (0.79, 0.60), (0.61, 0.78),
 connectionstyle="arc3,rad=.2",
 arrowstyle="Simple, tail_width=1.5, head_width=8, head_length=10",
 color="#444444"))
plt.text(0.56, 0.62, "Higher\nthreshold", color="#333333")
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.axis([0, 1, 0, 1])
plt.grid()
plt.legend(loc="lower left")

plt.show()

In [39]:

(Géron 2022) 03_classification.ipynb .

ROC Curve

ROC Curve

Receiver Operating Characteristics (ROC) curve

True positive rate (TPR) against false positive rate (FPR)

An ideal classifier has TPR close to 1.0 and FPR close to 0.0

 (recall, sensitivity)

TPR approaches one when the number of false negative predictions is low

 (aka~[1-specificity])

FPR approaches zero when the number of false positive is low

ROC (Receiver Operating Characteristic) curves are popular in machine learning and

statistics for several reasons:

1. Comprehensive Performance Evaluation: ROC curves provide a visual

representation of a classifier’s performance across all possible thresholds. By

plotting the True Positive Rate (TPR) against the False Positive Rate (FPR), it allows

practitioners to evaluate the trade-off between sensitivity (recall) and specificity.

TPR = TP
TP+FN

FPR = FP
FP+TN

https://github.com/ageron/handson-ml3/blob/main/03_classification.ipynb

2. Threshold Independence: Unlike metrics like accuracy, ROC curves evaluate

classifier performance without relying on a specific decision threshold. This makes

them particularly useful in comparing models across varying thresholds.

3. Area Under the Curve (AUC): The Area Under the ROC Curve (AUC) provides a

single value summary of the model’s performance. AUC-ROC is often used as a

benchmark metric to compare different models, with values ranging from 0.5

(random guessing) to 1.0 (perfect classification).

4. Broad Applicability: ROC curves can be used for any binary classification task and

are easily extended to multiclass problems using techniques like one-vs-rest

classification, making them versatile in evaluating classifiers.

ROC Curve

ROC Curve

idx_for_90_precision = (precisions >= 0.90).argmax()
threshold_for_90_precision = thresholds[idx_for_90_precision]
y_train_pred_90 = (y_scores >= threshold_for_90_precision)

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train, y_scores)

idx_for_threshold_at_90 = (thresholds <= threshold_for_90_precision).argmax(
tpr_90, fpr_90 = tpr[idx_for_threshold_at_90], fpr[idx_for_threshold_at_90]

plt.figure(figsize=(5, 5)) # extra code – not needed, just formatting
plt.plot(fpr, tpr, linewidth=2, label="ROC curve")
plt.plot([0, 1], [0, 1], 'k:', label="Random classifier's ROC curve")
plt.plot([fpr_90], [tpr_90], "ko", label="Threshold for 90% precision")

extra code – just beautifies and saves Figure 3–7
plt.gca().add_patch(patches.FancyArrowPatch(

In [40]:

 (0.20, 0.89), (0.07, 0.70),
 connectionstyle="arc3,rad=.4",
 arrowstyle="Simple, tail_width=1.5, head_width=8, head_length=10",
 color="#444444"))
plt.text(0.12, 0.71, "Higher\nthreshold", color="#333333")
plt.xlabel('False Positive Rate (Fall-Out)')
plt.ylabel('True Positive Rate (Recall)')
plt.grid()
plt.axis([0, 1, 0, 1])
plt.legend(loc="lower right", fontsize=13)

plt.show()

Attribution: 03_classification.ipynb

It is common to measure the area under the curve, represented as AUC. Specifically, the

area under the ROC curve. This allows to compare

Dataset - openml

** www.openml.org**

OpenML is an open platform for sharing datasets, algorithms, and

experiments - to learn how to learn better, together.

. . .

https://github.com/ageron/handson-ml3/blob/main/03_classification.ipynb
https://www.openml.org/

import numpy as np
np.random.seed(42)

from sklearn.datasets import fetch_openml

diabetes = fetch_openml(name='diabetes', version=1)
print(diabetes.DESCR)

Today’s dataset is the PIMA dataset, which contains 768 instances and 8 numerical

attributes. The numerical nature of these attributes facilitates our analysis. Additionally,

since the data originates from a published paper, it likely reflects careful data collection,

potentially leading to robust results, as the authors would have needed high-quality data

to support their publication.

