
Scaling
CSI4106 Introduction to Artificial Intelligence

Marcel Turcotte

2025-10-05

Scenario

We pretend to predict a house price using k-Nearest Neighbors (KNN) regression with
two features:

• 𝑥1: number of rooms (small scale)
• 𝑥2: square footage (large scale)

We create three examples a, b, c chosen so that:

• Without scaling, a is closer to b (because square footage dominates).
• With scaling (z-score), a becomes closer to c (rooms difference matters after rescaling).

Data (three houses)

import numpy as np
import pandas as pd

Three examples (rooms, sqft); prices only for b and c (training)
point_names = ["a", "b", "c"]
X = np.array([

[4, 1500.0], # a (query)
[8, 1520.0], # b (train)
[4, 1300.0], # c (train)

], dtype=float)

prices = pd.Series([np.nan, 520_000, 390_000], index=point_names, name="price")

1

df = pd.DataFrame(X, columns=["rooms", "sqft"], index=point_names)
display(df)
display(prices.to_frame())

rooms sqft

a 4.0 1500.0
b 8.0 1520.0
c 4.0 1300.0

price

a NaN
b 520000.0
c 390000.0

Note. We’ll treat b and c as the training set, and a as the query whose price we want to
predict.

Euclidean distances (unscaled)

The (squared) Euclidean distance between 𝑢 and 𝑣 is

‖𝑢 − 𝑣‖2
2 = ∑

𝑗
(𝑢𝑗 − 𝑣𝑗)2.

When one feature has a much larger scale (e.g., square footage), it can dominate the sum.

from sklearn.metrics import pairwise_distances

dist_unscaled = pd.DataFrame(
pairwise_distances(df.values, metric="euclidean"),
index=df.index, columns=df.index

)
dist_unscaled

a b c

a 0.000000 20.396078 200.000000
b 20.396078 0.000000 220.036361

2

a b c

c 200.000000 220.036361 0.000000

print("Nearest to 'a' (unscaled):", dist_unscaled.loc["a"].drop("a").idxmin())

Nearest to 'a' (unscaled): b

Expectation: a is nearest to b (similar sqft overwhelms rooms).

Proper scaling for modeling (fit scaler on the training set)

For a fair ML workflow, compute scaling parameters on the training data (b, c) only, then
transform both train and query:

𝑧(𝑥) = 𝑥 − 𝜇train
𝜎train

.

from sklearn.preprocessing import StandardScaler

train_idx = ["b", "c"]
query_idx = ["a"]

scaler = StandardScaler()

scaler.fit(df.loc[train_idx]) # fit only on training points

Z = pd.DataFrame(
scaler.transform(df),
columns=df.columns, index=df.index

)

Z

rooms sqft

a -1.0 0.818182
b 1.0 1.000000
c -1.0 -1.000000

3

Euclidean distances (after scaling)

dist_scaled = pd.DataFrame(
pairwise_distances(Z.values, metric="euclidean"),
index=Z.index, columns=Z.index

)
dist_scaled

a b c

a 0.000000 2.008247 1.818182
b 2.008247 0.000000 2.828427
c 1.818182 2.828427 0.000000

print("Nearest to 'a' (scaled):", dist_scaled.loc["a"].drop("a").idxmin())

Nearest to 'a' (scaled): c

Now: a is nearest to c (rooms difference matters once features are on comparable scales).

KNN regressor: flip in the prediction

We’ll run a 1-NN regressor (so the prediction is exactly the nearest neighbor’s price) with and
without scaling.

from sklearn.neighbors import KNeighborsRegressor
from sklearn.pipeline import Pipeline

X_train = df.loc[train_idx].values # b, c
y_train = prices.loc[train_idx].values # prices for b, c
X_query = df.loc[query_idx].values # a

1) No scaling
knn_plain = KNeighborsRegressor(n_neighbors=1, metric="euclidean")
knn_plain.fit(X_train, y_train)
pred_plain = knn_plain.predict(X_query)[0]

2) With scaling (pipeline fits scaler only on training, then KNN on scaled)
knn_scaled = Pipeline([

4

("scaler", StandardScaler()),
("knn", KNeighborsRegressor(n_neighbors=1, metric="euclidean"))

