
Bias-Variance Tradeoff

CSI 4106 - Fall 2025

Marcel Turcotte

Version: Oct 10, 2025 12:42

Preamble

Summary

In this lecture, we explore how model complexity influences bias, variance, and

generalization by examining underfitting and overfitting through learning curves

across various models, including linear, polynomial, tree-based, KNN, and deep

networks.

Learning Outcomes

Grasp how model complexity affects bias, variance, and generalization.

Analyze learning curves to diagnose underfitting and overfitting.

Model Complexity

Rationale

Optimizing model performance critically depends on the careful selection and tuning of

hyperparameters.

These hyperparameters play a pivotal role in regulating the complexity of machine

learning models.

Definition

Model complexity in refers to the capacity of a model to capture intricate patterns in

the data.

It is determined by the number of parameters or the structure of the model.

Exploration

import numpy as np

np.random.seed(42)

X = 6 * np.random.rand(100, 1) - 3
y = 0.5 * X ** 2 - X + 2 + np.random.randn(100, 1)

import matplotlib as mpl
import matplotlib.pyplot as plt

plt.figure(figsize=(6,4))

plt.plot(X, y, "b.")
plt.xlabel("x", fontsize=18)
plt.ylabel("y", rotation=0, fontsize=18)
plt.axis([-3, 3, 0, 10])
plt.grid(True)
plt.show()

Attribution: Géron (2022), Chapter 4

In machine learning experiments, specifying the seed of the random number generator is

crucial for ensuring reproducibility. By setting a fixed seed, programmers can guarantee

that the same sequence of random numbers will be generated each time the experiment

is run. This consistency is vital for several reasons:

1. Reproducibility: It allows other programmers to replicate the experiment with the

exact same conditions, facilitating verification and validation of results.

In [2]:

2. Comparative Analysis: It enables consistent comparison between different models

or algorithms under the same initial conditions, ensuring that observed differences

are due to the models themselves rather than variations in the random initialization.

3. Debugging: It aids in debugging by providing a stable environment where issues

can be consistently reproduced and investigated.

Linear Regression

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(X, y)

X_new = np.array([[-3], [3]])
y_pred = lin_reg.predict(X_new)

plt.figure(figsize=(6,4))

plt.plot(X, y, "b.")
plt.plot(X_new, y_pred, "r-")
plt.xlabel("x", fontsize=18)
plt.ylabel("y", rotation=0, fontsize=18)
plt.axis([-3, 3, 0, 10])
plt.show()

A linear model inadequately represents this dataset.

Adjusting the slope invariably leads to a scenario where residuals (errors) are minimized

for certain data points while remaining significant for others.

In [3]:

Definition

Feature engineering is the process of creating, transforming, and selecting variables

(attributes) from raw data to improve the performance of machine learning models.

Here, our focus is on creating new attributes from raw data.

Machine Learning Engineering

Machine Learning Engineering by Andriy Burkov (A. Burkov 2020).

Covers data collection, storage, preprocessing, feature engineering, model testing

and debugging, deployment, retirement, and maintenance.

From the author of The Hundred-Page Machine Learning Book (Andriy Burkov

2019).

Available under a “read first, buy later” model.

PolynomialFeatures

from sklearn.preprocessing import PolynomialFeatures

poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform(X)

. . .

X[0]

In [4]:

In [5]:

http://www.mlebook.com/wiki/doku.php
https://www.linkedin.com/in/andriyburkov
https://themlbook.com/

array([-0.75275929])

. . .

X_poly[0]

array([-0.75275929, 0.56664654])

. . .

** sklearn.preprocessing.PolynomialFeatures**

Generate a new feature matrix consisting of all polynomial combinations of

the features with degree less than or equal to the specified degree. For

example, if an input sample is two dimensional and of the form $[a, b]$,

the degree-2 polynomial features are $[1, a, b, a^2, ab, b^2]$.

PolynomialFeatures

Given two features a and b, PolynomialFeatures with degree=3 would add

a^2, a^3, b^2, b^3, as well as, ab, a^2b, ab^2!

. . .

Warning

PolynomialFeatures(degree=d) adds $\frac{(D+d)!}{d!D!}$ features,

where D is the original number of features.

Additionally, you have the option to engineer new features of your own.

Polynomial Regression

lin_reg = LinearRegression()
lin_reg = lin_reg.fit(X_poly, y)

X_new = np.linspace(-3, 3, 100).reshape(100, 1)
X_new_poly = poly_features.transform(X_new)
y_new = lin_reg.predict(X_new_poly)

plt.figure(figsize=(5, 3))
plt.plot(X, y, "b.")
plt.plot(X_new, y_new, "r-", linewidth=2, label="Predictions")
plt.xlabel("x_1")
plt.ylabel("y", rotation=0)
plt.legend(loc="upper left")
plt.axis([-3, 3, 0, 10])
plt.grid()
plt.show()

In [6]:

In [7]:

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

LinearRegression on PolynomialFeatures

lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)

Polynomial Regression

The data was generated according to the following equation, with the inclusion of

Gaussian noise.

$$ y = 0.5 x^2 - 1.0 x + 2.0 $$

Presented below is the learned model.

$$ \hat{y} = 0.56 x^2 + (-1.06) x + 1.78 $$

In [8]:

lin_reg.coef_, lin_reg.intercept_

(array([[-1.06633107, 0.56456263]]), array([1.78134581]))

1. Linearity is about the coefficients, not the raw inputs

Logistic regression is linear in its parameters (weights).

