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Preamble

Message of the Day

Apertus: a fully open, transparent, multilingual language model, ETH Zürich, Press

Release, 2025-09-02.

EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS)

released Apertus 2 September, Switzerland’s first large-scale, open,

multilingual language model — a milestone in generative AI for

transparency and diversity.

www.swiss-ai.org/apertus

Downloads available at Hugging Face

Public access

Should Canada undertake such an extensive project?

https://ethz.ch/en/news-and-events/eth-news/news/2025/09/press-release-apertus-a-fully-open-transparent-multilingual-language-model.html
https://www.swiss-ai.org/apertus
https://huggingface.co/collections/swiss-ai/apertus-llm-68b699e65415c231ace3b059
https://publicai.co/


Canada is recognized for its exceptional AI research, supported by several renowned

research institutions and scholars. Notable examples include:

The Vector Institute in Toronto, which is home to distinguished researchers like

Geoffrey Hinton, a recipient of the 2018 Turing Award for his pioneering work in

deep learning and the 2024 Nobel Prize in Physics.

Mila in Montréal, led by Yoshua Bengio, another 2018 Turing Award laureate

recognized for his contributions to deep learning.

The Alberta Machine Intelligence Institute (Amii), where Richard S. Sutton is a key

figure and was awarded the 2024 Turing Award for his influential work in

reinforcement learning.

These institutions and individuals underscore Canada’s leadership and ongoing

commitment to advancing artificial intelligence research.

The Digital Research Alliance of Canada, supported by a $2 billion commitment from the

Government of Canada in 2024, provides cutting-edge infrastructure for advanced

research. Notably, the high-performance computing resource, Nibi, was launched on

July 31, 2025. It features 134,400 CPU cores and 288 NVIDIA H100 GPUs, significantly

enhancing computational capacity. For further technical specifications, please refer to

the technical documentation.

Learning Objectives

1. Understand the Purpose of Data Splitting:

Describe the roles of the training, validation, and test sets in model evaluation.

Explain why and how datasets are divided for effective model training and

evaluation.

2. Explain Cross-Validation Techniques:

Define cross-validation and its importance in model evaluation.

Illustrate the process of -fold cross-validation and its advantages over a single

train-test split.

Discuss the concepts of underfitting and overfitting in the context of cross-

validation.

3. Hyperparameter Tuning:

Explain the difference between model parameters and hyperparameters.

Describe methods for tuning hyperparameters, including grid search and

randomized search.

Implement hyperparameter tuning using GridSearchCV  in scikit-learn.

4. Evaluate Model Performance:

Interpret cross-validation results and understand metrics like mean and

standard deviation of scores.
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https://vectorinstitute.ai/team/geoffrey-hinton/
https://mila.quebec/en
https://mila.quebec/en/directory/yoshua-bengio
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https://docs.alliancecan.ca/wiki/Nibi
https://docs.alliancecan.ca/wiki/Technical_documentation


Discuss how cross-validation helps in assessing model generalization and

reducing variability.

5. Machine Learning Engineering Workflow:

Outline the steps involved in preparing data for machine learning models.

Utilize scikit-learn pipelines for efficient data preprocessing and model training.

Emphasize the significance of consistent data transformations across training

and production environments.

6. Critical Evaluation of Machine Learning Models:

Assess the limitations and challenges associated with hyperparameter tuning

and model selection.

Recognize potential pitfalls in data preprocessing, such as incorrect handling of

missing values or inconsistent encoding.

Advocate for thorough testing and validation to ensure model reliability and

generalizability.

7. Integrate Knowledge in Practical Applications:

Apply the learned concepts to real-world datasets (e.g., OpenML datasets like

‘diabetes’ and ‘adult’).

Interpret and analyze the results of model evaluations and experiments.

Develop a comprehensive understanding of the end-to-end machine learning

pipeline.

The above learning objectives have been generated by OpenAI’s model, o1, based on the

lecture content.

Introduction

Dataset - openml

** www.openml.org**

OpenML is an open platform for sharing datasets, algorithms, and

experiments - to learn how to learn better, together.

