
Machine Learning Engineering

CSI 4106 - Fall 2025

Marcel Turcotte

Version: Oct 5, 2025 12:29

Preamble

Message of the Day

uOttawa developing AI-powered tool to personalize diets for people living with

inflammatory bowel diseases (IBD), 2025-09-23.

The Weston Family Foundation has awarded a $10 million grant to a collaborative

research project between the University of Ottawa and the University of Alberta. This

initiative aims to conduct research into inflammatory bowel disease (IBD).

In Canada, over 300,000 individuals suffer from chronic IBD, which includes conditions

such as Crohn’s disease and ulcerative colitis. The project will leverage data from

RapidAIM, a platform developed at the University of Ottawa designed to quickly evaluate

the effects of various compounds on individual microbiomes.

https://www.uottawa.ca/about-us/news-all/uottawa-developing-ai-powered-tool-personalize-diets-people-living-ibd?_ccCt=ce4z-2z8e62-yjhy3p-5lqyv2r3
https://www.uottawa.ca/about-us/news-all/uottawa-developing-ai-powered-tool-personalize-diets-people-living-ibd?_ccCt=ce4z-2z8e62-yjhy3p-5lqyv2r3

A key objective of this research is to lay the groundwork for training an artificial

intelligence (AI) model. This model will be capable of generating personalized dietary

recommendations, tailored to the unique microbiome profiles of individuals with IBD.

Learning Objectives

Explain feature extraction, compare encoding methods, and justify choices based

on data nature.

Apply normalization/standardization for feature scaling and handle missing values

using imputation.

Define class imbalance, explore solutions like resampling and SMOTE, and ensure

proper application.

Apply concepts to real-world datasets, analyze results, and understand the

machine learning pipeline.

Recognize dataset size impact, discuss data augmentation, and explore data

effectiveness in ML.

Machine Learning Engineering

Machine Learning Engineering

Attribution: A. Burkov (2020), Figure 3.1

The courses SDS 3386: Data Science Lab and CSI 4142: Fundamentals of Data Science

provide comprehensive coverage of machine learning engineering. For those not

enrolled in these courses, we provide an overview of essential concepts.

As illustrated, the life cycle of a machine learning project typically involves multiple

iterations. Each cycle enhances understanding of the problem and reveals limitations.

https://catalogue.uottawa.ca/search/?P=SDS%203386
https://catalogue.uottawa.ca/search/?P=CSI%204142

Insufficient data quality often precipitates project failure.

Characteristics of High-Quality Data

Volume: Is the dataset sufficiently large to support generalization?

Relevance: Do the features accurately model the problem?

Representation: Does the data reflect the conditions expected in production?

Are these features obtainable from real-world inputs?

Does the dataset adequately cover and represent feature examples?

Bias: Is the data free from bias?

Label Consistency: Are the labels consistent throughout the dataset?

Machine learning Project Cycle

Gathering data and extracting features are the first two steps of a machine learning

project.

1. Gather adequate data.

2. Extract features from the raw data:

This process is labor-intensive.

It necessitates creativity.

Domain knowledge is highly beneficial.

Encoding

Why?

After completing Assignment 1, you generated a .csv file containing cleaned data.

Why would additional steps be necessary?

Dataset - Adult

import numpy as np
np.random.seed(42)

from sklearn.datasets import fetch_openml

adult = fetch_openml(name='adult', version=2)

print(adult.DESCR)

The ‘Adult’ dataset contains several attributes characterized by categorical values. This

dataset will serve as a basis for a brief discussion on encoding these categorical values.

In [2]:

Adult - Workclass

adult.data['workclass'].unique()

['Private', 'Local-gov', NaN, 'Self-emp-not-inc', 'Federal-gov', 'State-go
v', 'Self-emp-inc', 'Without-pay', 'Never-worked']
Categories (8, object): ['Federal-gov', 'Local-gov', 'Never-worked', 'Privat
e', 'Self-emp-inc', 'Self-emp-not-inc', 'State-gov', 'Without-pay']

Adult - Education

adult.data['education'].unique()

['11th', 'HS-grad', 'Assoc-acdm', 'Some-college', '10th', ..., 'Assoc-voc',
'9th', '12th', '1st-4th', 'Preschool']
Length: 16
Categories (16, object): ['10th', '11th', '12th', '1st-4th', ..., 'Masters',
'Preschool', 'Prof-school', 'Some-college']

Adult - Marital Status

adult.data['marital-status'].unique()

['Never-married', 'Married-civ-spouse', 'Widowed', 'Divorced', 'Separated',
'Married-spouse-absent', 'Married-AF-spouse']
Categories (7, object): ['Divorced', 'Married-AF-spouse', 'Married-civ-spous
e', 'Married-spouse-absent', 'Never-married', 'Separated', 'Widowed']

Categorical Data

Key Points on Data Representation

Numerical Representation: Some learning algorithms require data to be in

numerical form.