Pima Indians Diabetes Dataset

from sklearn.datasets import fetch_openml

Load the Pima Indians Diabetes dataset
pima = fetch_openml(name='diabetes', version=1, as_frame=True)

Extract the features and target
X = pima.data
y = pima.target

Convert target labels 'tested_negative' and 'tested_positive' to 0 and 1
y = y.map({'tested_negative': 0, 'tested_positive': 1})

Split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ran

Pima Indians Diabetes Dataset as described in Knowler et al. (1981) [PubMed].

Comparing Multiple Classifiers

from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

Comparing Multiple Classifiers

lr = LogisticRegression()
lr.fit(X_train, y_train)

knn = KNeighborsClassifier()
knn.fit(X_train, y_train)

dt = DecisionTreeClassifier()

In [41]:

In [42]:

In [43]:

In [44]:

https://www.openml.org/search?type=data&sort=version&status=any&order=asc&exact_name=diabetes&id=37
https://pubmed.ncbi.nlm.nih.gov/7468572/

dt.fit(X_train, y_train)

rf = RandomForestClassifier()
rf.fit(X_train, y_train)

Using the default parameters.

AUC/ROC

from sklearn.metrics import roc_auc_score

y_pred_prob_lr = lr.predict_proba(X_test)[:, 1]
y_pred_prob_knn = knn.predict_proba(X_test)[:, 1]
y_pred_prob_dt = dt.predict_proba(X_test)[:, 1]
y_pred_prob_rf = rf.predict_proba(X_test)[:, 1]

Compute ROC curves
fpr_lr, tpr_lr, _ = roc_curve(y_test, y_pred_prob_lr)
fpr_knn, tpr_knn, _ = roc_curve(y_test, y_pred_prob_knn)
fpr_dt, tpr_dt, _ = roc_curve(y_test, y_pred_prob_dt)
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_prob_rf)

Compute AUC scores
auc_lr = roc_auc_score(y_test, y_pred_prob_lr)
auc_knn = roc_auc_score(y_test, y_pred_prob_knn)
auc_dt = roc_auc_score(y_test, y_pred_prob_dt)
auc_rf = roc_auc_score(y_test, y_pred_prob_rf)

Plot ROC curves
plt.figure(figsize=(5, 5)) # plt.figure()
plt.plot(fpr_lr, tpr_lr, color='blue', label=f'Logistic Regression (AUC = {a
plt.plot(fpr_knn, tpr_knn, color='green', label=f'K-Nearest Neighbors (AUC =
plt.plot(fpr_dt, tpr_dt, color='orange', label=f'Decision Tree (AUC = {auc_d
plt.plot(fpr_rf, tpr_rf, color='purple', label=f'Random Forest (AUC = {auc_r
plt.plot([0, 1], [0, 1], color='red', linestyle='--') # Diagonal line for r
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curves for Logistic Regression, KNN, Decision Tree, and Rando
plt.legend(loc="lower right")
plt.show()

In [45]:

ROC curves provide a visual representation of a classifier’s performance across all

possible thresholds. By plotting the True Positive Rate (TPR) against the False Positive

Rate (FPR), it allows practitioners to evaluate the trade-off between sensitivity (recall)

and specificity.

Unlike metrics like accuracy, ROC curves evaluate classifier performance without

relying on a specific decision threshold. This makes them particularly useful in

comparing models across varying thresholds.

Logistic Regression

Model:

Prediction:

Assign , if ; , if

Loss Function: cross-entropy

hθ(xi) = σ(θxi) =
1

1 + e−θxi

yi = 0 hθ(xi) < 0.5 yi = 1 hθ(xi) ≥ 0.5

J(θ) = −

N

∑
i=1

[yi log σ(θxi) + (1 − yi) log(1 − σ(θxi))]

Let’s walk through what happens to the confusion matrix terms as the decision threshold

moves from 0 to 1.

At threshold = 0

All predicted positive.

TP: all actual positives are predicted positive, maximal TP.

FP: all actual negatives are predicted positive, maximal FP.

 (since , where is total positives).

 (since , where is total negatives).

ROC point = .

As threshold increases from 0 to 1

Fewer examples are predicted positive.

TP decreases (some positives no longer exceed threshold).

FP decreases (some negatives no longer exceed threshold).

TPR decreases monotonically from 1 to 0.