The decision boundary comes from:

$$ \hat{y_i} = \sigma(\theta_0 + \theta_1 z_i^{(1)} + \theta_2 z_i^{(2)} + \dots +

\theta_{D'} z_i^{(D')}) $$

where each $z_i^{(j)}$ is a feature.

If you define $z_i^{(j)}$ to be a polynomial function of the original variables

(e.g. $z_i^{(3)} = (x_i^{(1)})^2$), the model is still linear in the $z_i^{(j)}$.

2. PolynomialFeatures only changes the feature space

PolynomialFeatures maps input $(x_i^{(1)}, x_i^{(2)})$ to a new vector:

$(x_i^{(1)}, x_i^{(2)}, (x_i^{(1)})^2, x_i^{(1)}x_i^{(2)}, (x_i^{(2)})^2, \ldots)$.

Logistic regression then finds a linear decision boundary in this expanded feature

space.

When you map it back to the original $(x_i^{(1)}, x_i^{(2)})$ space, that “linear”

decision surface can appear curved or wiggly, but mathematically it’s still a

hyperplane in the transformed space.

Key message:

“Logistic regression always finds a linear boundary in the features you give it. If you feed

it polynomials, the linear boundary in that space looks nonlinear in the original space.”

Model Complexity
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline

plt.figure(figsize=(5, 3))

for style, width, degree in (("r-+", 2, 1), ("b--", 2, 2), ("g-",
1, 300)):
 polybig_features = PolynomialFeatures(degree=degree,
include_bias=False)
 std_scaler = StandardScaler()
 lin_reg = LinearRegression()
 polynomial_regression = make_pipeline(polybig_features,
std_scaler, lin_reg)
 polynomial_regression.fit(X, y)

In [10]:

 y_newbig = polynomial_regression.predict(X_new)
 label = f"{degree} degree{'s' if degree > 1 else ''}"
 plt.plot(X_new, y_newbig, style, label=label, linewidth=width)

plt.plot(X, y, "b.", linewidth=3)
plt.legend(loc="upper left")
plt.xlabel("x_1")
plt.ylabel("y", rotation=0)
plt.axis([-3, 3, 0, 10])
plt.grid()
plt.show()

A low loss value on the training set does not necessarily indicate a “better” model.

Attribution: 04_training_linear_models.ipynb

In this example, the linear regression model has high mean squared error (loss) on the

training set (red line). This suggests that the model makes numerous errors even on the

training data.

Conversely, the polynomial model with degree=300 exhibits a low mean squared error

(loss) on the training set (green line), implying that it makes few errors on the training

data.

However, the degree=300 polynomial model is likely to perform poorly on future

predictions. The green curve extends beyond the boundaries of the image on the y-axis.

For instance, for input values in the range of 2 to 3, the model predicts values exceeding

10 (as well as negative values), whereas the expected values should lie within the range

of 2 to 4.

This illustrative example may seem simplistic since the data is generated from a

quadratic equation and involves only a single attribute, making visualization

straightforward. However, it serves to highlight a key point relevant to more complex

https://github.com/ageron/handson-ml3/blob/main/04_training_linear_models.ipynb

models, such as deep neural networks. As the number of parameters increases, the

model’s capacity to fit the training data also increases, which can lead to overfitting if

not properly managed.

Under- and Over- Fitting

Underfitting:

Your model is too simple (here, linear).

Uninformative features.

Poor performance on both training and test data.

Overfitting:

Your model is too complex (tall decision tree, deep and wide neural networks,

etc.).

Too many features given the number of examples available.

Excellent performance on the training set, but poor performance on the test

set.

A model is said to underfit when it fails to capture the underlying structure of the data,

it performs poorly both on the training set and on unseen test data. Here are the main

ways this can happen:

Model capacity too low

Too simple hypothesis class: e.g., fitting a straight line (linear regression) to data

with a quadratic pattern.

Shallow architecture: using a single-layer perceptron for a highly non-linear

classification task.

Too few features: not providing the model with enough descriptive variables to

capture the signal.

Too much regularization

Excessive L2 (ridge) or L1 (lasso) penalty shrinks coefficients nearly to zero.

Dropout too high in neural networks.

Early stopping too soon before the model learns the patterns.

Optimization issues

Learning rate too small: model barely learns, stuck with high loss.

Learning rate too large: optimizer oscillates, never converges properly.

Too few training epochs/iterations: model doesn’t get enough updates to fit the

data.

Poor initialization (especially in non-convex problems like deep nets) can hinder

convergence.

Data-related causes

Label noise dominates signal: if the dataset is very noisy, even a good model looks

like it underfits.

Insufficient data volume: the model cannot generalize well because the training

set doesn’t capture the true structure.