Encoding Methods

Consider the workclass attribute, which has 8 distinct values like ‘Federal-gov’,

‘Local-gov’, and so on.

Which encoding method is preferable and why?

1. w = 1, 2, 3, 4, 5, 6, 7, or 8

2. w = [0,0,0], [0,0,1], [0,1,0], , or [1,1,1]

3. w = [1,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0], , or [0,0,0,0,0,0,0,1]

Encoding for Categorical Data

In [3]:

In [4]:

In [5]:

…

…

One-Hot Encoding: This method should be preferred for categorical data.

Increases Dimensionality: One-hot encoding increases the dimensionality of

feature vectors.

Avoids Bias: Other encoding methods can introduce biases.

Example of Bias: Using the first method, w = 1, 2, 3, etc., implies that ‘Federal-

gov’ and ‘Local-gov’ are similar, while ‘Federal-gov’ and ‘Without-pay’ are not.

Misleading Similarity: The second method, w = [0,0,0], [0,0,1], etc., might mislead

the algorithm by suggesting similarity based on numeric patterns.

Definition

One-Hot Encoding: A technique that converts categorical variables into a binary vector

representation, where each category is represented by a vector with a single ‘1’ and all

other elements as ‘0’.

There are numerous other vector representations, among which “embeddings” stand

out for their remarkable efficiency.

OneHotEncoder

from numpy import array
from sklearn.preprocessing import OneHotEncoder

work = adult.data[['workclass']]

onehot_encoder = OneHotEncoder()

onehot_encoder.fit(work)
values_encoded = onehot_encoder.transform(work)

for i in range(5): print(values_encoded.toarray()[i])

[0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 1. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 1.]

Consistency is Key: Ensure you use the same encoding on: Validation Set, Test Set, and

Production Data.

A student from my research group faced a challenging debugging issue. They mistakenly

created a new encoder for the test set using

onehot_encoder.fit(X_test['some_attribute']) , which produced a vector

representation different from the one used during training. Consequently, the results on

the training set were poor, while the results on the training set appeared satisfactory.

In [6]:

While Pandas offers a method called get_dummies() for one-hot encoding, it is

important to note the following distinctions:

Category Memory: OneHotEncoder retains the categories it was trained on,

whereas get_dummies() does not.

Consistency in Production: It is crucial to use the same encoding scheme in

production as was used during training to ensure accurate results.

Vector Length Discrepancies: If get_dummies() encounters a different number

of categories in new data, it will produce vectors of varying lengths, leading to

potential errors.

Handling Missing Values: When get_dummies() processes missing values, it

generates an additional column to accommodate them.

Ensuring consistency in encoding across training, validation, and production datasets

is essential to maintain the integrity and accuracy of your machine learning models.

Case Study

Dataset: Heart Disease

Examples: 303, features: 13, target: Presence/absence of disease

Categorical Data:

sex: 1 = male, 0 = female

cp (chest pain type):

1: Typical angina

2: Atypical angina

3: Non-anginal pain

4: Asymptomatic

Other: ‘fbs’, ‘restecg’, ‘exang’, ‘slope’, ‘thal’

To simplify the analysis: Examples with missing values were dropped, no

hyperparameter tuning was performed, numerical values were scaled for solver

convergence.

Here are some suggestions for further investigation:

Assess the impact of omitting missing values on the dataset.

Implement hyperparameter tuning to determine whether or regularization

enhances model performance.