. . .

import numpy as np
np.random.seed(42)

from sklearn.datasets import fetch_openml

diabetes = fetch_openml(name='diabetes', version=1)
print(diabetes.DESCR)

In [1]:

https://openai.com/index/introducing-openai-o1-preview/
https://www.openml.org/


Today’s dataset is the PIMA dataset, which contains 768 instances and 8 numerical

attributes. The numerical nature of these attributes facilitates our analysis. Additionally,

since the data originates from a published paper, it likely reflects careful data collection,

potentially leading to robust results, as the authors would have needed high-quality data

to support their publication.

Dataset - return_X_y

fetch_openml  returns a Bunch , a DataFrame , or X  and y

from sklearn.datasets import fetch_openml

X, y = fetch_openml(name='diabetes', version=1, return_X_y=True)

. . .

Mild imbalance (ratio less than 3 or 4)

print(y.value_counts())

class
tested_negative    500
tested_positive    268
Name: count, dtype: int64

. . .

Converting the target labels to 0 and 1

y = y.map({'tested_negative': 0, 'tested_positive': 1})

Cross-evaluation

Training and test set

Sometimes called holdout method.

Guideline: Typically, allocate 80% of your dataset for training and reserve the

remaining 20% for testing.

Training Set: This subset of data is utilized to train your model.

Test Set: This is an independent subset used exclusively at the final stage to

assess the model’s performance.

Common Training and Testing Ratios

In [2]:
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1. 80:20 Split:

Training Set: 80% of the data

Testing Set: 20% of the data

This is a widely used default split that provides a balance between having

enough data to train the model and enough data to evaluate its performance.

2. 90:10 Split:

Training Set: 90% of the data

Testing Set: 10% of the data

This split might be used when the dataset is very large, ensuring a substantial

amount of data for training while still having a decent-sized test set.

Considerations for Choosing the Split Ratio

1. Dataset Size:

For large datasets, a smaller proportion can be reserved for testing (e.g., 90:10)

since even 10% of a large dataset can provide a robust evaluation.

2. Model Complexity:

Complex models with many parameters may require more training data to avoid

overfitting, suggesting a larger training set.

3. Validation Set:

See discussion below.

4. Imbalanced Datasets:

For imbalanced datasets, it’s essential to ensure that both the training and

testing sets represent the class distribution adequately. Stratified sampling

can be used to maintain the class proportions in both sets.

Training and test set

Training Error:

Generally tends to be low

Achieved by optimizing learning algorithms to minimize error through parameter

adjustments (e.g., weights)

Training and test set

Generalization Error: The error rate observed when the model is evaluated on new,

unseen data.

Training and test set

Underfitting:



High training error

Model is too simple to capture underlying patterns

Poor performance on both training and new data

Overfitting:

Low training error, but high generalization error

Model captures noise or irrelevant patterns

Poor performance on new, unseen data

Definition

Cross-validation is a method used to evaluate and improve the performance of machine

learning models.

It involves partitioning the dataset into multiple subsets, training the model on some

subsets while validating it on the remaining ones.

k-fold cross-validation

1. Divide the dataset into  equally sized parts (folds).

2. Training and validation:

For each iteration, one fold is used as the validation set, the remaining -1

folds are used as the training set.

3. Evaluation: The model’s performance is evaluated in each iteration, resulting in 

performance measures.

4. Aggregation: Statistics are calculated based on  performance measures.

Common choices for the value of  are 3, 5, 7, and 10.

In science, to estimate the value of a constant, it is common to repeat the experiment

multiple times in order to calculate the mean and standard deviation of the obtained

measurements. A high variance raises questions about the reliability of the experiment.

Similarly, -fold cross-validation generates  distinct evaluations. This method not only

provides a more accurate estimate of the model’s performance but also assesses its

robustness against data variability.

3-Fold Cross-validation
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With each iteration,  of the dataset is used for training and  for validation.

Each row of the table represents an iteration within the -fold cross-validation process,

with the number of iterations equating to the number of folds. In each iteration, one fold

is designated for validation, while the remaining  folds are utilized for training the

model.

5-Fold Cross-validation

 

2/3 1/3

k

k − 1
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With each iteration,  of the dataset is used for training and  for validation.

More Reliable Model Evaluation

More reliable estimate of model performance compared to a single train-test split.

Reduces the variability associated with a single split, leading to a more stable and

unbiased evaluation.

