Performance Evaluation

CSI 4106 - Fall 2025

Marcel Turcotte
Version: Oct 7, 2025 09:50

Preamble

Message of the Day
https://youtu.be/sDZ1j0J-fe8

Demis Hassabis: The CEO Working to Solve Cancer With Al, Bloomberg Technology,
2025-09-14.

In a recent interview with Bloomberg Technology, Demis Hassabis discussed the
innovative work of Isomorphic Labs in significantly expediting drug development
processes. Below is a summary of Hassabis' notable achievements:

e A chess prodigy from a young age, Hassabis began playing at four years old and
achieved an Elo rating of approximately 2300 by the age of 13.

e He co-founded DeepMind in 2010 alongside Shane Legg and Mustafa Suleyman,
where he currently serves as CEO.

e Under his leadership, DeepMind has pioneered several groundbreaking
advancements in artificial intelligence, including the development of AlphaGo and,
notably, AlphaFold and AlphaFold2, which are pivotal in protein structure prediction.

e In recognition of his contributions to protein structure prediction, Hassabis was
awarded the Nobel Prize in Chemistry in 2024.

e |In 2021, he founded Isomorphic Labs, which concentrates on the application of Al in
drug discovery and translational science.

e "The Thinking Game" is a documentary that explores the life of Demis Hassabis, the
evolution of DeepMind, and the pursuit of artificial general intelligence (AGI).

In a related vein, an article titled "Which diseases will you have in 20 years? This Al
accurately predicts your risks” was published in Nature on September 17, 2025. This
brief news piece discusses Delphi-2M, a large language model designed to analyze an
individual's medical records and lifestyle factors to provide risk assessments for over
1,000 diseases. Complementing the article, a podcast is also available for further
insights.

https://youtu.be/sDZ1j0J-fe8
https://youtu.be/sDZ1j0J-fe8
https://deepmind.google/
https://deepmind.google/research/projects/alphago/
https://deepmind.google/science/alphafold/
https://www.nobelprize.org/prizes/chemistry/2024/hassabis/facts/
https://www.isomorphiclabs.com/
https://thinkinggamefilm.com/
https://www.nature.com/articles/d41586-025-02993-x
https://www.nature.com/articles/d41586-025-02993-x
https://www.nature.com/articles/d41586-025-03026-3

Summary

This lecture covers classification model evaluation, focusing on confusion matrices and
key metrics: accuracy, precision, recall, and F, score. It addresses accuracy'’s limitations
in imbalanced datasets, introducing micro and macro averaging. The precision-recall
trade-off and ROC analysis, including AUC, are also explored. Practical insights are
provided through Python implementations like logistic regression via gradient descent.

Learning Outcomes

e Describe the structure and role of the confusion matrix in model evaluation.

e Compute and interpret accuracy, precision, recall, and F} score.

¢ Identify the pitfalls of using accuracy with imbalanced datasets.

o Differentiate between micro and macro averaging for performance metrics.

e Analyze precision-recall trade-offs and construct ROC curves, including the
calculation of AUC.

¢ Implement the calculation or ROC curves and AUC in Python.

Performance Metrics

Confusion Matrix

Positive (Predicted) Negative (Predicted)
Positive (Actual) True positive (TP) False negative (FN)

Negative (Actual) False positive (FP) True negative (TN)

A confusion matrix is a table summarizing the performance of a classification algorithm
(here for a binary classification task).

e |n statistical analysis, False Positives (FP) are commonly referred to as Type |
errors, and False Negatives (FN) are known as Type Il errors.

e The diagonal elements represent the correctly predicted outcomes, namely true
positives (TP) and true negatives (TN).

e In contrast, the off-diagonal elements correspond to incorrect predictions,
specifically false positives (FP) and false negatives (FN).

e The confusion matrix encapsulates all essential information required to assess the
performance of a classification model.

e While the confusion matrix provides a comprehensive view, more concise metrics
such as accuracy, precision, recall, and the F; score are often more intuitive and

practical for summarizing model performance.

ConfusionMatrixDisplay

import matplotlib.pyplot as plt

from sklearn.datasets import make_classification

from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

42

seed

X,y make_classification(n_samples = 500, random_state=seed)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, r
clf = LogisticRegression(random_state=seed)

clf.fit(X_train, y_train)

predictions = clf.predict(X_test)

cm = confusion_matrix(y_test, predictions, labels=[1, 0])

disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_Tlabels=["Positive

disp.plot()
plt.show()

30

Positive

True label

Negative

10

Fositive MNegative
Predicted label

We employ the make_classification function to generate a synthetic dataset,
which are subsequently analyzed using a LogisticRegression model. For both

confusion_matrix and ConfusionMatrixDisplay , we configure the labels to
ensure that the 'Positive’ class precedes, aligning with the tabular data presented in the
previous screen. The resulting confusion matrix yields the following values: True
Positives (TP) = 37, False Negatives (FN) = 10, False Positives (FP) = 3, and True
Negatives (TN) = 50.

Confusion Matrix

Given a test set with N examples and a classifier h(z) :

N
Cij = [yr=1iAh(zx) = j]
k=1

Where C'is | x [matrix, for a dataset with [classes.

A confusion matrix C'is defined such that each element Ci’j represents the count of
observations actually belonging to class ¢ but predicted to belong to class j.

Let us now examine the general case of a confusion matrix with [classes, which may
initially appear “confusing” to comprehend.

Confusion Matrix

e The total number of examples of the (actual) class ¢ is

¢ The total number of examples assigned to the (predicted) class j by classifier h is

C;=> Ci,

i=1

Confusion Matrix

e Terms on the diagonal denote the total number of examples classified correctly by
classifier h. Hence, the number of correctly classified examples is

l

¢ Non-diagonal terms represent misclassifications.

Confusion Matrix - Multi-Class

To evaluate performance in a multi-class setting, one typically derives “one-vs-all”
metrics for each class from the confusion matrix. These metrics are then averaged
using specific weighting schemes.

Confusion Matrix - Multi-Class

alt.atheism 25 8 7 1 2 4-2

comp.graphics 2 3 8 0 4- 3

sci.space l 22 37 1 o

talk.religion 37 9 6 1 9 9

alt.atheism comp.graphics sci.space talk.religion

Using data from the 20 newsgroups text dataset from scikit-learn.org.

Confusion Matrix - True Positive

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups
https://scikit-learn.org/

atatheisn | 258 7 12 | 42
comparaphics | 2 380 4 3
cispace | | 22 | 371 0

talkrelgion | 37 9 6 199

alt.atheism comp.graphics sci.space talk.religion

comp.graphics is the true class (z).

Confusion Matrix - False Positive

atatheisn | 258 7 12 | 42
comparaphics | 2 380 4 3
cispace | | 22 | 371 0

talkrelgion | 37 9 6 199

alt.atheism comp.graphics sci.space talk.religion

comp.graphics is the true class (z).

