Model Evaluation and Hyperparameter
Tuning

CSI 4106 - Fall 2025

Marcel Turcotte
Version: Sep 21, 2025 15:55

Preamble

Message of the Day

7/\\

EPFL ‘Eﬂizﬁnch \3»30 Gl

|
‘o)
o—o° ‘ s o)

Apertus: a fully open, transparent, multilingual language model, ETH ZUrich, Press
Release, 2025-09-02.

EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS)
released Apertus 2 September, Switzerland's first large-scale, open,
multilingual language model — a milestone in generative Al for
transparency and diversity.

o Www.swiss-ai.org/apertus
e Downloads available at Hugging Face
e Public access

Should Canada undertake such an extensive project?

https://ethz.ch/en/news-and-events/eth-news/news/2025/09/press-release-apertus-a-fully-open-transparent-multilingual-language-model.html
https://www.swiss-ai.org/apertus
https://huggingface.co/collections/swiss-ai/apertus-llm-68b699e65415c231ace3b059
https://publicai.co/

Canada is recognized for its exceptional Al research, supported by several renowned
research institutions and scholars. Notable examples include:

e The Vector Institute in Toronto, which is home to distinguished researchers like
Geoffrey Hinton, a recipient of the 2018 Turing Award for his pioneering work in
deep learning and the 2024 Nobel Prize in Physics.

e Mila in Montréal, led by Yoshua Bengio, another 2018 Turing Award laureate
recognized for his contributions to deep learning.

e The Alberta Machine Intelligence Institute (Amii), where Richard S. Sutton is a key
figure and was awarded the 2024 Turing Award for his influential work in
reinforcement learning.

These institutions and individuals underscore Canada'’s leadership and ongoing
commitment to advancing artificial intelligence research.

The Digital Research Alliance of Canada, supported by a $2 billion commitment from the
Government of Canada in 2024, provides cutting-edge infrastructure for advanced
research. Notably, the high-performance computing resource, Nibi, was launched on
July 31, 2025. It features 134,400 CPU cores and 288 NVIDIA H100 GPUs, significantly
enhancing computational capacity. For further technical specifications, please refer to
the technical documentation.

Learning Objectives

1. Understand the Purpose of Data Splitting:
e Describe the roles of the training, validation, and test sets in model evaluation.
e Explain why and how datasets are divided for effective model training and
evaluation.
2. Explain Cross-Validation Techniques:
e Define cross-validation and its importance in model evaluation.
e lllustrate the process of k-fold cross-validation and its advantages over a single
train-test split.
e Discuss the concepts of underfitting and overfitting in the context of cross-
validation.
3. Hyperparameter Tuning:
e Explain the difference between model parameters and hyperparameters.
e Describe methods for tuning hyperparameters, including grid search and
randomized search.
e Implement hyperparameter tuning using GridSearchCV in scikit-learn.
4. Evaluate Model Performance:
¢ Interpret cross-validation results and understand metrics like mean and
standard deviation of scores.

https://vectorinstitute.ai/
https://vectorinstitute.ai/team/geoffrey-hinton/
https://mila.quebec/en
https://mila.quebec/en/directory/yoshua-bengio
https://www.amii.ca/
https://www.amii.ca/people/richard-s-sutton
https://www.alliancecan.ca/en
https://ised-isde.canada.ca/site/ised/en/public-consultations/securing-canadas-ai-advantage-foundational-blueprint
https://ised-isde.canada.ca/site/ised/en/public-consultations/securing-canadas-ai-advantage-foundational-blueprint
https://docs.alliancecan.ca/wiki/Nibi
https://docs.alliancecan.ca/wiki/Technical_documentation

e Discuss how cross-validation helps in assessing model generalization and
reducing variability.
5. Machine Learning Engineering Workflow:
e QOutline the steps involved in preparing data for machine learning models.
e Utilize scikit-learn pipelines for efficient data preprocessing and model training.
e Emphasize the significance of consistent data transformations across training
and production environments.
6. Critical Evaluation of Machine Learning Models:
e Assess the limitations and challenges associated with hyperparameter tuning
and model selection.

e Recognize potential pitfalls in data preprocessing, such as incorrect handling of
missing values or inconsistent encoding.

e Advocate for thorough testing and validation to ensure model reliability and
generalizability.
7. Integrate Knowledge in Practical Applications:

e Apply the learned concepts to real-world datasets (e.g., OpenML datasets like
‘diabetes’ and ‘adult’).

e Interpret and analyze the results of model evaluations and experiments.
e Develop a comprehensive understanding of the end-to-end machine learning
pipeline.