For large values of [1], consider the average, variance, and confidence interval.

Better Generalization

Helps in assessing how the model generalizes to an independent dataset.

It ensures that the model’s performance is not overly optimistic or pessimistic by

averaging results over multiple folds.

Efficient Use of Data

Particularly beneficial for small datasets, cross-validation ensures that every data

point is used for both training and validation.

This maximizes the use of available data, leading to more accurate and reliable

model training.

4/5 1/5
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Some examples are more informative for learning algorithms, sometimes those near the

decision boundary.

Hyperparameter Tuning

Commonly used during hyperparameter tuning, allowing for the selection of the

best model parameters based on their performance across multiple folds.

This helps in identifying the optimal configuration that balances bias and variance.

Challenges

Computational Cost: Requires multiple model trainings.

Leave-One-Out (LOO): Extreme case where ( k = N ).

Class Imbalance: Folds may not represent minority classes.

Use Stratified Cross-Validation to maintain class proportions.

Complexity: Error-prone implementation, especially for nested cross-validation,

bootstraps, or integration into larger pipelines.

Leave-one-out cross-validation (LOO-CV) can lead to overoptimistic performance

evaluation, particularly in certain contexts.

Here’s why:

1.  **High Variance**: In LOO-CV, each iteration uses almost 
all the data for training, leaving only one instance for 
testing. This can result in high variance in the test error 
across iterations because the model is trained on nearly the 
full dataset. Since each training set is very similar to the 
full dataset, it can lead to overly optimistic estimates of 
generalization error, especially when the dataset is small or 
the model has high variance (e.g., decision trees or k-
nearest neighbors).
2.  **Overfitting**: Since LOO-CV uses nearly the entire 
dataset for training in each iteration, complex models 
(especially ones prone to overfitting) can fit very closely 
to the data, which might result in a low training error but a 
misleadingly low test error in some cases.
3.  **Limited assessment of generalization**: LOO-CV might 
not give a reliable estimate of how well the model 
generalizes to completely unseen data because the difference 
between the training set and the full dataset is minimal, 
leading to a smaller gap between training and test 
performance.

In practice, this can make the evaluation appear more optimistic than it would be with

more robust methods like k-fold cross-validation, where the test sets are larger, and the



model has less opportunity to overfit the training data.

Stratified (in cross-validation): a sampling strategy where each fold preserves the

class distribution of the full dataset, ensuring that every class is represented

proportionally in both training and validation splits.

cross_val_score

[1] 10-fold cross-validation.

from sklearn import tree

clf = tree.DecisionTreeClassifier()

from sklearn.model_selection import cross_val_score    

clf_scores = cross_val_score(clf, X, y, cv=5)

print("\nScores:", clf_scores)
print(f"\nMean: {clf_scores.mean():.2f}")
print(f"\nStandard deviation: {clf_scores.std():.2f}")

Scores: [0.71428571 0.66883117 0.71428571 0.79738562 0.73202614]

Mean: 0.73

Standard deviation: 0.04

sklearn.model_selection.cross_val_score, see also cross_validate.

As previously discussed, a significant limitation of decision trees is their propensity for

overfitting, which leads to high variance when applied to new datasets. This issue is

evident in the observed performance variability, with accuracy ranging from 67% to

79%, which is undesirable for achieving robust model generalization.

Hyperparameter tuning

Workflow

In [8]:
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Attribution: Cross-validation: evaluating estimator performance

The above image implicitly introduces three categories of data subsets: training,

validation, and test.

Workflow - implementation

from sklearn.datasets import fetch_openml

X, y = fetch_openml(name='diabetes', version=1, return_X_y=True)

y = y.map({'tested_negative': 0, 'tested_positive': 1})

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

To maintain simplicity in these lecture notes, we have not applied any pre-processing

steps.

Definition

A hyperparameter is a configuration external to the model that is set prior to the

training process and governs the learning process, influencing model performance and

complexity.

In [9]:
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The weights of a model, which are learned by the learning algorithm, are often referred

to as the model’s parameters. To avoid confusion, user-defined parameters, such as

the learning rate , are termed hyperparameters. Unlike model parameters,

hyperparameters are not learned by the learning algorithm.