Feature scaling issues: e.g., logistic regression or neural nets trained on raw,

unscaled features → poor convergence and fit.

Wrong feature engineering: missing interaction terms, polynomial terms,

embeddings, etc.

Algorithmic mismatches

Wrong loss function: e.g., using MSE for highly imbalanced classification instead of

log-loss.

Incompatible model choice: e.g., k-NN with k set too large, predicts majority

class almost always.

Too strong bias assumption: e.g., Naive Bayes assuming feature independence

when it is strongly violated.

Summary:

Underfitting happens whenever the model is too constrained (low capacity, too much

regularization, too little training) or when the training process fails (optimization/data

problems). You usually spot it when training loss remains high even after long training.

A model overfits when it learns not only the underlying structure of the training data but

also the noise and idiosyncrasies, leading to poor generalization on unseen data. Here

are the main ways this can happen:

Model capacity too high

Model is too flexible (e.g., very deep neural net on a tiny dataset).

Too many features relative to number of samples → high variance.

Adding high-degree polynomial features without sufficient data.

Too little regularization

Weak or no L1/L2 penalty allows weights to grow large.

Dropout rate too low or disabled.

Training too long

Model continues to minimize training loss far beyond the point where validation loss

bottoms out.

No early stopping → memorization of noise/outliers.

Data issues

Training set is too small, model memorizes instead of generalizing.

High label noise, model fits the errors.

Leakage of test information into training (e.g., improper preprocessing, scaling, or

feature construction).

Evaluation mismatch

Hyperparameters tuned directly on the test set, model adapts to that test set rather

than the underlying distribution.

Cross-validation folds not stratified, misleading generalization signals.

Algorithmic choices

k-NN with k=1 (memorizes training points).

Decision tree with no max depth or pruning.

Neural network with too many parameters relative to dataset size.

Summary:

Overfitting happens when the model has too much freedom, too little constraint, or

trains too long on a limited/noisy dataset. You recognize it when training loss is very

low but validation/test loss is much higher.

Learning Curves

One way to assess our models is to visualize the learning curves:

A learning curve shows the performance of our model, here using RMSE, on

both the training set and the test set.

Multiple measurements are obtained by repeatedly training the model on

larger and larger subsets of the data.

See: sklearn.model_selection.learning_curve.

Learning Curve – Underfitting
from sklearn.model_selection import learning_curve

train_sizes, train_scores, valid_scores = learning_curve(
 LinearRegression(), X, y, train_sizes=np.linspace(0.01, 1.0,

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html

40), cv=5,
 scoring="neg_root_mean_squared_error")

train_errors = -train_scores.mean(axis=1)
valid_errors = -valid_scores.mean(axis=1)

plt.figure(figsize=(6, 4)) # extra code – not needed, just
formatting
plt.plot(train_sizes, train_errors, "r-+", linewidth=2,
label="train")
plt.plot(train_sizes, valid_errors, "b-", linewidth=3,
label="test")

extra code – beautifies
plt.xlabel("Training set size")
plt.ylabel("RMSE")
plt.grid()
plt.legend(loc="upper right")
plt.axis([0, 80, 0, 2.5])
plt.show()

Polynomial with degree=1.

Poor performance on both training and test data.

Source code: 04_training_linear_models.ipynb.

This graph illustrates the learning curve for a linear regression model applied to data

generated from a quadratic equation, which serves as our ongoing example.

https://github.com/ageron/handson-ml3/blob/main/04_training_linear_models.ipynb

The horizontal axis represents the size of the training set. Initially, the linear regression

model is trained on a very small dataset, consisting of just one or a few examples, and

the Root Mean Square Error (RMSE) is plotted for both the training and test sets. The

size of the training set is then incrementally increased, a new model is trained, and the

performance is recorded. This procedure continues until the entire dataset is utilized.

Key observations from the graph include:

With only one or two examples, the model perfectly fits the training set, resulting in

low RMSE for the training data.

As the size of the training set increases, the model struggles to fit the training data

due to the quadratic nature of the data generation process. Consequently, the RMSE

for the training set rises and stabilizes at a higher level.

For small training sets, the model performs poorly on the test set due to inadequate

generalization, resulting in high RMSE.

As the training set size grows, the test set performance improves, indicated by

decreasing RMSE, until it reaches a point where further increases in training set size

do not yield significant improvements.

These learning curves are indicative of a model that is underfitting. Both the training and

test set RMSE curves plateau at relatively high values and remain close to each other, as

noted by Géron (2022).

Learning Curve – Overfitting

from sklearn.pipeline import make_pipeline

polynomial_regression = make_pipeline(
 PolynomialFeatures(degree=14, include_bias=False),
 LinearRegression())

train_sizes, train_scores, valid_scores = learning_curve(
 polynomial_regression, X, y, train_sizes=np.linspace(0.01, 1.0,
40), cv=5,
 scoring="neg_root_mean_squared_error")
extra code – generates and saves Figure 4–16

train_errors = -train_scores.mean(axis=1)
valid_errors = -valid_scores.mean(axis=1)

plt.figure(figsize=(6, 4))
plt.plot(train_sizes, train_errors, "r-+", linewidth=2,
label="train")
plt.plot(train_sizes, valid_errors, "b-", linewidth=3,
label="test")

plt.legend(loc="upper right")
plt.xlabel("Training set size")
plt.ylabel("RMSE")
plt.grid()
plt.axis([0, 80, 0, 2.5])
plt.show()

Polynomial with degree=14.