The above learning objectives have been generated by OpenAl’'s model, o1, based on the
lecture content.

Introduction

Dataset - openml

** www.openml.org**

OpenML is an open platform for sharing datasets, algorithms, and
experiments - to learn how to learn better, together.

import numpy as np
np.random.seed(42)

from sklearn.datasets import fetch_openml

diabetes = fetch_openml(name='diabetes', version=1)
print(diabetes.DESCR)

https://openai.com/index/introducing-openai-o1-preview/
https://www.openml.org/

Today's dataset is the PIMA dataset, which contains 768 instances and 8 numerical
attributes. The numerical nature of these attributes facilitates our analysis. Additionally,
since the data originates from a published paper, it likely reflects careful data collection,
potentially leading to robust results, as the authors would have needed high-quality data
to support their publication.

Dataset - return_X_y

fetch_openml returnsa Bunch ,a DataFrame,or X and y

from sklearn.datasets import fetch_openml

X, y = fetch_openml(name='diabetes', version=1, return_X_y=True)

Mild imbalance (ratio less than 3 or 4)

print(y.value_counts())

class

tested_negative 500
tested_positive 268
Name: count, dtype: int64

Converting the target labels to 0 and 1

y = y.map({'tested_negative': 0, 'tested_positive': 1})

Cross-evaluation

Training and test set

Sometimes called holdout method.

e Guideline: Typically, allocate 80% of your dataset for training and reserve the
remaining 20% for testing.

¢ Training Set: This subset of data is utilized to train your model.

e Test Set: This is an independent subset used exclusively at the final stage to
assess the model's performance.

Common Training and Testing Ratios

1. 80:20 Split:
e Training Set: 80% of the data
e Testing Set: 20% of the data
e This is a widely used default split that provides a balance between having
enough data to train the model and enough data to evaluate its performance.
2. 90:10 Split:
e Training Set: 90% of the data
e Testing Set: 10% of the data
e This split might be used when the dataset is very large, ensuring a substantial
amount of data for training while still having a decent-sized test set.

Considerations for Choosing the Split Ratio

1. Dataset Size:
e For large datasets, a smaller proportion can be reserved for testing (e.g., 90:10)
since even 10% of a large dataset can provide a robust evaluation.
2. Model Complexity:
e Complex models with many parameters may require more training data to avoid
overfitting, suggesting a larger training set.
3. Validation Set:
e See discussion below.
4. Imbalanced Datasets:
e For imbalanced datasets, it's essential to ensure that both the training and
testing sets represent the class distribution adequately. Stratified sampling
can be used to maintain the class proportions in both sets.

Training and test set

Training Error:

e Generally tends to be low
e Achieved by optimizing learning algorithms to minimize error through parameter
adjustments (e.g., weights)

Training and test set

Generalization Error: The error rate observed when the model is evaluated on new,
unseen data.

Training and test set

Underfitting:

e High training error
e Model is too simple to capture underlying patterns
e Poor performance on both training and new data

Overfitting:

e Low training error, but high generalization error
o Model captures noise or irrelevant patterns
e Poor performance on new, unseen data

Definition

Cross-validation is a method used to evaluate and improve the performance of machine
learning models.

It involves partitioning the dataset into multiple subsets, training the model on some
subsets while validating it on the remaining ones.

k-fold cross-validation

1. Divide the dataset into k equally sized parts (folds).
2. Training and validation:
e For each iteration, one fold is used as the validation set, the remaining k-1
folds are used as the training set.
3. Evaluation: The model's performance is evaluated in each iteration, resulting in k
performance measures.

4. Aggregation: Statistics are calculated based on k performance measures.
Common choices for the value of k are 3, 5, 7, and 10.

In science, to estimate the value of a constant, it is common to repeat the experiment
multiple times in order to calculate the mean and standard deviation of the obtained
measurements. A high variance raises questions about the reliability of the experiment.
Similarly, k-fold cross-validation generates k distinct evaluations. This method not only
provides a more accurate estimate of the model's performance but also assesses its
robustness against data variability.

3-Fold Cross-validation

3-Fold Cross-validation

Iteration 1 Validation

Iteration 2 Validation

Iteration 3 Validation

T
Fold 1 Fold 2 Fold 3

With each iteration, 2/3 of the dataset is used for training and 1/3 for validation.