Case Study

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

L1 L2

In [7]:

https://archive.ics.uci.edu/dataset/45/heart+disease

from sklearn.datasets import fetch_openml
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

Load the 'Heart-Disease' dataset from OpenML
data = fetch_openml(name='Heart-Disease', version=1, as_frame=True)
df = data.frame

Replace '?' with NaN and convert columns to numeric
for col in df.columns:
 df[col] = pd.to_numeric(df[col], errors='coerce')

Drop rows with missing values
df.dropna(inplace=True)

Define features and target
X = df.drop(columns=['target'])
y = df['target']

Columns to encode with OneHotEncoder
columns_to_encode = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'thal'

Identify numerical columns
numerical_columns = X.columns.difference(columns_to_encode)

Split the dataset into training and testing sets before transformations
X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.2, random_state=42
)

Apply OneHotEncoder and StandardScaler using ColumnTransformer
column_transformer = ColumnTransformer(
 transformers=[
 ('onehot', OneHotEncoder(), columns_to_encode),
 ('scaler', StandardScaler(), numerical_columns)
]
)

Fit the transformer on the training data and transform both training and t
X_train_processed = column_transformer.fit_transform(X_train)
X_test_processed = column_transformer.transform(X_test)

Initialize and train logistic regression model
model = LogisticRegression(max_iter=1000)
model = model.fit(X_train_processed, y_train)

In the context of using ColumnTransformer , the second element of the triplets,

typically an estimator, can also be replaced with the options drop or passthrough .

The drop option excludes the specified column from the transformation process, while

passthrough retains the column in its original state without any modifications.

Case study - results

Predict and evaluate the model
y_pred = model.predict(X_test_processed)

print(classification_report(y_test, y_pred))

 precision recall f1-score support

 0.0 0.87 0.93 0.90 29
 1.0 0.93 0.88 0.90 32

 accuracy 0.90 61
 macro avg 0.90 0.90 0.90 61
weighted avg 0.90 0.90 0.90 61

Case study - chest pain (cp)

Retrieve feature names after transformation using get_feature_names_out()
feature_names = column_transformer.get_feature_names_out()

Get coefficients and map them to feature names
coefficients = model.coef_[0]

Create a DataFrame with feature names and coefficients
coef_df = pd.DataFrame({
 'Feature': feature_names,
 'Coefficient': coefficients
})

Display coefficients associated with 'cp'
cp_features = coef_df[coef_df['Feature'].str.contains('_cp')]
print("\nCoefficients associated with 'cp':")
print(cp_features)

Coefficients associated with 'cp':
 Feature Coefficient
2 onehot__cp_0.0 -1.013382
3 onehot__cp_1.0 -0.212284
4 onehot__cp_2.0 0.599934
5 onehot__cp_3.0 0.628824

Case study - coefficients

Visualize the coefficients

plt.figure(figsize=(8, 6))
plt.barh(coef_df['Feature'], coef_df['Coefficient'])
plt.title('Feature Coefficients')
plt.xlabel('Coefficient Value')
plt.ylabel('Feature')
plt.tight_layout()
plt.show()

In [8]:

In [9]:

In [10]:

Positive coefficients in a logistic regression model signify that higher values of the

corresponding feature contribute positively to the probability of an example

belonging to ‘target = 1.0’. Negative coefficients indicate the opposite effect.

Case study - coefficients (sorted)

Visualize the coefficients

plt.figure(figsize=(8, 6))
coef_df.sort_values(by='Coefficient', inplace=True)
plt.barh(coef_df['Feature'], coef_df['Coefficient'])
plt.title('Feature Coefficients')
plt.xlabel('Coefficient Value')
plt.ylabel('Feature')
plt.tight_layout()
plt.show()

In [11]:

Definition

Ordinal encoding is a technique that assigns numerical values to categorical attributes

based on their inherent order or rank.

Feature Engineering - Ordinal

For attributs with values such as ‘Poor’, ‘Average’, and ‘Good’, an ordinal encoding

would make sense.

. . .

However!

from numpy import array
from sklearn.preprocessing import OrdinalEncoder

X =[['Poor'], ['Average'], ['Good'], ['Average'], ['Average']]

encoder = OrdinalEncoder()

encoder.fit(X)
encoder.transform(X)

In [12]:

array([[2.],
 [0.],
 [1.],
 [0.],
 [0.]])

OrdinalEncoder (revised)

from numpy import array
from sklearn.preprocessing import OrdinalEncoder

X =[['Poor'], ['Average'], ['Good'], ['Average'], ['Average']]

encoder = OrdinalEncoder(categories=[['Poor', 'Average', 'Good']])

encoder.fit(X)

X_encoded = encoder.transform(X)

X_encoded

array([[0.],
 [1.],
 [2.],
 [1.],
 [1.]])