FPR decreases monotonically from 1 to 0.

Curve traces down-left along the ROC space.

At threshold = 1

All predicted negative.

TP = 0, FP = 0.

, .

ROC point = .

Summary intuition

Lower threshold, more predicted positives, both TP and FP increase, both TPR and

FPR increase.

Higher threshold, more predicted negatives, both TP and FP decrease, both TPR

and FPR decrease.

The shape of the ROC curve depends on how well logistic regression separates -

positives from negatives:

A perfect model climbs quickly toward .

A random model follows the diagonal.

A realistic model lies between.

Implementation: Logistic Regression

Below is our implementation of the logistic regression.

def sigmoid(z):
 """Compute the sigmoid function."""

TPR = 1 TP = P P

FPR = 1 FP = N N

(1, 1)

TPR = 0 FPR = 0

(0, 0)

(0, 1)

In [46]:

 return 1 / (1 + np.exp(-z))

def cost_function(theta, X, y):
 """
 Compute the binary cross-entropy cost.
 theta: parameter vector
 X: feature matrix (each row is an example)
 y: true binary labels (0 or 1)
 """
 m = len(y)
 h = sigmoid(X.dot(theta))
 # Add a small epsilon to avoid log(0)
 epsilon = 1e-5
 cost = -(1/m) * np.sum(y * np.log(h + epsilon) + (1 - y) * np.log(1 - h
 return cost

def gradient(theta, X, y):
 """Compute the gradient of the cost with respect to theta."""
 m = len(y)
 h = sigmoid(X.dot(theta))
 return (1/m) * X.T.dot(h - y)

def logistic_regression(X, y, learning_rate=0.1, iterations=1000):
 """
 Train logistic regression using gradient descent.
 Returns the optimized parameter vector theta and the history of cost val
 """
 m, n = X.shape
 theta = np.zeros(n)
 cost_history = []
 for i in range(iterations):
 theta -= learning_rate * gradient(theta, X, y)
 cost_history.append(cost_function(theta, X, y))
 return theta, cost_history

def predict_probabilities(theta, X):
 """Return predicted probabilities for the positive class."""
 return sigmoid(X.dot(theta))

Implementation: ROC

def compute_roc_curve(y_true, y_scores, thresholds):
 tpr_list, fpr_list = [], []
 for thresh in thresholds:
 # Classify as positive if predicted probability >= threshold
 y_pred = (y_scores >= thresh).astype(int)
 TP = np.sum((y_true == 1) & (y_pred == 1))
 FN = np.sum((y_true == 1) & (y_pred == 0))
 FP = np.sum((y_true == 0) & (y_pred == 1))
 TN = np.sum((y_true == 0) & (y_pred == 0))
 TPR = TP / (TP + FN) if (TP + FN) > 0 else 0
 FPR = FP / (FP + TN) if (FP + TN) > 0 else 0
 tpr_list.append(TPR)
 fpr_list.append(FPR)

In [47]:

 tpr_list.reverse()
 fpr_list.reverse()

 return np.array(fpr_list), np.array(tpr_list)

Implementation: AUC ROC

def compute_auc(fpr, tpr):
 """
 Compute the Area Under the Curve (AUC) using the trapezoidal rule.

 fpr: array of false positive rates
 tpr: array of true positive rates
 """
 return np.trapezoid(tpr, fpr)

The Trapezoidal Rule (trapezoid), akin to the Riemann Sum, is a numerical method

for approximating the definite integral of a function. By partitioning the area under the

curve into trapezoids rather than rectangles, it typically yields a more precise

approximation.

Example: Generate Data + Predictions

Generate synthetic data for binary classification
np.random.seed(seed)
m = 1000 # number of samples
X = np.random.randn(m, 2)
noise = 0.5 * np.random.randn(m)

Define labels: a noisy linear combination thresholded at 0
y = (X[:, 0] + X[:, 1] + noise > 0).astype(int)

Add an intercept term (a column of ones) to X
X_intercept = np.hstack([np.ones((m, 1)), X])

X_train, X_test, y_train, y_test = train_test_split(X_intercept, y, random_s

Train logistic regression model using gradient descent
theta, cost_history = logistic_regression(X_train, y_train, learning_rate=0.