Confusion Matrix - False Negative

atatheisn | 258 7 12 | 42
comparaphics | 2 380 4 3
cispace | | 22 | 371 0

talkrelgion | 37 9 6 199

alt.atheism comp.graphics sci.space talk.religion

comp.graphics is the true class (z).

Confusion Matrix - True Negative

alt.atheism

comp.graphics

sci.space

talk.religion

258

12

42

380

22

371

37

6 199

alt.atheism

comp.graphics

comp.graphics is the true class (z).

Confusion Matrix - Multi-Class

sci.space

aitatheiom | 298 7 12 | 42
comp.araphics 380 4 3
sel.pace 22 | 371 0
talkrelgon 9 6 199
altatheism comparaphiss scispace talkreliion

talk.religion

] true Positive (TP)
[False Positive (FP)
[] False Negative (FN)
[] TrueNegative (TN)

comp.graphics is the true class (z).

Multi-Class

To evaluate performance in a multi-class setting, one typically derives “one-vs-all”
metrics for each class from the confusion matrix. These metrics are then averaged using
specific weighting schemes.

* True Positives (TP;): Diagonal entry C; ;

* False Positives (F'P;): Sum of column ¢ excluding C; ;
 False Negatives (FIN;): Sum of row ¢ excluding Cj ;

e True Negatives (TN;): N — (TP, + FP; + FN;)

Multi-Class

To evaluate performance in a multi-class setting, one typically derives “one-vs-all”
metrics for each class from the confusion matrix. These metrics are then averaged using
specific weighting schemes.

« TP; =Cy;

o FPi =3, Cr,

e FN; = Zk;ﬁi Ci,k

o TN; = Zj;éi Zk;éz‘ Cik

sklearn.metrics.confusion_matrix

from sklearn.metrics import confusion_matrix

y_actual = [0, 0, O,
[0, 1, 1,

1, 1, 1, 1]
y_pred 1, 1,

1, 1, 1,
0, 0, 0, 1, 1]
confusion_matrix(y_actual,y_pred)

array([[1, 2],
[3, 411)

tn, fp, fn, tp = confusion_matrix(y_actual, y_pred).ravel().tolist()
(tn, fp, fn, tp)

(1, 2, 3, 4)

By default, sklearn.metrics.confusion_matrix determines the set of labels from
the data (y_true U y_pred), and then:

e |t sorts them in ascending order (which for strings or mixed types corresponds to
Python's lexicographic ordering).

e |t then builds the matrix so that row 1 corresponds to the true class with label
labels[i] , and column j corresponds to the predicted class with label
labels[j] .

So if you don't pass labels=... , you may get a confusion matrix with class order that
is not what you expect — especially if your classes are strings, or if you assume the
order follows the order of appearance in the dataset.

Example

from sklearn.metrics import confusion_matrix

y_true [Ildogll' Ilcatll’ ”Cat"' Ildogll]
y_pred = [Ildogll' Ildogll’ ”Cat"' Ilcatll]

print(confusion_matrix(y_true, y_pred))
Output:

[[1 1]
[1 111

Here the rows/columns are in lexicographic order: ["cat", "dog"] . So the matrix is:

o Row O: true = “cat”
e Row 1: true = "dog”

Controlling order

To force a specific order, you should pass the labels argument:

confusion_matrix(y_true, y_pred, labels=["dog", "cat"])
This will swap the row/column order accordingly.

Perfect Prediction

y_actual
y_pred

(e, 1, 0, 0, 1, 1
[0, 1, o, 0, 1,

’ 0’ 1' 1]
1, 0,

1,
1, 1, 1]
confusion_matrix(y_actual,y_pred)

array([[4, o],
[0, 6]1)

tn, fp, fn, tp = confusion_matrix(y_actual, y_pred).ravel().tolist()
(tn, fp, fn, tp)

(4, 0, 0, 6)

When an algorithm achieves perfect classification accuracy, all non-zero values in the
confusion matrix appear exclusively along its diagonal.

All off-diagonal entries, which represent misclassifications, will be zero.

Confusion Matrix - Multiple Classes

from sklearn.datasets import load_digits

import numpy as np
np.random.seed(42)

digits = load_digits()

X
y

digits.data
digits.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)

from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier

clf

OneVsRestClassifier(LogisticRegression())

clf = clf.fit(X_train, y_train)

import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay

X_test
y_pred

scaler.transform(X_test)
clf.predict(X_test)

ConfusionMatrixDisplay.from_predictions(y_test, y_pred)
plt.show()

25

- 20

True label

Predicted label

Confusion matrix for the digits example presented in the previous lecture.

The image displays a heatmap of the confusion matrix for the digit classification task.
This task, a multiclass classification problem, was addressed using
OneVsRestClassifier and LogisticRegression .

The confusion matrix summarizes the predictions made on the test set, which is a

subset of the data that was neither used for training nor for preprocessing with
StandardScaler .

The confusion matrix encapsulates all the results from applying the classifier to the test
set. However, to summarize this information more succinctly, we often refer to
performance metrics.

Visualizing errors

mask = (y_test == 9) & (y_pred == 8)

X_9 as_8

X_test[mask]

y_9 as_8 = y_test[mask]

import numpy as np
np.random.seed(42)

from sklearn.datasets import load_digits
digits = load_digits()

X
y

digits.data
digits.target

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)

from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier

clf

OneVsRestClassifier(LogisticRegression())

clf

clf.fit(X_train, y_train)

X_test
y_pred

scaler.transform(X_test)
clf.predict(X_test)

mask = (y_test == 9) & (y_pred == 8)

X_9 as_8 = X_test[mask]

y_9_as_8 = y_test[mask]

import matplotlib.pyplot as plt

plt.figure(figsize=(4,2))

for index, (image, label) in enumerate(zip(X_9_as_8, y_9 as_8)):
plt.subplot(1l, len(X_9_as_8), index + 1)

plt.imshow(np.reshape(image, (8,8)), cmap=plt.cm.gray)
plt.title(f'y = {label}')

y=9 y =09

In the confusion matrix on the previous screen, we had seen that there were examples
for which the true label was 9, but the prediction was was 8. We can visualize the
examples to see if we understand the nature of those errors.

Confusion Matrix - Multiple Classes

25

- 20

True label

0] 1 . 3 4 5 5] 7 2] 9
Predicted label

It is often preferable to summarize the classifier’s performance with a single metric.

Accuracy
How accurate is this result?

TP + TN _ TP+TN

accC acCy =
Y = TP I TN+ FP + FN N

from sklearn.metrics import accuracy_score

y_actual

’ 1, 1, 1, 1]
y_pred

1, 1, 1,
9, 0, 0, 1, 1, 1, 1]

[0, 0, 0,
[0, 1, 1,

accuracy_score(y_actual,y_pred)

0.5

Accuracy is the ratio of correctly predicted instances to the total number of predictions.