Hyperparameters - Decision Tree

criterion : gini , entropy , log_loss , measure the quality of a split.

max_depth : limits the number of levels in the tree to prevent overfitting.

See: DecisionTreeClassifier

Hyperparameters - Logistic Regression

penalty : l1  or l2 , helps in preventing overfitting.

solver : liblinear , newton-cg , lbfgs , sag , saga .

max_iter : maximum number of iterations taken for the solvers to converge.

tol : stopping criteria, smaller values mean higher precision.

See: LogisticRegression and SGDClassifier.

Hyperparameters - KNN

n_neighbors : number of neighbors to use for -neighbors queries.

weights : uniform  or distance , equal weight or distance-based weight.

See: KNeighborsClassifier

Experiment: max_depth

for value in [3, 5, 7, None]:

  clf = tree.DecisionTreeClassifier(max_depth=value)

  clf_scores = cross_val_score(clf, X_train, y_train, cv=10)

  print("\nmax_depth = ", value)
  print(f"Mean: {clf_scores.mean():.2f}")
  print(f"Standard deviation: {clf_scores.std():.2f}")

α

k
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max_depth =  3
Mean: 0.74
Standard deviation: 0.04

max_depth =  5
Mean: 0.76
Standard deviation: 0.04

max_depth =  7
Mean: 0.73
Standard deviation: 0.04

max_depth =  None
Mean: 0.71
Standard deviation: 0.05

Experiment: criterion

for value in ["gini", "entropy", "log_loss"]:

  clf = tree.DecisionTreeClassifier(max_depth=5, criterion=value)

  clf_scores = cross_val_score(clf, X_train, y_train, cv=10)

  print("\ncriterion = ", value)
  print(f"Mean: {clf_scores.mean():.2f}")
  print(f"Standard deviation: {clf_scores.std():.2f}")

criterion =  gini
Mean: 0.76
Standard deviation: 0.04

criterion =  entropy
Mean: 0.75
Standard deviation: 0.05

criterion =  log_loss
Mean: 0.75
Standard deviation: 0.05

For this specific problem and dataset, the criterion  parameter has a limited impact

on the learning process.

Experiment: n_neighbors

from sklearn.neighbors import KNeighborsClassifier

for value in range(1, 11):

  clf = KNeighborsClassifier(n_neighbors=value)

  clf_scores = cross_val_score(clf, X_train, y_train, cv=10)

In [11]:
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  print("\nn_neighbors = ", value)
  print(f"Mean: {clf_scores.mean():.2f}")
  print(f"Standard deviation: {clf_scores.std():.2f}")

n_neighbors =  1
Mean: 0.67
Standard deviation: 0.05

n_neighbors =  2
Mean: 0.71
Standard deviation: 0.03

n_neighbors =  3
Mean: 0.69
Standard deviation: 0.05

n_neighbors =  4
Mean: 0.73
Standard deviation: 0.03

n_neighbors =  5
Mean: 0.72
Standard deviation: 0.03

n_neighbors =  6
Mean: 0.73
Standard deviation: 0.05

n_neighbors =  7
Mean: 0.74
Standard deviation: 0.04

n_neighbors =  8
Mean: 0.75
Standard deviation: 0.04

n_neighbors =  9
Mean: 0.73
Standard deviation: 0.05

n_neighbors =  10
Mean: 0.73
Standard deviation: 0.04

Experiment: weights

from sklearn.neighbors import KNeighborsClassifier

for value in ["uniform", "distance"]:

  clf = KNeighborsClassifier(n_neighbors=5, weights=value)

  clf_scores = cross_val_score(clf, X_train, y_train, cv=10)

In [13]:



  print("\nweights = ", value)
  print(f"Mean: {clf_scores.mean():.2f}")
  print(f"Standard deviation: {clf_scores.std():.2f}")

weights =  uniform
Mean: 0.72
Standard deviation: 0.03

weights =  distance
Mean: 0.73
Standard deviation: 0.04

For this specific problem and dataset, the weights  parameter has a limited impact on

the learning process.

At this point, you might hypothesize that certain combinations of hyperparameters could

be more optimal than others.