The desired order of the categories must be explicitly provided to the encoder;

otherwise, it defaults to alphabetical order.

An ordinal encoder is appropriate when categorical attributes have a clear, inherent

order or ranking, such as ‘Low’, ‘Medium’, and ‘High’, or ‘Poor’, ‘Average’, and ‘Good’. This

encoding method preserves the ordinal relationships among categories.

When data is inherently ordinal, this encoding is more compact and can be

advantageous for machine learning models. However, if there is any uncertainty about

the ordinal nature of the data, it is safer to use a OneHotEncoder .

Definition

Discretization involves grouping ordinal values into discrete categories.

AKA binning, bucketing, or quantization.

Feature Engineering: Binning

Example: Categorizing ages into bins such as ‘infant’, ‘child’, ‘teen’, ‘adult’, and ‘senior

citizen’.

In [13]:

. . .

Advantages:

Enables the algorithm to learn effectively with fewer training examples.

Disadvantages:

Requires domain expertise to define meaningful categories.

May lack generalizability; for example, the starting age for ‘senior citizen’ could be

60, 65, or 70[1].

Providing hints or predefined bins can help a decision tree algorithm generate more

compact trees, as it reduces the need for the classifier to independently learn decision

boundaries.

However, introducing such a strong bias may hinder the algorithm’s ability to discover

meaningful decision boundaries on its own.

Cross-validation is an effective method to determine the best encoding scheme, but it is

essential to withhold the test set until the final evaluation phase of the project to prevent

data leakage and ensure unbiased assessment.

FunctionTransformer

[1] Your instructor is concerned with your choice of cutoff

import pandas as pd
import numpy as np
from sklearn.preprocessing import FunctionTransformer

bins = [0, 1, 13, 20, 60, np.inf]
labels = ['infant', 'kid', 'teen', 'adult', 'senior citizen']

transformer = FunctionTransformer(
 pd.cut, kw_args={'bins': bins, 'labels': labels, 'retbins': False}
)

X = np.array([0.5, 2, 15, 25, 97])
transformer.fit_transform(X)

['infant', 'kid', 'teen', 'adult', 'senior citizen']
Categories (5, object): ['infant' < 'kid' < 'teen' < 'adult' < 'senior citiz
en']

Se also: KBinsDiscretizer

Scaling

In [14]:

https://scikit-learn.org/dev/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html#sklearn.preprocessing.KBinsDiscretizer

What is it?

Scaling attributes ensures that their values fall within comparable ranges.

Why?

Why is scaling data a best practice?

Scaling attributes ensures that their values fall within comparable ranges. Numerous

studies indicate that this transformation improves model performance.

Some algorithms, such as k-nearest neighbors, experience reduced efficiency when

faced with significant disparities in attribute scales. Consider two attributes: one

representing a proportion as a real number between 0 and 1, and the other measuring a

volume in milliliters. In this case, the distance calculated between two examples will be

primarily influenced by variations in volume rather than those in proportion. Tree-based

algorithms are typically insensitive to the scale of the data, and therefore, scaling is not

necessary.

Furthermore, optimization methods, such as gradient descent, reach convergence more

quickly when the attributes have been scaled.

Normalization can be significantly influenced by the presence of outliers, which often

compresses the data into a narrower range. To mitigate this effect, a common approach

is to clip the data within a fixed interval, . In this method, values below are set to

, and values exceeding are set to . Typically, the clipping thresholds are chosen based

on percentile values, such as the 5th and 95th percentiles, to ensure a balanced

trimming of extreme values.

Scenario

We pretend to predict a house price using k-Nearest Neighbors (KNN) regression with

two features:

: number of rooms (small scale)

: square footage (large scale)

Data (three houses)

import numpy as np
import pandas as pd

Three examples (rooms, sqft); prices only for b and c (training)
point_names = ["a", "b", "c"]
X = np.array([

[a, b] a a

b b

x1

x2

In [15]:

 [4, 1500.0], # a (query)
 [8, 1520.0], # b (train)
 [4, 1300.0], # c (train)
], dtype=float)

prices = pd.Series([np.nan, 520_000, 390_000], index=point_names, name="pric

df = pd.DataFrame(X, columns=["rooms", "sqft"], index=point_names)
display(df)
display(prices.to_frame())

Note. We’ll treat b and c as the training set, and a as the query whose price we want to

predict.