Each row of the table represents an iteration within the k-fold cross-validation process,
with the number of iterations equating to the number of folds. In each iteration, one fold
is designated for validation, while the remaining k& — 1 folds are utilized for training the
model.

5-Fold Cross-validation

B-Fold Cross-validation

Tteration 1 4 VYalidation Train

Tteration 2 Validation Train

Iteration 3 Validation Train Train

Iteration 4 Validation

Iteration 5 Train Train Validation

Fold 1 Fold 2 Fold 3 Fold 4 Fold B

With each iteration, 4/5 of the dataset is used for training and 1/5 for validation.

More Reliable Model Evaluation

e More reliable estimate of model performance compared to a single train-test split.

e Reduces the variability associated with a single split, leading to a more stable and
unbiased evaluation.

e For large values of k[1], consider the average, variance, and confidence interval.

Better Generalization

e Helps in assessing how the model generalizes to an independent dataset.
e |t ensures that the model’s performance is not overly optimistic or pessimistic by
averaging results over multiple folds.

Efficient Use of Data

e Particularly beneficial for small datasets, cross-validation ensures that every data
point is used for both training and validation.

e This maximizes the use of available data, leading to more accurate and reliable
model training.

Some examples are more informative for learning algorithms, sometimes those near the
decision boundary.

Hyperparameter Tuning

e Commonly used during hyperparameter tuning, allowing for the selection of the
best model parameters based on their performance across multiple folds.
¢ This helps in identifying the optimal configuration that balances bias and variance.

Challenges

e Computational Cost: Requires multiple model trainings.
= Leave-One-Out (LOO): Extreme case where (k=N).
e Class Imbalance: Folds may not represent minority classes.
= Use Stratified Cross-Validation to maintain class proportions.
o Complexity: Error-prone implementation, especially for nested cross-validation,
bootstraps, or integration into larger pipelines.

Leave-one-out cross-validation (LOO-CV) can lead to overoptimistic performance
evaluation, particularly in certain contexts.

Here's why:

1. *xHigh Variancexx: In LO0-CV, each iteration uses almost
all the data for training, leaving only one instance for
testing. This can result in high variance in the test error
across iterations because the model is trained on nearly the
full dataset. Since each training set is very similar to the
full dataset, it can lead to overly optimistic estimates of
generalization error, especially when the dataset is small or
the model has high variance (e.g., decision trees or k-
nearest neighbors).

2. xkxQverfittingxx: Since LOO-CV uses nearly the entire
dataset for training in each iteration, complex models
(especially ones prone to overfitting) can fit very closely
to the data, which might result in a low training error but a
misleadingly low test error in some cases.

3. kkLimited assessment of generalizationk*: LO0-CV might
not give a reliable estimate of how well the model
generalizes to completely unseen data because the difference
between the training set and the full dataset is minimal,
leading to a smaller gap between training and test
performance.

In practice, this can make the evaluation appear more optimistic than it would be with
more robust methods like k-fold cross-validation, where the test sets are larger, and the

model has less opportunity to overfit the training data.

Stratified (in cross-validation): a sampling strategy where each fold preserves the
class distribution of the full dataset, ensuring that every class is represented
proportionally in both training and validation splits.

cross_val_score

[1] 10-fold cross-validation.

from sklearn import tree

clf = tree.DecisionTreeClassifier()

from sklearn.model_selection import cross_val_score
clf_scores = cross_val_score(clf, X, y, cv=5)
print("\nScores:", clf_scores)

print(f"\nMean: {clf_scores.mean():.2f}")
print(f"\nStandard deviation: {clf_scores.std():.2f}")

Scores: [0.71428571 0.66883117 0.71428571 0.79738562 0.73202614]
Mean: 0.73

Standard deviation: 0.04

sklearn.model_selection.cross_val_score, see also cross_validate.

As previously discussed, a significant limitation of decision trees is their propensity for
overfitting, which leads to high variance when applied to new datasets. This issue is
evident in the observed performance variability, with accuracy ranging from 67% to
79%, which is undesirable for achieving robust model generalization.

Hyperparameter tuning

Workflow

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html#sklearn.model_selection.cross_validate

In

Attribution: Cross-validation: evaluating estimator performance

The above image implicitly introduces three categories of data subsets: training,
validation, and test.

Workflow - implementation

from sklearn.datasets import fetch_openml

X, y = fetch_openml(name='diabetes', version=1, return_X_y=True)

y = y.map({'tested_negative': 0, 'tested_positive': 1})

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

To maintain simplicity in these lecture notes, we have not applied any pre-processing
steps.