])
knn_scaled.fit(X_train, y_train)
pred_scaled = knn_scaled.predict(X_query)[0]

pd.DataFrame(
{

"prediction (no scaling)": [pred_plain],
"prediction (with scaling)": [pred_scaled],
"nearest neighbor (no scaling)": [point_names[1] if pred_plain==prices['b'] else point_names[2]],
"nearest neighbor (with scaling)": [point_names[1] if pred_scaled==prices['b'] else point_names[2]],

},
index=["a"]

)

prediction (no scaling) prediction (with scaling) nearest neighbor (no scaling) nearest neighbor (with scaling)

a 520000.0 390000.0 b c

Takeaway:

• Unscaled: a � b � prediction � $520,000
• Scaled: a � c � prediction � $390,000

Same model and data; just feature scale changed the neighbor—and the prediction.

Why this happens

• (Squared) Euclidean distance aggregates per-feature squared differences:

|𝑢 − 𝑣|22 = ∑
𝑗

(𝑢𝑗 − 𝑣𝑗)2.

• A large-scale feature (e.g., sqft) can dwarf small-scale features (e.g., rooms), so KNN
effectively “ignores” the smaller-scale dimensions.

• Standardization (𝑧-scores) or min-max scaling puts dimensions on comparable footing.
• Rule of thumb: For distance-based methods (KNN, k-means, RBF kernels, etc.), always

scale features.

5

Show the distance to neighbors only

Distances from a to {b, c} before and after scaling.

def show_pair(name_from, names_to, D):
return D.loc[name_from, names_to].to_frame("distance")

print("Unscaled distances from a → {b,c}")
display(show_pair("a", ["b", "c"], dist_unscaled))

print("Scaled distances from a → {b,c}")
display(show_pair("a", ["b", "c"], dist_scaled))

Unscaled distances from a → {b,c}

distance

b 20.396078
c 200.000000

Scaled distances from a → {b,c}

distance

b 2.008247
c 1.818182

Switch to Manhattan distance?

Even with 𝐿1 distance, scale still matters:

|𝑢 − 𝑣|1 = ∑
𝑗

|𝑢𝑗 − 𝑣𝑗|.

Try replacing metric="euclidean" with metric="manhattan"—you’ll see the same sensitivity
to feature scale.

6

from sklearn.neighbors import KNeighborsRegressor
from sklearn.pipeline import Pipeline

X_train = df.loc[train_idx].values # b, c
y_train = prices.loc[train_idx].values # prices for b, c
X_query = df.loc[query_idx].values # a

1) No scaling
knn_plain = KNeighborsRegressor(n_neighbors=1, metric="manhattan")
knn_plain.fit(X_train, y_train)
pred_plain = knn_plain.predict(X_query)[0]

2) With scaling (pipeline fits scaler only on training, then KNN on scaled)
knn_scaled = Pipeline([

("scaler", StandardScaler()),
("knn", KNeighborsRegressor(n_neighbors=1, metric="manhattan"))

])
knn_scaled.fit(X_train, y_train)
pred_scaled = knn_scaled.predict(X_query)[0]

pd.DataFrame(
{

"prediction (no scaling)": [pred_plain],
"prediction (with scaling)": [pred_scaled],
"nearest neighbor (no scaling)": [point_names[1] if pred_plain==prices['b'] else point_names[2]],
"nearest neighbor (with scaling)": [point_names[1] if pred_scaled==prices['b'] else point_names[2]],

},
index=["a"]

)

prediction (no scaling) prediction (with scaling) nearest neighbor (no scaling) nearest neighbor (with scaling)

a 520000.0 390000.0 b c

TL;DR

• Distance-based models are highly sensitive to feature scales.
• Always scale your inputs (fit the scaler on the training set only).
• Scaling can change nearest neighbors and therefore change predictions—as seen

here with 1-NN regression.

7

	Scenario
	Data (three houses)
	Euclidean distances (unscaled)
	Proper scaling for modeling (fit scaler on the training set)
	Euclidean distances (after scaling)
	KNN regressor: flip in the prediction
	Why this happens
	Show the distance to neighbors only
	Switch to Manhattan distance?
	TL;DR