Example: Plot

Compute predicted probabilities for the positive class on the test set
y_probs = predict_probabilities(theta, X_test)

Define a set of threshold values between 0 and 1 (e.g., 100 equally spaced
thresholds = np.linspace(0, 1, 100)

Compute the ROC curve (FPR and TPR for each threshold)

In [48]:

In [49]:

In [50]:

fpr, tpr = compute_roc_curve(y_test, y_probs, thresholds)
auc_value = compute_auc(fpr, tpr)

Plot the ROC curve
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='blue', lw=2, label='ROC curve (AUC = %0.2f)' % auc
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--', label='Random c
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()

Random classifier (simulation)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve

Simulate labels (balanced dataset for clarity)
rng = np.random.RandomState(42)
y_true = rng.randint(0, 2, size=1000) # random true labels

Simulate random scores (independent of labels)
y_scores = rng.rand(1000)

In [51]:

Compute ROC curve
fpr, tpr, thresholds = roc_curve(y_true, y_scores)

Plot ROC
plt.figure(figsize=(6,6))
plt.plot(fpr, tpr, label="Random classifier (simulation)", lw=2)
plt.plot([0,1],[0,1],'k--', label="y = x diagonal")
plt.scatter([0,0.25,0.5,0.75,1],[0,0.25,0.5,0.75,1],
 color="red", zorder=5, label="Illustrative points")
plt.xlabel("False Positive Rate (FPR)")
plt.ylabel("True Positive Rate (TPR)")
plt.title("ROC Curve of a Random Classifier")
plt.legend()
plt.grid(True)
plt.show()

See Also

Multiclass Receiver Operating Characteristic (ROC) presents examples of micro-

and macro- average curves.

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

hhttps://youtu.be/4jRBRDbJemM

The video above by StatQuest, Josh Starmer, offers a detailed, step-by-step guide on

how to construct and analyze Receiver Operating Characteristic (ROC) curves.

Prologue

Summary

Examined classification model evaluation techniques, focusing on confusion

matrices and key metrics: accuracy, precision, recall, and score.

Addressed the limitations of accuracy in imbalanced datasets, introducing micro and

macro averaging techniques.

Explored the precision-recall trade-off and ROC analysis, including the area under

the curve (AUC).

Provided practical insights through Python implementations.

On Performance Measures

Sokolova, M. & Lapalme, G. (2009). A systematic analysis of performance measures

for classification tasks. Information Processing and Management, 45(4), 427–437.

Scopus: 4,222 citations

Google Scholar: 6,839 citations

Evaluating Learning Algorithms

F1

hhttps://youtu.be/4jRBRDbJemM

This book, 4.6 stars rating on Amazon, delves into the evaluation process,

particularly focusing on classification algorithms (Japkowicz and Shah 2011).

Nathalie Japkowicz previously served as a professor at the University of Ottawa and

is currently affiliated with American University in Washington.

Mohak Shah, who earned his PhD from the University of Ottawa, has held numerous

industry roles, including Vice President of AI and Machine Learning at LG

Electronics.

Further reading

https://www.cambridge.org/core/books/evaluating-learning-algorithms/3CB22D16AB609D1770C24CA2CB5A11BF
https://www.american.edu/cas/faculty/japkowic.cfm
http://www.mohakshah.com/

Japkowicz and Shah (2011)

This book, which examines various aspects of the evaluation process with an emphasis

on classification algorithms, has excellent ratings on Amazon!

Nathalie Japkowicz was formely a professor that the University of Ottawa. She now

works at the American University in Washington.

Mohak Shah completed his PhD at the University of Ottawa. He has held several

positions in the industry, including AI and Machine Learning Vice President for LG

Electronics.

Next lecture

We will examine cross-validation and hyperparameter tuning.

References

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow. 3rd ed. O’Reilly Media, Inc.

https://www.american.edu/cas/faculty/japkowic.cfm
http://www.mohakshah.com/

Japkowicz, Nathalie, and Mohak Shah. 2011. Evaluating Learning Algorithms: A

Classification Perspective. Cambridge: Cambridge University Press.

Knowler, William C., David J. Pettitt, Peter J. Savage, and Peter H. Bennett. 1981.

“Diabetes Incidence in Pima Indians: Contributions of Obesity and Parental Diabetes.”

American Journal of Epidemiology 113 2: 144–56.

https://api.semanticscholar.org/CorpusID:25209675.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

https://api.semanticscholar.org/CorpusID:25209675
http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