Euclidean distances (unscaled)

When one feature has a much larger scale (e.g., square footage), it can dominate the

sum.

from sklearn.metrics import pairwise_distances

dist_unscaled = pd.DataFrame(
 pairwise_distances(df.values, metric="euclidean"),
 index=df.index, columns=df.index
)
dist_unscaled

print("Nearest to 'a' (unscaled):", dist_unscaled.loc["a"].drop("a").idxmin(

Nearest to 'a' (unscaled): b

Proper scaling for modeling

For a fair ML workflow, compute scaling parameters on the training data (b, c) only, then

transform both train and query:

from sklearn.preprocessing import StandardScaler

train_idx = ["b", "c"]
query_idx = ["a"]

scaler = StandardScaler()

scaler.fit(df.loc[train_idx]) # fit only on training points

Z = pd.DataFrame(
 scaler.transform(df),
 columns=df.columns, index=df.index
)

In [16]:

In [17]:

In [18]:

Z

Euclidean distances (after scaling)

dist_scaled = pd.DataFrame(
 pairwise_distances(Z.values, metric="euclidean"),
 index=Z.index, columns=Z.index
)
dist_scaled

print("Nearest to 'a' (scaled):", dist_scaled.loc["a"].drop("a").idxmin())

Nearest to 'a' (scaled): c

KNN regressor

We’ll run a 1-NN regressor (so the prediction is exactly the nearest neighbor’s price)

with and without scaling.

from sklearn.neighbors import KNeighborsRegressor
from sklearn.pipeline import Pipeline

X_train = df.loc[train_idx].values # b, c
y_train = prices.loc[train_idx].values # prices for b, c
X_query = df.loc[query_idx].values # a

KNN regressor (no scaling)

1) No scaling

knn_plain = KNeighborsRegressor(n_neighbors=1, metric="euclidean")

knn_plain.fit(X_train, y_train)

pred_plain = knn_plain.predict(X_query)[0]

KNN regressor (with scaling)

2) With scaling (pipeline fits scaler only on training, then KNN on scaled

knn_scaled = Pipeline([
 ("scaler", StandardScaler()),
 ("knn", KNeighborsRegressor(n_neighbors=1, metric="euclidean"))
])

knn_scaled.fit(X_train, y_train)

In [19]:

In [20]:

In [21]:

In [22]:

In [23]:

pred_scaled = knn_scaled.predict(X_query)[0]

I would like to highlight the use of a Pipeline in our approach. The resulting object

functions equivalently to a classifier or regressor, possessing a fit method. Notably,

the predict method within this pipeline retains a two-step process. When employed

on X_query , it initially scales the data before applying the regressor. Importantly, the

scaler is exclusively trained on the training dataset.

KNN regressor (results)

pd.DataFrame(
 {
 "prediction (no scaling)": [pred_plain],
 "prediction (with scaling)": [pred_scaled],
 "nearest neighbor (no scaling)": [point_names[1] if pred_plain==pric
 "nearest neighbor (with scaling)": [point_names[1] if pred_scaled==p
 },
 index=["a"]
)

Normalization

Learning algorithms perform optimally when feature values have similar ranges, such as

[-1,1] or [0,1].

This accelerates optimization (e.g., gradient descent).

Normalization:

See: sklearn.preprocessing.MinMaxScaler

Standardization

Standardization (AKA z-score normalization) transforms each feature to have a normal

distribution with a mean () of 0 and a standard deviation () of 1.

Note: The range of values is not bounded!

See: sklearn.preprocessing.StandardScaler

In [24]:

x
(j)
i − min(j)

max(j) − min(j)

μ σ

x
(j)
i

− μ(j)

σ(j)

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Standardization or Normalization?

Treat scaling as a hyperparameter and evaluate both normalization and

standardization.

Standardization is generally more robust to outliers than normalization.

Guidelines from Andriy Burkov (2019), § 5:

Use standardization if features are approximately normally distributed.

Prefer standardization in the presence of outliers.

Otherwise, use normalization.

Do you see why standardization is generally more robust to outliers than normalization?

An effective strategy for mitigating the impact of outliers in data is the application of a

logarithmic transformation to the values. This technique reduces the skewness of the

data, thereby diminishing the disproportionate influence of extreme values.