Excellent performance on the training set, but poor performance on the test set.

For a training set of up to 14 data points, the polynomial fits the training data

perfectly, resulting in an RMSE of zero.

The error on the training data in this instance is significantly lower.

A notable gap between the two curves indicates that the model performs

substantially better on the training data compared to the test data.

Overfitting - Deep Net - Loss

 In [18]:

Example from Chollet (2017) Chapter 3 (chapter04_getting-started-with-neural-

networks.ipynb, ipynb from 2021 edition).

Neural networks will be covered in detail later in our course. The graph presented here

illustrates the variation in the loss function as a deep learning model undergoes training.

This example utilizes the IMDB movie review sentiment classification dataset available in

Keras. The dataset comprises 25,000 movie reviews from IMDB, each labeled with a

sentiment (positive or negative).

The model consists of three dense layers with sizes 16, 16, and 1, respectively. It

includes a total of 160,305 trainable parameters.

The network is trained using mini-batch stochastic gradient descent with a batch size of

512. The horizontal axis represents the number of epochs, where each epoch indicates

that the model has seen the entire training set once. During each epoch, the stochastic

gradient descent algorithm updates the model parameters iteratively using mini-batches

of 512 examples.

I selected this example to illustrate that a neural network with with sufficient capacity

(number of parameters) can minimize training errors almost to zero, as reducing training

error is the primary objective of optimization. However, the graph clearly demonstrates

that beyond a certain point, the learned patterns become specific to the training set

https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/chapter04_getting-started-with-neural-networks.ipynb
https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/chapter04_getting-started-with-neural-networks.ipynb
https://keras.io/api/datasets/imdb/
https://keras.io/api/datasets/imdb/
https://www.imdb.com/

rather than general principles. Generalization, rather than mere memorization, is the

ultimate goal of machine learning.

Overfitting occurs when a model learns the details and noise in the training data to an

extent that it negatively impacts the model’s performance on new data. This can result in

a decision boundary that fits the training data too tightly, capturing noise and irrelevant

details rather than general patterns.

Overfitting - Deep Net - Accuracy

This graph similarly illustrates the variation in accuracy for both the training and test sets

as the model undergoes training.

Bias-Variance Tradeoff

Bias

Bias refers to the error introduced by approximating a real-world problem, which

may be complex, using a simplified model.

In [19]:

It represents the difference between the average prediction of the model and the

true outcome.

High bias can cause an algorithm to miss important patterns, leading to

underfitting.

Bias

$$ \text{Bias}(\hat{f}) = \mathbb{E}[\hat{f}(x)] - f(x) $$ where:

$\hat{f}(x)$ is the prediction made by the model,

$f(x)$ is the true function,

$\mathbb{E}[\hat{f}(x)]$ is the expected prediction over different datasets.

Variance

Variance measures the model’s sensitivity to fluctuations in the training data.

High variance indicates that the model is capturing noise as if it were a true

pattern, leading to overfitting.

It reflects how much the predictions of the model would vary if different training

data were used.

Variance

$$ \text{Variance}(\hat{f}) = \mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2] $$

where:

$\hat{f}(x)$ is the prediction made by the model,

$\mathbb{E}[\hat{f}(x)]$ is the expected prediction over different datasets.

Remarks

Statistical learning makes assumptions about the model, data distribution, and

noise to analytically derive expected values.

In practical applications, empirical techniques like cross-validation and

bootstrapping are employed to estimate bias and variance.

Bais-Variance Tradeoff

$$ \text{Error} = \text{Bias}^2 + \text{Variance} + \text{Irreducible Error} $$

Model selection aims to minimize bias, which arises from overly simplistic models,

and variance, which results from overly complex models prone to overfitting.

Ideally, with infinite data, both bias and variance could be reduced to zero.

However, in practice, data is typically noisy, and some irreducible error persists

due to unaccounted factors beyond the model’s scope.

Strive for a model complexity that captures essential patterns without tipping into

overfitting.

Bais-Variance Tradeoff

Attribution: Bigbossfarin, CC0, via Wikimedia Commons

Bais-Variance Tradeoff

https://commons.wikimedia.org/wiki/File:Bias_and_variance_contributing_to_total_error.svg

Attribution: Understanding the Bias-Variance Tradeoff by Scott Fortmann-Roe, June

2012.