Accuracy

’ ’ ’ 0’ 1' 1]

y_actual = [0, 1, 0, 0, 1, 1, 1
[1 1, 1, o, 0, o0, 1, 0, 0]

1
y_pred = [1, 0,

’

accuracy_score(y_actual,y_pred)

0.0

y_actual = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]
y pred =10, 1, 0,0, 1, 1, 1, 0, 1, 1]

’

’ ’

accuracy_score(y_actual,y_pred)

1.0

Accuracy is a number between 0 (all wrong) and 1 (perfect).

Accuracy can be misleading

y_actual
y_pred

~

[0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

’ ’ ’ ’ ’ ’

accuracy_score(y_actual,y_pred)

0.8

Why is it problematic?

Accuracy can be misleading in the context of class imbalance, as it disproportionately
reflects the performance on the majority class, thereby masking poor performance on
the minority class.

As class imbalance increases, the accuracy metric becomes increasingly misleading.

Precision

AKA, positive predictive value (PPV).

TP

precision = ————
TP + FP

from sklearn.metrics import precision_score

y_actual

[0, 9, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred [0, 1, 1, o, 0, 0, 1, 1, 1, 1]

’ ’

precision_score(y_actual, y_pred)

0.6666666666666666

Precision is the proportion of true positive predictions among all positive
predictions.

Can you think of a problem or situation where precision is paramount?
A classic example: medical screening for a rare but serious disease.

e Suppose you have a test for a disease with very low prevalence (say 1in 10,000).

o If your model predicts “positive” too loosely, you will generate many false positives.

e Here, precision (the proportion of predicted positives that are actually true
positives) is crucial:

TP

Precision = ———
TP + FP

e A high precision means that when the test says “positive,” it is very likely correct.
e This reduces unnecessary anxiety, costs, and follow-up procedures for patients
incorrectly flagged.

Other real-world settings where precision is key:

e Spam detection: High precision ensures that emails classified as spam are really
spam (minimizing false positives that would hide real emails).

e |egal document search [e-discovery: High precision ensures that returned
documents are relevant, reducing time wasted on irrelevant results.

e Recommender systems: High precision means that recommended items are very
likely to be of interest, improving user trust.

Precision alone is not enough

y_actual

0' 0' OI ’ ’
y_pred 0, 0, 0

1, 1, 1, 1, 1, 1, 1]
» 0, 0, 0,1, 0, 0, 0]

’ ’

precision_score(y_actual,y_pred)
1.0

An algorithm that makes a small number of high-confidence predictions might achieve a
high precision score, but this may not necessarily be useful.

Recall

AKA sensitivity or true positive rate (TPR)

TP

recall = ——
TP + FN

from sklearn.metrics import recall_score

y_actual
y_pred

[@I 0! 0’ ’ ’ ’ 1! 1’ 1'
[0, 1, 1 1, 1

1, 1, 1 1]
’ 1010101 111 1]

’ ’

recall_score(y_actual,y_pred)

0.5714285714285714

Recall is the proportion of true positive instances correctly identified among all actual
positive instances.

Can you think of a problem or situation where recall is paramount?

An example where recall is the critical measure: cancer diagnosis (screening for
malignant tumors).

e Here, false negatives (missing an actual cancer case) are far more dangerous than
false positives.
e Recall measures the proportion of actual positives correctly identified:

TP

Recall = ——
TP + FN

e A high recall means the test finds nearly all patients with cancer, even if it also
produces some false alarms.

e Missing a true case (low recall) could mean a patient doesn't receive treatment in
time — a much more serious error than investigating a few extra false positives.

Other real-world settings where recall matters most:

e Security [Intrusion detection: Better to flag all suspicious activity (even with false
positives) than miss a real attack.

e Search engines: For certain queries (e.g., legal precedent search, medical literature
search), recall ensures you retrieve all relevant documents.

e Emergency response systems: For natural disaster warnings, high recall ensures no
real threat goes unnoticed.

F, score
2 precision x recall
F score = =2 X —
1 1 precision + recall
precision recall
B TP
o FN+FP
TP + —

from sklearn.metrics import f1_score

y_actual [0, 0, 0, 21, 1, 1, 1, 1, 1, 1]
y_pred [o, 1, 1, o0, @0, O, 1, 1, 1, 1]

’ ’ ’ ’ ’

f1_score(y_actual,y_pred)
0.6153846153846154

F1 is the harmonic mean of precision and recall.

e The harmonic mean places greater emphasis on lower values, while the arithmetic
mean treats all values equally.

e Using the harmonic mean ensures that a high score is only achieved when both
precision and recall are high, thus providing a more holistic measure of a classifier’s
performance in scenarios with imbalanced datasets.

e The Fy score favors classifiers that achieve a balance between precision and recall.

¢ Increasing recall often results in a decrease in precision, and vice versa. This
phenomenon is known as the precision/recall trade-off.

Micro and Macro Averaging

Definition

The class imbablance problem is a scenario where the number of instances in one
class significantly outnumbers the instances in other classes.

Models tend to be biased towards the majority class, leading to poor performance on
the minority class.

Standard evaluation metrics like accuracy may be misleading in the presence of class
imbalance.

Micro Performance Metrics

e Micro performance metrics aggregate the contributions of all instances to
compute average performance metrics like precision, recall, or F1 score.

e This approach treats each individual prediction equally, regardless of its class, as
it considers the total number of true positives, false positives, and false negatives
across all classes.

e Consequently, micro metrics are particularly sensitive to the performance on
frequent classes because they are more numerous and thus have a greater
influence on the overall metric.

Macro Performance Metrics

e Macro performance metrics compute the performance metric independently for
each class and then average these metrics.

e This approach treats each class equally, regardless of its frequency, providing an
evaluation that equally considers performance across both frequent and infrequent
classes.

e Consequently, macro metrics are less sensitive to the performance on frequent
classes.

Multi-Class

When calculating precision, recall, and F', one usually compute “one-vs-all” metrics
for each class. Then, average them using weighting schemes (macro, micro).

¢ True Positives (TP;): Diagonal entry C; ;

¢ False Positives (FP;): Sum of column ¢ excluding Cj ;
e False Negatives (FIN;): Sum of row ¢ excluding C; ;

e True Negatives (TN;): N — (TP; + FP; + FN;)

Multi-Class

When calculating precision, recall, and F', one usually compute “one-vs-all” metrics
for each class. Then, average them using weighting schemes (macro, micro).

o« TP; =C;;
° FNi — Zk;éi Cz',k
o TN; = Z#i Zk;ﬁi Cir

Micro/Macro Metrics

from sklearn.metrics import ConfusionMatrixDisplay

Sample data

y_true = ['Cat'] * 42 + ['Dog'] * 7 + ['Fox'] % 11

y_pred = ['Cat'] % 39 + ['Dog'] * 1 + ['Fox']l * 2 + \
['Cat'] * 4 + ['Dog'] * 3 + ['Fox'] * 0 + \
['Cat'] * 5+ ['Dog'] * 1 + ['Fox'] * 5

ConfusionMatrixDisplay.from_predictions(y_true, y_pred)

- 35
Cat

Dog

True label

Fox

Cat Dog Fox
Predicted label

The dataset can be conceptualized as resulting from an image classification task,
involving images of cats, dogs, and foxes. Reflecting common trends observed on the

internet, images of cats are disproportionately represented, leading to a class
imbalance issue.