Feature Standardization Normalization

Output Range Not bounded Typically [0, 1]

Center Mean at 0 Not centered

Sensitivity to
Outliers

Low High

Primary Use
Case

Default choice; for models
assuming zero-centered data

When bounded input is required (e.g.,
image processing, some neural
networks)

Case Study - Normal Distribution

import numpy as np
np.random.seed(7)

Sample characteristics
sample_size = 1000
mu = 57
sigma = 7

Generate values
norm_values = sigma * np.random.randn(sample_size) + mu

Add three outliers
norm_values = np.append(norm_values, [92, 95, 98])

Case Study - Normal Distribution

In [25]:

In [26]:

Normalization

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

minmax_norm_values = scaler.fit_transform(norm_values.reshape(-1, 1))

Plot the histogram
plt.hist(minmax_norm_values, bins=20, edgecolor='black')

plt.title(f'MinMaxScaler')

plt.xlabel('Value')
plt.ylabel('Frequency')

plt.show()

In [27]:

Normalization (MinMaxScaler) of values from a normal distribution containing

outliers.

Observe that the majority of values fall within the range of 0 to 0.6, while the interval

from 0.6 to 1.0 is notably sparse. Additionally, although the samples are derived from a

normal distribution, the data is centered around 0.3 rather than the expected mean of

0.5.

Standardization

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

standard_norm_values = scaler.fit_transform(norm_values.reshape(-1, 1))

Plot the histogram
plt.hist(standard_norm_values, bins=20, edgecolor='black')

plt.title(f'StandardScaler')

plt.xlabel('Value')
plt.ylabel('Frequency')

plt.show()

In [28]:

Standardization (StandardScaler) of values from a normal distribution containing

outliers.

When examining the graph resulting from standardization, it bears a resemblance to that

of normalization. Nonetheless, a closer inspection of the values reveals that the data

distribution is centered around zero, with approximately 95% of the observations falling

within the range of -2 to 2. It is important to note that, unlike normalization, the

StandardScaler does not impose bounds on the range of output values.

Logarithm

 In [29]:

Logarithm of values from a normal distribution containing outliers.

Logarithm & Standardization

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

standard_log_norm_values = scaler.fit_transform(log_norm_values.reshape(-1,

Plot the histogram
plt.hist(standard_log_norm_values, bins=20, edgecolor='black')

plt.title(f'Logarithm & StandardScaler')

plt.xlabel('Value')
plt.ylabel('Frequency')

plt.show()

In [30]:

Standardization (StandardScaler) of values from a normal distribution containing

outliers.

Exponential Distribution

Sample size
sample_size = 1000

Generate values
exp_values = np.random.exponential(scale=4, size=sample_size) + 20

In the NumPy expression np.random.exponential(scale=4,
size=sample_size) + 20 , the parameter scale refers to the inverse rate (or the

mean) of the exponential distribution from which the random samples are generated.

Specifically, the exponential distribution is defined by its rate parameter, and scale is

the reciprocal of this rate, i.e., .

Thus, scale=4 means that the mean of the exponential distribution is 4. The argument

size=sample_size specifies the number of random samples to generate. After

generating these samples, 20 is added to each one, thus shifting the entire distribution

by 20 units.

In [31]:

scale = 1
λ

Exponential Distribution

Logarithm

In [32]:

In [33]:

Logarithm of values from an exponential distribution.

Normalization

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

minmax_exp_values = scaler.fit_transform(exp_values.reshape(-1, 1))

Plot the histogram
plt.hist(minmax_exp_values, bins=20, edgecolor='black')

plt.title(f'MinMaxScaler')

plt.xlabel('Value')
plt.ylabel('Frequency')

plt.show()

In [34]:

Normalization (MinMaxScaler) of values from an exponential distribution.

Standardization

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

standard_exp_values = scaler.fit_transform(exp_values.reshape(-1, 1))

Plot the histogram
plt.hist(standard_exp_values, bins=20, edgecolor='black')

plt.title(f'StandardScaler')

plt.xlabel('Value')
plt.ylabel('Frequency')

plt.show()

In [35]:

Standardization (StandardScaler) of values from an exponential distribution.