High Bias, Low Variance

from sklearn.model_selection import KFold
from sklearn.metrics import mean_squared_error

def true_function(x):
 return np.sin(x)

def plot_fold_predictions(degree, X, y, X_grid, y_true_grid, n_splits=5, ran
 """
 For a given polynomial degree, perform KFold cross-validation,
 plot the individual fold predictions along with the average prediction
 and the true function (with y-axis limited to [-2, 2]),
 and return predictions and errors.
 """
 kf = KFold(n_splits=n_splits, shuffle=True, random_state=random_state)
 fold_predictions = [] # To store predictions on the evaluation grid for
 fold_errors = [] # To store test errors for each fold

In [20]:

https://scott.fortmann-roe.com/docs/BiasVariance.html

 for train_index, test_index in kf.split(X):
 poly = PolynomialFeatures(degree=degree)
 X_train_poly = poly.fit_transform(X[train_index])
 X_test_poly = poly.transform(X[test_index])
 X_grid_poly = poly.transform(X_grid)

 model = LinearRegression()
 model.fit(X_train_poly, y[train_index])

 # Predictions on the dense grid for bias-variance analysis
 y_pred_grid = model.predict(X_grid_poly)
 fold_predictions.append(y_pred_grid)

 # Test error on held-out data
 y_pred_test = model.predict(X_test_poly)
 fold_errors.append(mean_squared_error(y[test_index], y_pred_test))

 fold_predictions = np.array(fold_predictions)
 avg_prediction = np.mean(fold_predictions, axis=0)

 # Plot individual fold predictions with y-axis limited to [-2, 2]
 plt.figure(figsize=(8, 5))
 for i in range(n_splits):
 plt.plot(X_grid, fold_predictions[i], color='gray', alpha=0.5,
 label='Fold prediction' if i == 0 else "")
 plt.plot(X_grid, avg_prediction, color='red', linewidth=2, label='Averag
 plt.plot(X_grid, y_true_grid, color='blue', linewidth=2, label='True fun
 plt.scatter(X, y, color='black', s=20, label='Data points')
 plt.ylim(-2, 2)
 plt.title(f'Polynomial Degree {degree}')
 plt.xlabel('x')
 plt.ylabel('f(x)')
 plt.legend()
 plt.show()

 return fold_predictions, avg_prediction, fold_errors

--- Data Generation with Increased Noise and Reduced Sample Size ---
np.random.seed(0)
n_samples = 40 # Reduced sample size increases model sensitivity to trainin
X = np.linspace(0, 2 * np.pi, n_samples).reshape(-1, 1)
noise_std = 0.25 # Increased noise level amplifies prediction variability
y = true_function(X).ravel() + np.random.normal(0, noise_std, size=n_samples

Create a dense evaluation grid and compute the true function values
X_grid = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1)
y_true_grid = true_function(X_grid).ravel()

--- Plot Individual Fold Predictions for Selected Degrees ---
_ = plot_fold_predictions(1, X, y, X_grid, y_true_grid, n_splits=5)

High Bias: The model lacks complexity and, consequently, fails to capture the

underlying patterns in the data, resulting in a high average error.

Low Variance: The model exhibits insensitivity to variations in the dataset, which

manifests as low variance.

Low Bias, High Variance

_ = plot_fold_predictions(15, X, y, X_grid, y_true_grid, n_splits=5)In [21]:

Just Right

_ = plot_fold_predictions(3, X, y, X_grid, y_true_grid, n_splits=5)In [22]:

Bias, Variance, and CV Error

--- Compute Bias², Variance, and CV Error Across Degrees 1 to 10 ---
degrees = range(1, 10)
bias_list = []
variance_list = []
cv_error_list = []

for degree in degrees:
 kf = KFold(n_splits=5, shuffle=True, random_state=42)
 fold_predictions = []
 fold_errors = []

 for train_index, test_index in kf.split(X):
 poly = PolynomialFeatures(degree=degree)
 X_train_poly = poly.fit_transform(X[train_index])
 X_test_poly = poly.transform(X[test_index])
 X_grid_poly = poly.transform(X_grid)

 model = LinearRegression()
 model.fit(X_train_poly, y[train_index])

 y_pred_grid = model.predict(X_grid_poly)
 fold_predictions.append(y_pred_grid)

 y_pred_test = model.predict(X_test_poly)
 fold_errors.append(mean_squared_error(y[test_index], y_pred_test))

 fold_predictions = np.array(fold_predictions)
 mean_prediction = np.mean(fold_predictions, axis=0)

 # Bias²: Average squared difference between the average prediction and t
 bias_sq = np.mean((mean_prediction - y_true_grid)**2)
 # Variance: Average variance of the predictions across the evaluation gr
 variance = np.mean(np.var(fold_predictions, axis=0))
 # CV Error: Mean of the MSE on held-out test sets
 cv_error = np.mean(fold_errors)

 bias_list.append(bias_sq)
 variance_list.append(variance)
 cv_error_list.append(cv_error)

--- Plot Bias², Variance, and CV Error vs. Polynomial Degree ---
plt.figure(figsize=(8, 5))
plt.plot(degrees, bias_list, marker='o', label='Bias²')
plt.plot(degrees, variance_list, marker='o', label='Variance')
plt.plot(degrees, cv_error_list, marker='o', label='CV Error (MSE)')
plt.title('Bias, Variance, and CV Error vs. Polynomial Degree')
plt.xlabel('Polynomial Degree')
plt.ylabel('Error')
plt.ylim(0, 1)
plt.legend()
plt.show()

In [23]:

Regression Tree

from sklearn.tree import DecisionTreeRegressor

def plot_tree_fold_predictions(max_depth, X, y, X_grid, y_true_grid, n_split
 """
 For a given tree max_depth, perform KFold cross-validation with a Decisi
 plot the individual fold predictions along with the average prediction a
 The y-axis is limited to [-2, 2] for clarity.
 """
 kf = KFold(n_splits=n_splits, shuffle=True, random_state=random_state)
 fold_predictions = [] # Store predictions on the evaluation grid for ea
 fold_errors = [] # Store test errors for each fold

 for train_index, test_index in kf.split(X):
 X_train = X[train_index]
 X_test = X[test_index]

 model = DecisionTreeRegressor(max_depth=max_depth, random_state=rand
 model.fit(X_train, y[train_index])

 # Prediction on a dense evaluation grid
 y_pred_grid = model.predict(X_grid)
 fold_predictions.append(y_pred_grid)

 # Test error on held-out data
 y_pred_test = model.predict(X_test)
 fold_errors.append(mean_squared_error(y[test_index], y_pred_test))

In [24]:

 fold_predictions = np.array(fold_predictions)
 avg_prediction = np.mean(fold_predictions, axis=0)

 plt.figure(figsize=(8, 5))
 for i in range(n_splits):
 plt.plot(X_grid, fold_predictions[i], color='gray', alpha=0.5,
 label='Fold prediction' if i == 0 else "")
 plt.plot(X_grid, avg_prediction, color='red', linewidth=2, label='Averag
 plt.plot(X_grid, y_true_grid, color='blue', linewidth=2, label='True fun
 plt.scatter(X, y, color='black', s=20, label='Data points')
 plt.ylim(-2, 2)
 plt.title(f'Regression Tree (max_depth={max_depth})')
 plt.xlabel('x')
 plt.ylabel('f(x)')
 plt.legend()
 plt.show()

 return fold_predictions, avg_prediction, fold_errors

--- Plot Individual Fold Predictions for Selected Tree Depths ---
_ = plot_tree_fold_predictions(1, X, y, X_grid, y_true_grid, n_splits=5)

Regression Tree

_ = plot_tree_fold_predictions(10, X, y, X_grid, y_true_grid, n_splits=5)In [25]:

Regression Tree

_ = plot_tree_fold_predictions(3, X, y, X_grid, y_true_grid, n_splits=5)In [26]:

Bias, Variance, and CV Error

--- Compute Bias², Variance, and CV Error vs. Tree Depth ---
max_depths = range(1, 8)
bias_list = []
variance_list = []
cv_error_list = []

for depth in max_depths:
 kf = KFold(n_splits=5, shuffle=True, random_state=42)
 fold_predictions = []
 fold_errors = []

 for train_index, test_index in kf.split(X):
 X_train = X[train_index]
 X_test = X[test_index]

 model = DecisionTreeRegressor(max_depth=depth, random_state=42)
 model.fit(X_train, y[train_index])

 y_pred_grid = model.predict(X_grid)
 fold_predictions.append(y_pred_grid)

 y_pred_test = model.predict(X_test)
 fold_errors.append(mean_squared_error(y[test_index], y_pred_test))

 fold_predictions = np.array(fold_predictions)
 mean_prediction = np.mean(fold_predictions, axis=0)

 # Bias²: Mean squared difference between the average prediction and the
 bias_sq = np.mean((mean_prediction - y_true_grid)**2)
 # Variance: Average variance of predictions across the evaluation grid
 variance = np.mean(np.var(fold_predictions, axis=0))
 # CV Error: Average test error over folds
 cv_error = np.mean(fold_errors)

 bias_list.append(bias_sq)
 variance_list.append(variance)
 cv_error_list.append(cv_error)

plt.figure(figsize=(8, 5))
plt.plot(max_depths, bias_list, marker='o', label='Bias²')
plt.plot(max_depths, variance_list, marker='o', label='Variance')
plt.plot(max_depths, cv_error_list, marker='o', label='CV Error (MSE)')
plt.title('Bias, Variance, and CV Error vs. Regression Tree Depth')
plt.xlabel('Max Depth')
plt.ylabel('Error')
plt.ylim(0, 1)
plt.legend()
plt.show()

In [27]:

KNN Regression

from sklearn.neighbors import KNeighborsRegressor

def plot_knn_fold_predictions(n_neighbors, X, y, X_grid, y_true_grid, n_spli
 """
 For a given number of neighbors, perform KFold cross-validation using KN
 plot the predictions from each fold along with the average prediction an
 The y-axis is limited to [-2, 2] for clarity.
 """
 kf = KFold(n_splits=n_splits, shuffle=True, random_state=random_state)
 fold_predictions = [] # Store predictions on the evaluation grid for ea
 fold_errors = [] # Store test errors for each fold

 for train_index, test_index in kf.split(X):
 X_train = X[train_index]
 X_test = X[test_index]

 model = KNeighborsRegressor(n_neighbors=n_neighbors)
 model.fit(X_train, y[train_index])

 # Prediction on a dense evaluation grid for bias-variance analysis
 y_pred_grid = model.predict(X_grid)
 fold_predictions.append(y_pred_grid)