Micro/Macro Precision

from sklearn.metrics import classification_report, precision_score
print(classification_report(y_true, y_pred), "\n")

print("Micro precision: {:.2f}".format(precision_score(y_true, y_pred, avere
print("Macro precision: {:.2f}".format(precision_score(y_true, y_pred, averc

precision recall fl-score support

Cat 0.81 0.93 0.87 42

Dog 0.60 0.43 0.50 7

Fox 0.71 0.45 0.56 11

accuracy 0.78 60
macro avg 0.71 0.60 0.64 60
weighted avg 0.77 0.78 0.77 60

Micro precision: 0.78
Macro precision: 0.71

Micro/Macro Precision

e Macro-average precision is calculated as the mean of the precision scores[1] for

each class: O'SHO'?)M = 0.71.
. L . TP
* Whereas, the micro-average precision is calculated using the formala, TPIFP and

394345 _ 4T _ (g

the data from the entire confusion matrix 97315191012 50

The high micro-average precision observed here is primarily due to the high precision
and large number of examples in the majority class, Cat. This masks the classifier's
relatively poor performance on the minority classes, Dog and Fox.

In a balanced dataset, both micro-average and macro-average metrics yield similar
scores.

However, in an imbalanced dataset, significant disparities in classifier performance
between the majority and minority classes will result in divergent micro-average and
macro-average scores. Specifically, the classifier tends to underperform on the minority

class(es), leading to these discrepancies.

In macro-average metrics, each class contributes equally to the final metric
calculation, irrespective of the number of examples it contains. This means that the
performance metric for each class are computed independently and then averaged,
without considering the proportion of instances that each class represents in the
dataset. Consequently, macro-averaging ensures that each class has an equal impact
on the overall metric, which can be particularly useful in cases where the class
distribution is imbalanced.

Micro/Macro Recall

[1] Therefore, macro-average precision remains unaffected by the varying number of

examples across different classes.

- 35
Cat

T
=
o Dog
=
|—
Fox
Cat Daog Fox
Predicted label
precision recall fl-score support
Cat 0.81 0.93 0.87 42
Dog 0.60 0.43 0.50 7
Fox 0.71 0.45 0.56 11
accuracy 0.78 60
macro avg 0.71 0.60 0.64 60
weighted avg 0.77 0.78 0.77 60

Micro recall: 0.78
Macro recall: 0.60

Micro/Macro Recall

e Macro-average recall is calculated as the mean of the recall scores for each
class: w = 0.60.

. . . TP
e Whereas, the micro-average recall is calculated using the formala, TPIFN

394345 _ 39 _ "8
39-+3+5+3+4+6 60 '

and the

data from the entire confusion matrix

Example

Using the 20 newsgroups text dataset from scikit-learn.org.

Comprises around 18,000 newsgroups posts on 20 topics.

https://scikit-learn.org/stable/auto_examples/text/plot_document_classifi
from time import time
Load Dataset

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer

categories = [
"alt.atheism",
"talk.religion.misc",
""comp.graphics",
""sci.space",

def size _mb(docs):
return sum(len(s.encode("utf-8")) for s in docs) / 1le6

def load dataset(verbose=False, remove=()):
"""lLoad and vectorize the 20 newsgroups dataset.'"""

data_train = fetch_20@newsgroups(
subset="train",
categories=categories,
shuffle=True,
random_state=42,
remove=remove,

)

data_test = fetch_20newsgroups(
subset="test",
categories=categories,
shuffle=True,
random_state=42,
remove=remove,

)

order of labels in “target_names’™ can be different from “categories’
target_names = data_train.target_names

split target in a training set and a test set
y_train, y_test = data_train.target, data_test.target

Extracting features from the training data using a sparse vectorizer
t0 = time()
vectorizer = TfidfVectorizer(
sublinear_tf=True, max_df=0.5, min_df=5, stop_words="english"
)
X_train = vectorizer.fit_transform(data_train.data)
duration_train = time() - t0O

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html#sklearn.datasets.fetch_20newsgroups
https://scikit-learn.org/

Extracting features from the test data using the same vectorizer

t0 = time()
X_test = vectorizer.transform(data_test.data)
duration_test = time() - tO

feature_names = vectorizer.get_feature_names_out()

if verbose:
compute size of loaded data
data_train_size mb = size _mb(data_train.data)
data_test _size mb = size mb(data_test.data)

print(
f"{len(data_train.data)} documents -
f"{data_train_size_mb:.2f}MB (training set)"

)

print(f"{len(target_names)} categories")
print(

)

print(
f'"vectorize testing done in {duration_test:.3f}s
f"at {data_test_size_mb / duration_test:.3f}MB/s"
)

H R R R R R R HEHHHEHHHRHR

print(f"n_samples: {X_test.shape[0]}, n_features: {X_

print(f"{len(data_test.data)} documents - {data_test_size_mb:.2f}V

f'"vectorize training done in {duration_train:.3f}s "
f"at {data_train_size mb / duration_train:.3f}MB/s"

print(f"n_samples: {X_train.shape[0]}, n_features: {X_train.shape|

test.shape[1l]

return X_train, X_test, y_train, y_test, feature_names, target_names

X_train, X_test, y_train, y_test, feature_names, target_names =

verbose=True

)
Training and Prediction
from sklearn.linear_model import RidgeClassifier

clf = RidgeClassifier(tol=1le-2, solver="sparse_cg")
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

Display the Confusion Matrix
from sklearn.metrics import ConfusionMatrixDisplay

fig, ax = plt.subplots(figsize=(10, 5))
ConfusionMatrixDisplay.from_predictions(y_test, y_pred, ax=ax)
ax.xaxis.set_ticklabels(target_names)
ax.yaxis.set_ticklabels(target_names)
_ = ax.set_title(

f"Confusion Matrix for {clf.__class__.__name__}"

load_dataset

Confusion Matrix for RidgeClassifier

alt.atheism

comp.graphics

o
0
=
Q
=
=

sci.space

talk.religion.misc

alt.atheism comp.graphics sci.space talk.religion.misc
Predicted label
Example

cm = confusion_matrix(y_test, y_pred)