Logarithm & Standardization

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

standard_log_exp_values = scaler.fit_transform(log_exp_values.reshape(-1, 1)

Plot the histogram
plt.hist(standard_log_exp_values, bins=20, edgecolor='black')

plt.title(f'Logarithm & StandardScaler')

plt.xlabel('Value')
plt.ylabel('Frequency')

plt.show()

In [36]:

Logarithm and standardization (StandardScaler) of values from an exponential

distribution.

Avoid Data Leakage!

The correct workflow:

Split your data into a training set and a testing set.

Fit your scaler (e.g., StandardScaler) on the **training data **

(scaler.fit(X_train)).

This step learns the mean and standard deviation of the training data.

Transform both the training data (scaler.transform(X_train)) and the testing

data (scaler.transform(X_test)) using the scaler that was fitted on the

training data.

You must learn the scaling parameters (like the mean, standard deviation, min, or max)

from the training data only. Never use the full dataset before splitting.

Why? The test set is supposed to simulate new, unseen data. If you use information from

the test set to scale your training data, your model is “cheating” by getting a sneak peek

at the test data. This is called data leakage and will lead to an overly optimistic

evaluation of your model’s performance.

Missing Values

Definition

Missing values refer to the absence of data points or entries in a dataset where a value

is expected.

Age is a good example, as some patients may withhold their age due to privacy

concerns.

Handling Missing Values

Drop Examples

Feasible if the dataset is large and outcome is unaffected.

Drop Features

Suitable if it does not impact the project’s outcome.

Use Algorithms Handling Missing Data

Example: XGBoost
Note: Some algorithms like sklearn.linear_model.LinearRegression
cannot handle missing values.

Data Imputation

Replace missing values with computed values.

Definition

Data imputation is the process of replacing missing values in a dataset with substituted

values, typically using statistical or machine learning methods.

Data Imputation Strategy

Replace missing values with mean or median of the attribute.

from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")

X = imputer.fit_transform(X)

. . .

Cons: Ignores feature correlations and complex relationships.

Mode Imputation: Replace missing values with the most frequent value; also

ignores feature correlations.

In [37]:

Data imputation inherently relies on several assumptions, which may not always hold

true.

Randomness Assumption: Many methods (e.g., mean/median imputation) assume that

missingness is unrelated to any data.

Model Bias: Incorrect randomness assumptions can lead to biased estimates and flawed

conclusions.

Information Loss: Imputation can obscure patterns, leading to loss of valuable

information for advanced models.

Proceed with caution!

Data Imputation Strategy

Special Value Method: Replace missing values with a value outside the normal range

(e.g., use -1 or 2 for data normalized between [0,1]).

Objective: Enable the learning algorithm to recognize and appropriately handle

missing values.

The SimpleImputer class includes a parameter named add_indicator . When this

parameter is set to True , it generates an additional feature for each attribute with

missing values. This feature indicates whether the value for a given example has been

imputed. This mechanism enables classifiers to develop strategies specifically tailored to

handle missing data. For example, if using the median is ineffective for a certain

attribute, the classifier may learn to disregard that feature. Additionally, if missing values

correlate more strongly with one class over another, the classifier can incorporate this

information into its learning process.

Data Imputation Strategy

Middle-Range Imputation: Replace missing values with a value in the middle of the

normal range (e.g., use 0 for data distributed in the range [-1,1]).

Categorical Data: Use small non-zero numerical values.

Example: Use [0.25, 0.25, 0.25, 0.25] instead of [1, 0, 0, 0] for ‘Poor’, [0, 1,

0, 0] for ‘Everage’, [0, 0, 1, 0] for ‘Good’, and [0, 0, 0, 1] for ‘Excellent’.

Objective: Minimize the impact of imputed values on the results.

Selection of Method: The effectiveness of imputation methods can vary, and it is

essential to compare multiple techniques to determine the best approach for your

specific dataset.

Alternative Approach

Problem Definition: Predict unknown (missing) labels for given examples.

Have you encountered this kind of problem before?

Relevance: This can be framed as a supervised learning problem.

Let be a new example: .

Let .

Training Set: Use examples where is not missing.

Method: Train a classifier on this set to predict (impute) the missing values.

Using ML for Imputation

1. Instance-Based Method:

Use nearest neighbors (k-NN) to find the closest examples and impute

using the non-missing values from the neighborhood.

2. Model-Based Methods:

Employ advanced techniques such as random forests, tensor decomposition, or

deep neural networks.