 # Test error on held-out data
 y_pred_test = model.predict(X_test)
 fold_errors.append(mean_squared_error(y[test_index], y_pred_test))

In [28]:

 fold_predictions = np.array(fold_predictions)
 avg_prediction = np.mean(fold_predictions, axis=0)

 # Plot individual fold predictions
 plt.figure(figsize=(8, 5))
 for i in range(n_splits):
 plt.plot(X_grid, fold_predictions[i], color='gray', alpha=0.5,
 label='Fold prediction' if i == 0 else "")
 plt.plot(X_grid, avg_prediction, color='red', linewidth=2, label='Averag
 plt.plot(X_grid, y_true_grid, color='blue', linewidth=2, label='True fun
 plt.scatter(X, y, color='black', s=20, label='Data points')
 plt.ylim(-2, 2)
 plt.title(f'KNN Regression (n_neighbors = {n_neighbors})')
 plt.xlabel('x')
 plt.ylabel('f(x)')
 plt.legend()
 plt.show()

 return fold_predictions, avg_prediction, fold_errors

--- Plot Individual Fold Predictions for Selected Values of k ---
_ = plot_knn_fold_predictions(1, X, y, X_grid, y_true_grid, n_splits=5)

KNN Regression

_ = plot_knn_fold_predictions(10, X, y, X_grid, y_true_grid, n_splits=5)In [29]:

KNN Regression

_ = plot_knn_fold_predictions(4, X, y, X_grid, y_true_grid, n_splits=5)In [30]:

Bias, Variance, and CV Error

--- Compute Bias², Variance, and CV Error vs. Number of Neighbors ---
neighbors_range = range(1, 21) # Vary k from 1 to 20
bias_list = []
variance_list = []
cv_error_list = []

for k in neighbors_range:
 kf = KFold(n_splits=5, shuffle=True, random_state=42)
 fold_predictions = []
 fold_errors = []

 for train_index, test_index in kf.split(X):
 X_train = X[train_index]
 X_test = X[test_index]

 model = KNeighborsRegressor(n_neighbors=k)
 model.fit(X_train, y[train_index])

 y_pred_grid = model.predict(X_grid)
 fold_predictions.append(y_pred_grid)

 y_pred_test = model.predict(X_test)
 fold_errors.append(mean_squared_error(y[test_index], y_pred_test))

 fold_predictions = np.array(fold_predictions)
 mean_prediction = np.mean(fold_predictions, axis=0)

 # Bias²: Mean squared difference between the average prediction and the
 bias_sq = np.mean((mean_prediction - y_true_grid)**2)
 # Variance: Average variance of predictions across the evaluation grid
 variance = np.mean(np.var(fold_predictions, axis=0))
 # CV Error: Average MSE on the held-out test sets
 cv_error = np.mean(fold_errors)

 bias_list.append(bias_sq)
 variance_list.append(variance)
 cv_error_list.append(cv_error)

--- Plot Bias², Variance, and CV Error vs. Number of Neighbors ---
plt.figure(figsize=(8, 5))
plt.plot(neighbors_range, bias_list, marker='o', label='Bias²')
plt.plot(neighbors_range, variance_list, marker='o', label='Variance')
plt.plot(neighbors_range, cv_error_list, marker='o', label='CV Error (MSE)')
plt.title('Bias, Variance, and CV Error vs. Number of Neighbors (KNN)')
plt.xlabel('Number of Neighbors')
plt.ylabel('Error')
plt.ylim(0, 1)
plt.legend()
plt.show()

In [31]:

How do you explain that Bias2 increases with the value of k?

At first, this might seem counterintuitive, but it’s a direct consequence of how KNN

works.

With a very low k (e.g., $k = 1$), the model makes predictions based on the single

closest neighbor, capturing almost every detail of the training data—this yields low bias

but high variance because the predictions are highly sensitive to noise.

In contrast, a higher k forces the regressor to average over many neighbors, which

smooths out the predictions. This results in a simpler, less flexible model that might not

capture local nuances (high bias) but is less sensitive to fluctuations in the training set

(low variance).

Prologue

Summary

Evaluated model complexity and its impact on performance.

Illustrated underfitting, overfitting, and the bias–variance tradeoff.

Demonstrated learning curves and cross-validation across diverse models (linear,

polynomial, tree, KNN, deep nets).

Next lecture

Machine Learning Engineering

References

Ambroise, Christophe, and Geoffrey J. McLachlan. 2002. “Selection bias in gene

extraction on the basis of microarray gene-expression data.” Proceedings of the National

Academy of Sciences 99 (10): 6562–66. https://doi.org/10.1073/pnas.102102699.

Burkov, A. 2020. Machine Learning Engineering. True Positive Incorporated.

https://books.google.ca/books?id=HeXizQEACAAJ.

Burkov, Andriy. 2019. The Hundred-Page Machine Learning Book. Andriy Burkov.

Chollet, François. 2017. Deep Learning with Python. Manning Publications.

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow. 3rd ed. O’Reilly Media, Inc.