TP, FP,FN, TN

def true_positive(cm, i):
return cm[i,i] # diagonal entry i,i

def false_positive(cm, i):
return np.sum(cm[:, il) - cmli, il # col - TP_i

def false_negative(cm, 1i):
return np.sum(cm[i, :1) - cm[i,i] # row - TP_1i

def true_negative(cm, i):
N = cm.sum()
TP = true_positive(cm, i)
FP false_positive(cm, i)
FN = false_negative(cm, i)
return N - (TP + FP + FN)

Precision

- 350

- 300

250

200

150

100

30

def precision_micro(cm):
_, L = cm.shape
tp = fp =0
for i in range(l):
tp += true_positive(cm, i)
fp += false_positive(cm, i)
return tp / (tp+fp)

def precision_macro(cm):

_, L = cm.shape

precision = 0

for i in range(l):
tp = true_positive(cm, i)
fp = false_positive(cm, i)
precision += tp/(tp+fp)

return precision/1

Precision Micro Average

(258 4 380 + 371 + 199)

(258 + 380 + 371 + 199) + (40 + 38 + 22 + 45)
where

e 40=2+1+37
e 38=7+22+9
e 22=12+4+6
e 45=42+3+0

89.28307465 %

Precision Macro Average

e Precisiony = % = 0.8657718121
e Precision; = ﬁ = 0.9090909091
e Precision, = m = 0.9440203562
¢ Precisiong = m = 0.8155737705

0.8657718121+0.9090909091+0.9440203562+0.8155737705
4

Precisions =

88.3614212 %

Recall

def recall_micro(cm):
_, L = cm.shape

tp = fn =10
for i in range(1):
tp += true_positive(cm, i)
fn += false_negative(cm, i)
return tp / (tp+fn)

def recall_macro(cm):

_, L = cm.shape

recall = 0

for i in range(1):
tp = true_positive(cm, i)
fn = false_negative(cm, i)
recall += tp / (tp+fn)

return recall/l

Micro/Macro Metrics (Medical Data)

- 800
Mormal -
600
W
0
]
[iF]
c
= 400
Tumour
200

Mormal Turmour
Predicted label

Consider a medical dataset, such as those involving diagnostic tests or imaging,

comprising 990 normal samples and 10 abnormal (tumor) samples. This represents the
ground truth.

Micro/macro metrics (medical data)

precision recall fl-score support

Normal 1.00 0.99 1.00 990
Tumour 0.55 0.60 0.57 10
accuracy 0.99 1000
macro avg 0.77 0.80 0.78 1000
weighted avg 0.99 0.99 0.99 1000

Micro precision: 0.99
Macro precision: 0.77

Micro recall: 0.99
Macro recall: 0.80

The precision for the Tumour class is low. However, due to the small sample size, this
does not significantly impact the micro-averaged precision.

Precision-Recall Trade-Off

Hand-Written Digits (Revisited)

Loading the dataset

import numpy as np
np.random.seed(42)

from sklearn.datasets import fetch_openml

digits = fetch_openml('mnist_784"', as_frame=False)
X, y = digits.data, digits.target

Plotting the first five examples

y =5 y =0 y =4 y=1 y=9
0 0 0 0
10 10 10 10
20 20 0 20
0 10 20 0 10 20

0 10 20 0 10 20

0 10 20

These images have dimensions of 28 X 28 pixels.

Creating a Binary Classification Task

Creating a binary classification task (one vs the rest)

some_digit = X[0]
some_digit_y = y[0]

y = (y == some_digit_y)
y

array([True, False, False, ..., False, True, False]l, shape=(70000,))

Creating the training and test sets
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

SGDClassifier

from sklearn.linear_model import SGDClassifier

clf = SGDClassifier()
clf.fit(X_train, y_train)

clf.predict(X[@:5]) # small sanity check
array([True, False, False, False, Falsel])

The SGDClassifier is alinear classifier that utilizes stochastic gradient descent
(SGD) for training. Compared to LogisticRegression , it can offer faster training
times, particularly for large datasets. Additionally, SGDClassifier allows for the
adjustment of the decision threshold in subsequent examples.

Performance

from sklearn.metrics import accuracy_score
y_pred = clf.predict(X_test)

accuracy_score(y_test, y_pred)
0.9572857142857143

Wow!

Not so Fast

from sklearn.dummy import DummyClassifier

dummy_c1f = DummyClassifier()

dummy_cl1f.fit(X_train, y_train)

y_pred = dummy_clf.predict(X_test)

accuracy_score(y_test, y_pred)

0.906

The DummyClassifier in scikit-learn generates predictions without considering the input
features. By default, it consistently predicts the most frequent class label in the training
data. It is a simple baseline classifier.

Why is the accuracy so high despite this classifier ignoring the input data?

The high accuracy is attributed to the class distribution within the dataset.
Approximately 10% of the samples correspond to the digit ‘5 which is the positive class
in our binary classification task. Consequently, about 90% of the samples are ‘not 5’ and
belong to the negative class. Since the DummyClassifier always predicts the majority
class, its accuracy is expected to be around 90%.

This underscores the point that accuracy is often not the best metric, particularly when
dealing with imbalanced datasets.

Precision-Recall Trade-Off

Precision: 6/8-=75% 4/5=80% 3/3=100%
Recall: 6/6=100% 4/6=67% 3/6=50%
P
&13?15) 5 -’61555
\£ R P Sooe
1 ’
Negative predictions e .- 1 Positive predictions

~ <& - '
Vaarious thresholds

Attribution: Géron (2022) Figure 3.4

Precision-Recall Trade-Off

from sklearn.model_selection import cross_val_predict
y_scores = cross_val_predict(clf, X_train, y_train, cv=3, method="decision_f

https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html

from sklearn.metrics import precision_recall_curve
precisions, recalls, thresholds = precision_recall_curve(y_train, y_scores)
threshold = 3000

plt.figure(figsize=(8, 4)) # extra code — it's not needed, just formatting
plt.plot(thresholds, precisions[:-1], "b—-", label="Precision", linewidth=2)
plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2)
plt.vlines(threshold, 0, 1.0, "k", "dotted", label="threshold")

extra code — this section just beautifies and saves Figure 3-5
idx = (thresholds >= threshold).argmax() # first index = threshold
plt.plot(thresholds[idx], precisions[idx], '"bo")
plt.plot(thresholds[idx], recalls[idx], "go")

plt.axis([-50000, 50000, 0, 1])

plt.grid()

plt.xlabel("Threshold")

plt.legend(loc="center right")

plt.show()

1.0

.

-

I
L
LR |
1
I
I
4

",'—-'- hhﬁ"-

S
b
y
== Precision
— Recall

------ threshold

0.0 |

T . T T
—40000 —20000 0 20000 40000
Threshold

SGDClassifier is used because it allows to vary the decision treshold (boundary) to
produce a plot illustrating the precision-recall tradeoff. (Géron 2022)
03_classification.ipynb .

As the decision threshold decreases, a higher number of examples are predicted as
positive, potentially leading the classifier to eventually label all instances as positive.