Hyperparameter Tuning: Grid Search

Many hyperparameters need tuning

Major disadvantage of ML algorithms

Manual exploration of combinations is tedious

Grid search is more systematic

1. Enumerate all possible hyperparameter combinations

2. Train on training set, evaluate on validation set

Initially, try powers of 2 or 10. Next, refine with grid search near optimal values if time

permits.

The training set referred to here is different from the one previously mentioned. In

each iteration of the -fold cross-validation process, a unique training and validation

set is created.

In some contexts, the choice of the model itself can be considered a hyperparameter.

For instance, when performing model selection within a machine learning pipeline,

different algorithms (e.g., decision trees, support vector machines, neural networks) can

be treated as hyperparameters. This approach allows for the selection of the best-

performing model through automated processes such as grid search or random search,

alongside the tuning of other hyperparameters.

Thus, while traditionally hyperparameters refer to settings within a specific model, the

model choice can also be incorporated into hyperparameter optimization frameworks.
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As will be discussed later, the choice of the number of layers and the number of nodes

are often considered hyperparameters when training deep learning algorithms.

GridSearchCV

from sklearn.model_selection import GridSearchCV

param_grid = [
  {'max_depth': range(1, 10),
   'criterion': ["gini", "entropy", "log_loss"]}
]

clf = tree.DecisionTreeClassifier()

grid_search = GridSearchCV(clf, param_grid, cv=5)

grid_search.fit(X_train, y_train)

(grid_search.best_params_, grid_search.best_score_)

({'criterion': 'gini', 'max_depth': 5}, np.float64(0.7481910124074653))

GridSearchCV

param_grid = [
  {'n_neighbors': range(1, 15),
   'weights': ["uniform", "distance"]}
]

clf = KNeighborsClassifier()

grid_search = GridSearchCV(clf, param_grid, cv=5)

grid_search.fit(X_train, y_train)

(grid_search.best_params_, grid_search.best_score_)

({'n_neighbors': 14, 'weights': 'uniform'}, np.float64(0.7554165363361485))

The variable param_grid  contains a dictionary specifying the names of the

parameters to be tuned, along with the respective values to be tested.

In this instance, the parameters n_neighbors  and weights  are being tuned.

However, additional parameters could be included if necessary.

GridSearchCV

from sklearn.linear_model import LogisticRegression

# 2 * 5 * 5 * 3 = 150 tests!

In [14]:
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param_grid = [
  {'penalty': ["l1", "l2", None],
   'solver' : ['liblinear', 'newton-cg', 'lbfgs', 'sag', 'saga'],
   'max_iter' : [100, 200, 400, 800, 1600],
   'tol' : [0.01, 0.001, 0.0001]}
]

clf = LogisticRegression()

grid_search = GridSearchCV(clf, param_grid, cv=5)

grid_search.fit(X_train, y_train)

(grid_search.best_params_, grid_search.best_score_)

({'max_iter': 100, 'penalty': 'l2', 'solver': 'newton-cg', 'tol': 0.001},
np.float64(0.7756646856427901))

Randomized Search

**Large number of combinations **(many hyperparameters, many values)

Use RandomizedSearchCV:

Supply list of values or probability distribution for hyperparameters

Specify number of iterations (combinations to try)

Predictable execution time

See: Comparing randomized search and grid search for hyperparameter estimation.

Workflow

https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html


Attribution: Cross-validation: evaluating estimator performance

As the ongoing example illustrates, in addition to evaluating various hyperparameter

values, multiple models can also be tested.

Finally, we proceed with testing

clf = LogisticRegression(max_iter=100, penalty='l2', solver='newton-cg', tol

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)

from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))

             precision    recall  f1-score   support

          0       0.83      0.83      0.83        52
          1       0.64      0.64      0.64        25

   accuracy                           0.77        77
  macro avg       0.73      0.73      0.73        77
weighted avg       0.77      0.77      0.77        77

It appears that we are facing a class imbalance issue, which should have been

identified earlier in our workflow!

In [18]:
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Prologue

Summary

Training Set Size: Impact on model efficacy and generalization.

Attribute Encoding: Evaluation of techniques to capture biological phenomena.

Preprocessing:

Data Scaling

Handling Missing Values

Managing Class Imbalance

Next lecture

We will further discuss machine learning engineering.
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