Libbrecht, Maxwell W, and William Stafford Noble. 2015. “Machine learning applications

in genetics and genomics.” Nature Reviews Genetics 16 (6): 321–32.

https://doi.org/10.1038/nrg3920.

Statnikov, Alexander, Constantin F. Aliferis, Ioannis Tsamardinos, Douglas Hardin, and

Shawn Levy. 2004. “A comprehensive evaluation of multicategory classification methods

for microarray gene expression cancer diagnosis.” Bioinformatics 21 (5): 631–43.

https://doi.org/10.1093/bioinformatics/bti033.

Appendix: Feature Engineering and
Classification

Data

Generating a dataset comprising an inner circle (class 1) and an outer ring (class 0).

Generate and plot the "circles" dataset
import matplotlib.pyplot as plt
from sklearn.datasets import make_circles

Generate synthetic data
X, y = make_circles(n_samples=1200, factor=0.35, noise=0.06, random_state=42

Separate coordinates for plotting
x1, x2 = X[:, 0], X[:, 1]

In [32]:

https://doi.org/10.1073/pnas.102102699
https://books.google.ca/books?id=HeXizQEACAAJ
https://doi.org/10.1038/nrg3920
https://doi.org/10.1093/bioinformatics/bti033

Plot the two classes
plt.figure(figsize=(4, 4))
plt.scatter(x1[y==0], x2[y==0], color="C0", label="class 0 (outer ring)")
plt.scatter(x1[y==1], x2[y==1], color="C1", label="class 1 (inner circle)")
plt.xlabel("x₁")
plt.ylabel("x₂")
plt.title("Dataset generated with make_circles")
plt.axis("equal") # ensures circles look round
plt.legend()
plt.show()

Clearly, this dataset is not linearly separable in (x_1, x_2)!

Feature engineering

When using a linear classifier like LogisticRegression , it is not possible to derive

parameters that enable accurate classification of the given examples.

We could incorporate two additional features, x_1^2 and x_2^2. This allows for the

classification of examples using logistic regression. However, the feature space becomes

four-dimensional, complicating direct visualization.

Feature engineering (continued)

In this notebook, we introduce a single feature specifically designed to facilitate

visualization. $$ r = x_1^2 + x_2^2, $$ (r) represents the squared distance from the

origin — essentially the radius squared in polar coordinates.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Intuition

Each point in the original 2-D plane has coordinates (x_1, x_2).

If you express those same coordinates in polar form, you have

$$ x_1 = r^{1/2} \cos\theta, \quad x_2 = r^{1/2} \sin\theta, $$ or more conventionally,

$r_{\text{polar}} = \sqrt{x_1^2 + x_2^2}$.

Here, we define $r = x_1^2 + x_2^2$, i.e., the square of that radius.

Using r instead of \sqrt{r} keeps the mapping differentiable and avoids square roots

in the model.

Why it’s useful

In the “circle vs. ring” dataset:

Points from the inner circle are close to the origin, small r.

Points from the outer ring are farther away, large r.

Thus, the problem that is non-linear in (x_1, x_2) becomes linearly separable in r:

$$ \text{inner if } r < r^*, \quad \text{outer if } r > r^*. $$

So r is a feature encoding the radial distance, allowing a linear model like logistic

regression to separate the classes with a single threshold in 1-D.

3D view

import numpy as np
from sklearn.datasets import make_circles
from sklearn.linear_model import LogisticRegression
import plotly.graph_objects as go

--- our new feature ---
r = x1**2 + x2**2

--- fit logistic on r only and get threshold plane ---

clf = LogisticRegression().fit(r.reshape(-1,1), y)
w = float(clf.coef_[0][0]); b = float(clf.intercept_[0])
r_thresh = -b / w

--- 3D scatter of (x1, x2, r) ---

scatter = go.Scatter3d(
 x=x1, y=x2, z=r,
 mode="markers",

In [33]:

 marker=dict(size=3, color=y, colorscale="Viridis", showscale=False),
 hovertemplate="x1=%{x:.3f}
x2=%{y:.3f}
r=%{z:.3f}<extra></extra>",
 name="points"
)

--- horizontal plane z = r_thresh ---

gx = np.linspace(x1.min()-0.2, x1.max()+0.2, 50)
gy = np.linspace(x2.min()-0.2, x2.max()+0.2, 50)
GX, GY = np.meshgrid(gx, gy)
GZ = np.full_like(GX, r_thresh)

plane = go.Surface(
 x=GX, y=GY, z=GZ,
 opacity=0.35, showscale=False,
 hoverinfo="skip",
 name="p=0.5 plane"
)

fig = go.Figure(data=[plane, scatter])
fig.update_scenes(
 xaxis_title="x₁", yaxis_title="x₂", zaxis_title="r = x₁² + x₂²",
 aspectmode="cube",
 camera=dict(eye=dict(x=1.6, y=1.6, z=0.9))
)
fig.update_layout(margin=dict(l=0,r=0,b=0,t=30), title=f"Decision plane at r
fig

Unfotunately, plotly graphical objects can only be visualized in HTML, no
TODO: Explore https://plotly.com/python/static-image-export/, perhaps thi

Decision plane at r* ≈ 0.545