Definition

A hyperparameter is a configuration external to the model that is set prior to the
training process and governs the learning process, influencing model performance and
complexity.

https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation

The weights of a model, which are learned by the learning algorithm, are often referred
to as the model’s parameters. To avoid confusion, user-defined parameters, such as
the learning rate o, are termed hyperparameters. Unlike model parameters,
hyperparameters are not learned by the learning algorithm.

Hyperparameters - Decision Tree

e criterion: gini, entropy, log_loss , measure the quality of a split.
e max_depth : limits the number of levels in the tree to prevent overfitting.

See: DecisionTreeClassifier

Hyperparameters - Logistic Regression

e penalty: 11 or 12, helpsin preventing overfitting.

e solver: liblinear, newton-cg, lbfgs, sag, saga.

e max_iter : maximum number of iterations taken for the solvers to converge.
e tol : stopping criteria, smaller values mean higher precision.

See: LogisticRegression and SGDClassifier.

Hyperparameters - KNN

e n_neighbors : number of neighbors to use for k-neighbors queries.
e weights: uniform or distance , equal weight or distance-based weight.

See: KNeighborsClassifier

Experiment: max_depth

for value in [3, 5, 7, Nonel:
clf = tree.DecisionTreeClassifier(max_depth=value)

clf_scores = cross_val_score(clf, X_train, y_train, cv=10)
print("\nmax_depth = ", value)
print(f"Mean: {clf_scores.mean():.2f}")

print(f"Standard deviation: {clf_scores.std():.2f}")

https://scikit-learn.org/dev/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/1.5/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/1.5/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/dev/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

max_depth = 3
Mean: 0.74
Standard deviation: 0.04

max_depth = 5
Mean: 0.76
Standard deviation: 0.04

max_depth = 7

Mean: 0.73
Standard deviation: 0.04

max_depth = None

Mean: 0.71
Standard deviation: 0.05

Experiment: criterion

for value in ["gini", "entropy", "log_loss"]:
clf = tree.DecisionTreeClassifier(max_depth=5, criterion=value)
clf_scores = cross_val_score(clf, X_train, y_train, cv=10)
print(*\ncriterion = ", value)

print(f"Mean: {clf_scores.mean():.2f}")
print(f"Standard deviation: {clf_scores.std():.2f}")

criterion = gini

Mean: 0.76
Standard deviation: 0.04

criterion = entropy
Mean: 0.75

Standard deviation: 0.05
criterion = log_loss

Mean: 0.75
Standard deviation: 0.05

For this specific problem and dataset, the criterion parameter has a limited impact
on the learning process.

Experiment: n_neighbors

from sklearn.neighbors import KNeighborsClassifier
for value in range(1, 11):
clf = KNeighborsClassifier(n_neighbors=value)

clf_scores = cross_val_score(clf, X_train, y_train, cv=10)

print("\nn_neighbors = ", value)
print(f"Mean: {clf_scores.mean():.2f}")
print(f"Standard deviation: {clf_scores.std():.2f}")

n_neighbors = 1
Mean: 0.67
Standard deviation: 0.05

n_neighbors = 2
Mean: 0.71
Standard deviation: 0.03

n_neighbors = 3
Mean: 0.69
Standard deviation: 0.05

n_neighbors = 4
Mean: 0.73
Standard deviation: 0.03

n_neighbors = 5
Mean: 0.72
Standard deviation: 0.03

n_neighbors = 6

Mean: 0.73

Standard deviation: 0.05
n_neighbors = 7

Mean: 0.74

Standard deviation: 0.04
n_neighbors = 8

Mean: 0.75

Standard deviation: 0.04
n_neighbors = 9

Mean: 0.73

Standard deviation: 0.05
n_neighbors = 10

Mean: 0.73
Standard deviation: 0.04

Experiment: weights

from sklearn.neighbors import KNeighborsClassifier
for value in ["uniform", "distance"]:
clf = KNeighborsClassifier(n_neighbors=5, weights=value)

clf_scores = cross_val_score(clf, X_train, y_train, cv=10)

print("\nweights = ", value)
print(f"Mean: {clf_scores.mean():.2f}")
print(f"Standard deviation: {clf_scores.std():.2f}")

weights = wuniform
Mean: 0.72
Standard deviation: 0.03

weights = distance

Mean: 0.73

Standard deviation: 0.04
For this specific problem and dataset, the weights parameter has a limited impact on
the learning process.