Conversely, as the decision threshold increases, fewer examples are classified as
positive, which may result in the classifier predicting no positive instances at all.

https://github.com/ageron/handson-ml3/blob/main/03_classification.ipynb

For certain applications, a classifier with high precision is essential. For example,
consider a scenario where each prediction necessitates a costly laboratory experiment
to verify its accuracy, such as in a pharmaceutical company aiming to discover new
drugs. Here, the classifier predicts whether a compound is active. Given the high cost of
experiments to validate candidates, the company would prioritize focusing on the most
promising compounds first.

In contrast, consider a scenario involving cancer screening, such as using mammograms
to detect breast cancer. In this case, it may be preferable to lower the decision
threshold, thereby increasing the number of false-positive predictions. Although this
approach results in more patients undergoing additional tests, such as biopsies, it can
potentially save more lives by ensuring that fewer cases of cancer go undetected.

Precision/Recall Curve

import matplotlib.patches as patches # extra code — for the curved arrow
plt.figure(figsize=(5, 5)) # extra code — not needed, just formatting
plt.plot(recalls, precisions, linewidth=2, label="Precision/Recall Curve")

extra code — just beautifies and saves Figure 3—6
plt.plot([recalls[idx], recalls[idx]], [0., precisions[idx]], "k:")
plt.plot([0.0, recalls[idx]], [precisions[idx], precisions[idx]], "k:")
plt.plot([recalls[idx]], [precisions[idx]], "ko",
label="Point at threshold 3,000")

plt.gca().add_patch(patches.FancyArrowPatch(

(0.79, 0.60), (0.61, 0.78),

connectionstyle="arc3, rad=.2",

arrowstyle="Simple, tail_width=1.5, head_width=8, head_length=10",

color="#444444"))
plt.text(0.56, 0.62, "Higher\nthreshold", color="#333333")
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.axis([0, 1, @, 11)
plt.grid()
plt.legend(loc="1lower left")

plt.show()

Precision

1.0

0.8 1

0.6 1

0.4 1

0.2

Higher
threshold
= Precision/Recall Curve
® Point at threshold 3,000
D.D T T . T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

(Géron 2022) 03_classification.ipynb .

ROC Curve

ROC Curve

Receiver Operating Characteristics (ROC) curve

True positive rate (TPR) against false positive rate (FPR)
An ideal classifier has TPR close to 1.0 and FPR close to 0.0

. TP e .
TPR = TPAFN (recall, sensitivity)

TPR approaches one when the number of false negative predictions is low

_ _FP TR
FPR = FPITN (aka~[1-specificity])

FPR approaches zero when the number of false positive is low

ROC (Receiver Operating Characteristic) curves are popular in machine learning and

statistics for several reasons:

1. Comprehensive Performance Evaluation: ROC curves provide a visual

representation of a classifier’s performance across all possible thresholds. By
plotting the True Positive Rate (TPR) against the False Positive Rate (FPR), it allows
practitioners to evaluate the trade-off between sensitivity (recall) and specificity.

https://github.com/ageron/handson-ml3/blob/main/03_classification.ipynb

2. Threshold Independence: Unlike metrics like accuracy, ROC curves evaluate
classifier performance without relying on a specific decision threshold. This makes
them particularly useful in comparing models across varying thresholds.

3. Area Under the Curve (AUC): The Area Under the ROC Curve (AUC) provides a
single value summary of the model's performance. AUC-ROC is often used as a
benchmark metric to compare different models, with values ranging from 0.5
(random guessing) to 1.0 (perfect classification).

4. Broad Applicability: ROC curves can be used for any binary classification task and
are easily extended to multiclass problems using techniques like one-vs-rest

classification, making them versatile in evaluating classifiers.

ROC Curve
Predicted

Positive Negative

TP
TP + FN

Positive| TP FN TPR =
Actual | |

Negative| FP N FPR

FP
FP + TN

ROC Curve

idx_for_9@_precision = (precisions >= 0.90).argmax()
threshold_for_90_precision = thresholds[idx_for_90_precision]
y_train_pred_90 = (y_scores >= threshold_for_90_precision)

from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_train, y_scores)

idx_for_threshold_at_90 = (thresholds <= threshold_for_90_precision).argmax
tpr_90, fpr_90 = tprlidx_for_threshold_at_90], fprlidx_for_threshold_at_90]

plt.figure(figsize=(5, 5)) # extra code — not needed, just formatting
plt.plot(fpr, tpr, linewidth=2, label="ROC curve")

plt.plot([0, 11, [0, 11, 'k:', label="Random classifier's ROC curve")
plt.plot([fpr_90]1, [tpr_9@], "ko", label="Threshold for 90% precision")

extra code — just beautifies and saves Figure 3-7
plt.gca().add_patch(patches.FancyArrowPatch(

(0.20, 0.89), (0.07, 0.70),
connectionstyle="arc3, rad=.4",

arrowstyle="Simple, tail_width=1.5, head_width=8, head_length=10",

color="#444444"))

plt.text(0.12, 0.71, "Higher\nthreshold", color="#333333")
plt.xlabel('False Positive Rate (Fall-Out)')
plt.ylabel('True Positive Rate (Recall)')
plt.grid()
plt.axis([0, 1, 0, 1])
plt.legend(loc="1lower right", fontsize=13)
plt.show()
1.0 —
. /
Higher :
= threshold -
m
© i
o .
— D.E o
e -
& b -~
m *
= .
=
7 0.4
(= o
W
= -
=
0.2 - —— ROC curve
------- Random classifier's ROC curve
® Threshold for 90% precision
0.0 + : : : :
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (Fall-Out)
Attribution: 03_classification.ipynb
It is common to measure the area under the curve, represented as AUC. Specifically, the

area under the ROC curve. This allows to compare

Dataset - openml

** www.openml.org**

OpenML is an open platform for sharing datasets, algorithms, and
experiments - to learn how to learn better, together.

https://github.com/ageron/handson-ml3/blob/main/03_classification.ipynb
https://www.openml.org/

import numpy as np
np.random.seed(42)

from sklearn.datasets import fetch_openml

diabetes = fetch_openml(name='diabetes', version=1)
print(diabetes.DESCR)

Today's dataset is the PIMA dataset, which contains 768 instances and 8 numerical
attributes. The numerical nature of these attributes facilitates our analysis. Additionally,
since the data originates from a published paper, it likely reflects careful data collection,
potentially leading to robust results, as the authors would have needed high-quality data
to support their publication.

Pima Indians Diabetes Dataset

from sklearn.datasets import fetch_openml

Load the Pima Indians Diabetes dataset
pima = fetch_openml(name='diabetes', version=1, as_frame=True)

Extract the features and target

X = pima.data

y = pima.target

Convert target labels 'tested _negative' and 'tested_positive' to 0 and 1

= y.map({'tested_negative': 0, 'tested_positive': 1})

<

Split the dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, rar

Pima Indians Diabetes Dataset as described in Knowler et al. (1981) [PubMed].