At this point, you might hypothesize that certain combinations of hyperparameters could
be more optimal than others.

Hyperparameter Tuning: Grid Search

e Many hyperparameters need tuning

= Major disadvantage of ML algorithms
¢ Manual exploration of combinations is tedious

e Grid search is more systematic
1. Enumerate all possible hyperparameter combinations
2. Train on training set, evaluate on validation set

Initially, try powers of 2 or 10. Next, refine with grid search near optimal values if time
permits.

The training set referred to here is different from the one previously mentioned. In
each iteration of the k-fold cross-validation process, a unique training and validation
set is created.

In some contexts, the choice of the model itself can be considered a hyperparameter.
For instance, when performing model selection within a machine learning pipeline,
different algorithms (e.g., decision trees, support vector machines, neural networks) can
be treated as hyperparameters. This approach allows for the selection of the best-
performing model through automated processes such as grid search or random search,
alongside the tuning of other hyperparameters.

Thus, while traditionally hyperparameters refer to settings within a specific model, the
model choice can also be incorporated into hyperparameter optimization frameworks.

As will be discussed later, the choice of the number of layers and the number of nodes
are often considered hyperparameters when training deep learning algorithms.

GridSearchCV

from sklearn.model_selection import GridSearchCV
param_grid = [

{'max_depth': range(1, 10),

'criterion': ["gini", "entropy", "log_loss"1}
]
clf = tree.DecisionTreeClassifier()
grid_search = GridSearchCV(clf, param_grid, cv=5)

grid_search.fit(X_train, y_train)

(grid_search.best_params_, grid_search.best_score_)

({'criterion': 'gini', 'max_depth': 5}, np.float64(0.7481910124074653))

GridSearchCV

param_grid = [
{'n_neighbors': range(1, 15),
'weights': ["uniform", "distance"]}
]
clf = KNeighborsClassifier()
grid_search = GridSearchCV(clf, param_grid, cv=5)

grid_search.fit(X_train, y_train)

(grid_search.best_params_, grid_search.best_score_)

({'n_neighbors': 14, 'weights': 'uniform'}, np.float64(0.7554165363361485))

The variable param_grid contains a dictionary specifying the names of the
parameters to be tuned, along with the respective values to be tested.

In this instance, the parameters n_neighbors and weights are being tuned.
However, additional parameters could be included if necessary.

GridSearchCV

from sklearn.linear_model import LogisticRegression

2 %5 x5 % 3 = 150 tests!

param_grid = [
{'penalty': ["11", "12", None],
'solver' : ['liblinear', 'newton-cg', 'lbfgs', 'sag', 'saga'l,
'max_iter' : [100, 200, 400, 800, 1600],
'tol' : [0.01, 0.001, 0.0001]1}
|

clf = LogisticRegression()
grid_search = GridSearchCV(clf, param_grid, cv=5)
grid_search.fit(X_train, y_train)

(grid_search.best_params_, grid_search.best_score_)

({'max_iter': 100, 'penalty': '12', 'solver': 'newton-cg', 'tol': 0.001},
np.float64(0.7756646856427901))

Randomized Search

e **| arge number of combinations **(many hyperparameters, many values)
¢ Use RandomizedSearchCV:
= Supply list of values or probability distribution for hyperparameters
= Specify number of iterations (combinations to try)
= Predictable execution time

See: Comparing randomized search and grid search for hyperparameter estimation.

Workflow

https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html

Attribution: Cross-validation: evaluating estimator performance

As the ongoing example illustrates, in addition to evaluating various hyperparameter
values, multiple models can also be tested.

Finally, we proceed with testing

In [18]: clf = LogisticRegression(max_iter=100, penalty='12", solver='newton-cg', tol
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))

precision recall fl-score support

0 0.83 0.83 0.83 52

1 0.64 0.64 0.64 25

accuracy Q.77 77
macro avg 0.73 0.73 0.73 77
weighted avg 0.77 0.77 0.77 77

It appears that we are facing a class imbalance issue, which should have been
identified earlier in our workflow!

https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation

Prologue

Summary

¢ Training Set Size: Impact on model efficacy and generalization.
e Attribute Encoding: Evaluation of techniques to capture biological phenomena.
¢ Preprocessing:

= Data Scaling

= Handling Missing Values

= Managing Class Imbalance

Next lecture

o We will further discuss machine learning engineering.

References

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th
ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