Comparing Multiple Classifiers

from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

Comparing Multiple Classifiers

1r = LogisticRegression()
lr.fit(X_train, y_train)

knn = KNeighborsClassifier()
knn.fit(X_train, y_train)

dt = DecisionTreeClassifier()

https://www.openml.org/search?type=data&sort=version&status=any&order=asc&exact_name=diabetes&id=37
https://pubmed.ncbi.nlm.nih.gov/7468572/

dt.fit(X_train, y_train)

rf =

RandomForestClassifier()

rf.fit(X_train, y_train)

Using the default parameters.

AUC/ROC

from sklearn.metrics import roc_auc_score

y_pred_prob_1r = lr.predict_proba(X_test)[:, 1]
y_pred_prob_knn = knn.predict_proba(X_test)[:, 1]

y_pred_prob_dt
y_pred_prob_rf

dt.predict_proba(X_test)[:, 1]
rf.predict_proba(X_test)[:, 1]

Compute ROC curves
fpr_lr, tpr_lr, _ = roc_curve(y_test, y _pred_prob_1r)
fpr_knn, tpr_knn, _ = roc_curve(y_test, y_pred_prob_knn)

fpr_dt, tpr_dt, _
fpr_rf, tpr_rf, _

roc_curve(y_test, y_pred_prob_dt)
roc_curve(y_test, y_pred_prob_rf)

Compute AUC scores

auc_
auc_
auc_
auc_

1r = roc_auc_score(y_test, y_pred_prob_1r)
knn = roc_auc_score(y_test, y_pred_prob_knn)
dt roc_auc_score(y_test, y_pred_prob_dt)
rf roc_auc_score(y_test, y_pred_prob_rf)

Plot ROC curves

plt.
plt.
plt. (
plt. (
.plot(fpr_rf, tpr_rf, color='purple', label=f'Random Forest (AUC = {auc_r
(
(

plt

plt.
.xlim([0.0, 1.0])

.ylim([0.0, 1.05])

.xlabel('False Positive Rate')

.ylabel('True Positive Rate')

.title('ROC Curves for Logistic Regression, KNN, Decision Tree, and Randc
plt.
plt.

plt
plt
plt
plt
plt

figure(figsize=(5, 5)) # plt.figure()

plot(fpr_1lr, tpr_1lr, color='blue', label=f'Logistic Regression (AUC = {
plot(fpr_knn, tpr_knn, color='green', label=f'K-Nearest Neighbors (AUC
plot(fpr_dt, tpr_dt, color='orange', label=f'Decision Tree (AUC = {auc_c

1n_o

plot([0, 1], [0, 1], color='red', linestyle='—--') # Diagonal line for r

legend(loc="1lower right")
show()

ROC Curves for Logistic Regression, KNN, Decision Tree, and Random Forest

1.0

0.8 1
u
&
= 0.6 -
=
k=]
[T
=]
(T8
Q9
E 0.4

0.2 r Logistic Regression (AUC = 0.80)

' /’ —— K-Nearest Neighbors (AUC = 0.72)
/’ Decision Tree (AUC = 0.70)
d —— Random Forest (AUC = 0.80)
D.D T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

ROC curves provide a visual representation of a classifier’s performance across all
possible thresholds. By plotting the True Positive Rate (TPR) against the False Positive
Rate (FPR), it allows practitioners to evaluate the trade-off between sensitivity (recall)
and specificity.

Unlike metrics like accuracy, ROC curves evaluate classifier performance without
relying on a specific decision threshold. This makes them particularly useful in
comparing models across varying thresholds.

Logistic Regression

e Model:

1

ho(zi) = o(bxi) = PR
e Prediction:

» Assigny; = 0, if hg(z;) < 0.5; y; = 1, if hy(z;) > 0.5
e Loss Function: cross-entropy

_ 3" logo(ba,) + (1 - yy) log(1 — o(6y)

=1

Let's walk through what happens to the confusion matrix terms as the decision threshold

moves from O to 1.

At threshold = 0

All predicted positive.

TP: all actual positives are predicted positive, maximal TP.
FP: all actual negatives are predicted positive, maximal FP.
TPR =1 (since TP = P, where P is total positives).
FPR =1 (since FP = N, where N is total negatives).
ROC point = (1, 1).

As threshold increases from 0 to 1

Fewer examples are predicted positive.

TP decreases (some positives no longer exceed threshold).
FP decreases (some negatives no longer exceed threshold).
TPR decreases monotonically from 1 to O.

FPR decreases monotonically from 1 to O.

Curve traces down-left along the ROC space.

At threshold =1

All predicted negative.
TP=0,FP=0.

TPR =0, FPR = 0.
ROC point = (0, 0).

Summary intuition

Lower threshold, more predicted positives, both TP and FP increase, both TPR and
FPR increase.

Higher threshold, more predicted negatives, both TP and FP decrease, both TPR
and FPR decrease.

The shape of the ROC curve depends on how well logistic regression separates -
positives from negatives:

A perfect model climbs quickly toward (0, 1).

A random model follows the diagonal.

A realistic model lies between.

Implementation: Logistic Regression

Below is our implementation of the logistic regression.

def sigmoid(z):

"""Compute the sigmoid function.

return 1 / (1 + np.exp(-z))

def cost_function(theta, X, y):
Compute the binary cross—-entropy cost.
theta: parameter vector
X: feature matrix (each row is an example)
y: true binary labels (0 or 1)

m = len(y)

h = sigmoid(X.dot(theta))

Add a small epsilon to avoid log(09)

epsilon = le-5

cost = —=(1/m) * np.sum(y * np.log(h + epsilon) + (1 - y) * np.log(l - h
return cost

def gradient(theta, X, y):
"""Compute the gradient of the cost with respect to theta.
m = len(y)
h = sigmoid(X.dot(theta))
return (1/m) *x X.T.dot(h - y)

def logistic_regression(X, y, learning_rate=0.1, iterations=1000):

Train logistic regression using gradient descent.

Returns the optimized parameter vector theta and the history of cost val

m, n = X.shape

theta = np.zeros(n)

cost_history = []

for i in range(iterations):
theta -= learning_rate * gradient(theta, X, y)
cost_history.append(cost_function(theta, X, y))

return theta, cost_history

def predict_probabilities(theta, X):
"""Return predicted probabilities for the positive class."""
return sigmoid(X.dot(theta))

Implementation: ROC

def compute_roc_curve(y_true, y_scores, thresholds):

tpr_list, fpr_list = [], []

for thresh in thresholds:
Classify as positive if predicted probability >= threshold
y_pred = (y_scores >= thresh).astype(int)
TP = np.sum((y_true == 1) & (y_pred == 1))
FN = np.sum((y_true == 1) & (y_pred == 0))
FP = np.sum((y_true == 0) & (y_pred == 1))
TN = np.sum((y_true == 0) & (y_pred == 0))
TPR = TP / (TP + FN) if (TP + FN) > 0 else 0
FPR = FP / (FP + TN) if (FP + TN) > 0 else 0
tpr_list.append(TPR)
fpr_list.append(FPR)

tpr_list.reverse()
fpr_list.reverse()

return np.array(fpr_list), np.array(tpr_list)

Implementation: AUC ROC

def compute_auc(fpr, tpr):

Compute the Area Under the Curve (AUC) using the trapezoidal rule.

fpr: array of false positive rates
tpr: array of true positive rates

return np.trapezoid(tpr, fpr)

The Trapezoidal Rule (trapezoid), akin to the Riemann Sum, is a numerical method
for approximating the definite integral of a function. By partitioning the area under the
curve into trapezoids rather than rectangles, it typically yields a more precise

approximation.

Example: Generate Data + Predictions

Generate synthetic data for binary classification
np.random.seed(seed)

m = 1000 # number of samples

X = np.random.randn(m, 2)

noise = 0.5 * np.random.randn(m)

Define labels: a noisy linear combination thresholded at 0
y = (X[:, @] + X[:, 1] + noise > 0).astype(int)

Add an intercept term (a column of ones) to X
X_intercept = np.hstack([np.ones((m, 1)), XI)

X_train, X_test, y_train, y_test = train_test_split(X_intercept, y, random_s

Train logistic regression model using gradient descent
theta, cost_history = logistic_regression(X_train, y_train, learning_rate=0.

Example: Plot

Compute predicted probabilities for the positive class on the test set
y_probs = predict_probabilities(theta, X_test)

Define a set of threshold values between 0 and 1 (e.g., 100 equally spacec
thresholds = np.linspace(0, 1, 100)

Compute the ROC curve (FPR and TPR for each threshold)

compute_roc_curve(y_test, y_probs, thresholds)
compute_auc(fpr, tpr)

fpr, tpr =
auc_value =

Plot the ROC curve

False Positive Rate

Random classifier (simulation)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve

Simulate labels (balanced dataset for clarity)
rng = np.random.RandomState(42)
y_true = rng.randint(0, 2, size=1000)

Simulate random scores (independent of labels)
y_scores = rng.rand(1000)

plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='blue', lw=2, label='ROC curve (AUC = %0.2f)"' % auc
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='—-', label='Random c
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="1lower right")
plt.show()
Receiver Operating Characteristic (ROC) Curve
1.0 ~ =
0.8 - o
. L
T 0.6 -
" y
= P
= &
LA -
Py -
o o
L 0.4
l'_- o
0.2 - d
o — ROC curve (AUC = 0.95)
0.0 1 ---- Random classifier
0.0 0.2 0.4 0.6 0.8 1.0

random true labels

Compute ROC curve
fpr, tpr, thresholds = roc_curve(y_true, y_scores)

Plot ROC

plt.figure(figsize=(6,6))

plt.plot(fpr, tpr, label="Random classifier (simulation)", lw=2)

plt.plot([0,1],[0,1]1, 'k—", label="y = x diagonal")

plt.scatter([0,0.25,0.5,0.75,1]1,[0,0.25,0.5,0.75,1],
color="red", zorder=5, label="Illustrative points")

plt.xlabel("False Positive Rate (FPR)")

plt.ylabel("True Positive Rate (TPR)")

plt.title("ROC Curve of a Random Classifier")

plt.legend()

plt.grid(True)

plt.show()

ROC Curve of a Random Classifier

1.0 4 == Random classifier (simulation)
—-—- y = x diagonal
® lllustrative points

True Positive Rate (TPR)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

See Also

e Multiclass Receiver Operating Characteristic (ROC) presents examples of micro-
and macro- average curves.

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

hhttps://youtu.be/4jRBRDbJemM

The video above by StatQuest, Josh Starmer, offers a detailed, step-by-step guide on
how to construct and analyze Receiver Operating Characteristic (ROC) curves.

Prologue

Summary

e Examined classification model evaluation techniques, focusing on confusion
matrices and key metrics: accuracy, precision, recall, and F} score.

e Addressed the limitations of accuracy in imbalanced datasets, introducing micro and
macro averaging techniques.

e Explored the precision-recall trade-off and ROC analysis, including the area under

the curve (AUC).
e Provided practical insights through Python implementations.

On Performance Measures

e Sokolova, M. & Lapalme, G. (2009). A systematic analysis of performance measures
for classification tasks. Information Processing and Management, 45(4), 427-437.
= Scopus: 4,222 citations
= Google Scholar: 6,839 citations

Evaluating Learning Algorithms

hhttps://youtu.be/4jRBRDbJemM

Evaluating
Learning Algorithms
A Classification Perspective

F P Chab
= Mohak

A M BRI GE

e This book, 4.6 stars rating on Amazon, delves into the evaluation process,
particularly focusing on classification algorithms (Japkowicz and Shah 2011).

e Nathalie Japkowicz previously served as a professor at the University of Ottawa and
is currently affiliated with American University in Washington.

e Mohak Shah, who earned his PhD from the University of Ottawa, has held numerous
industry roles, including Vice President of Al and Machine Learning at LG
Electronics.

Further reading

https://www.cambridge.org/core/books/evaluating-learning-algorithms/3CB22D16AB609D1770C24CA2CB5A11BF
https://www.american.edu/cas/faculty/japkowic.cfm
http://www.mohakshah.com/

Evaluating
Learning Algorithms
A Classification Perspective

F P Chab
= Mohak

A M BRI GE

Japkowicz and Shah (2011)

This book, which examines various aspects of the evaluation process with an emphasis
on classification algorithms, has excellent ratings on Amazon!

Nathalie Japkowicz was formely a professor that the University of Ottawa. She now
works at the American University in Washington.

Mohak Shah completed his PhD at the University of Ottawa. He has held several
positions in the industry, including Al and Machine Learning Vice President for LG
Electronics.

Next lecture

e We will examine cross-validation and hyperparameter tuning.

References

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow. 3rd ed. O'Reilly Media, Inc.

https://www.american.edu/cas/faculty/japkowic.cfm
http://www.mohakshah.com/

Japkowicz, Nathalie, and Mohak Shah. 2011. Evaluating Learning Algorithms: A
Classification Perspective. Cambridge: Cambridge University Press.

Knowler, William C., David J. Pettitt, Peter J. Savage, and Peter H. Bennett. 1981.
“Diabetes Incidence in Pima Indians: Contributions of Obesity and Parental Diabetes."
American Journal of Epidemiology 113 2: 144-56.
https://api.semanticscholar.org/CorpuslID:25209675.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th
ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca
School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

https://api.semanticscholar.org/CorpusID:25209675
http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