Consult this guide or KNNImputer.

Why Use these Methods?

Advantages:

Effectively handle complex relationships and correlations between features.

Disadvantages:

Cost-intensive in terms of labor, CPU time, and memory resources.

Class Imbalance

Definition

The class imbablance problem is a scenario where the number of instances in one

class significantly outnumbers the instances in other classes.

. . .

Models tend to be biased towards the majority class, leading to poor performance on

the minority class.

x̂i [x(1)
i ,x(2)

i , … ,x
(j−1)
i ,x

(j+1)
i , … ,x(D)

i]

ŷ i = x
j
i

x
j
i

k k

https://scikit-learn.org/stable/modules/impute.html#nearest-neighbors-imputation
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html

Standard evaluation metrics like accuracy may be misleading in the presence of class

imbalance.

Solutions

Resampling: Techniques such as oversampling the minority class or

undersampling the majority class.

Algorithmic Adjustments: Using cost-sensitive learning or modifying decision

thresholds.

See class_weight for SGDClassifier.

Synthetic Data: Generating synthetic samples for the minority class using methods

like SMOTE (Synthetic Minority Over-sampling Technique).

Apply solutions only to the training set to prevents data leakage!

Resampling and SMOTE are implemented in imbalanced-learn .

Chawla et al. (2002) presents the original work, whereas Pradipta et al. (2021) is a recent

review.

Oversampling

Oversampling can lead to overfitting, especially if the synthetic samples are very

similar to the existing ones.

Impact: The model may perform well on training data but generalize poorly to

unseen data.

Undersampling

Loss of Information reduces the number of instances in the majority class.

Impact: Potentially discards valuable information and can lead to underfitting.

Reduced Model Performance: Smaller training dataset may not capture the

complexity of the problem.

Impact: Can result in a less accurate and less robust model.

What is class_weight ?

class_weight is an option you pass to SGDClassifier(...) to tell the

algorithm to emphasize certain classes more (or less) during training.

It scales the per-example loss depending on the class label, so that “rare” or

“important” classes contribute more to the objective.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://imbalanced-learn.org/stable/index.html

How it affects training (intuitively)

1. Suppose you have classes (A) and (B). You set class_weight = {A: w_A, B:
w_B} (or use "balanced" to compute weights automatically).

2. During SGD, for a training instance ((x, y)), the loss term () is multiplied by

the class weight ().

3. The gradient / parameter update for that training point is scaled by ().

So samples of class (A) with higher (w_A) “pull harder” on the model.

4. Effect: the model is biased to reduce errors more on classes with higher weights.

Automatic balancing: class_weight = "balanced"

If you set class_weight="balanced" , SGDClassifier will internally compute

class weights as

where

 = total number of samples

 = number of classes

 = count of samples in class ()

Thus rarer classes get higher weights.

Key facts & caveats

class_weight is only considered if provided in the constructor, not (effectively)

in the fit(...) call.

The class weight is multiplied with any sample_weight (if you also supply that)

in computing the effective weight for each example.

If you set class weights too aggressively, training may become unstable, or the

model may overfit minority classes.

compute_class_weight — scikit-learn 1.6.1 documentation

SGDClassifier – class_weights & sample_weights #3928 - GitHub ”

How does sample_weight work in SGDClassifier? - Stack Overflow

New Features

ℓ(y, f(x))

wy

wy

wj =
N

K ⋅ nj

N

K

nj j

https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://github.com/scikit-learn/scikit-learn/issues/3928
https://stackoverflow.com/questions/55908022/how-does-sample-weight-work-in-sgdclassifier

Definition

Feature engineering is the process of creating, transforming, and selecting variables

(attributes) from raw data to improve the performance of machine learning models.

Here, our focus is on creating new attributes from raw data.

Exploration

import numpy as np

np.random.seed(42)

X = 6 * np.random.rand(100, 1) - 3
y = 0.5 * X ** 2 - X + 2 + np.random.randn(100, 1)

import matplotlib as mpl
import matplotlib.pyplot as plt

plt.figure(figsize=(6,4))

plt.plot(X, y, "b.")
plt.xlabel("x", fontsize=18)
plt.ylabel("y", rotation=0, fontsize=18)
plt.axis([-3, 3, 0, 10])
plt.grid(True)
plt.show()

Attribution: Géron (2022), Chapter 4

In [38]:

In machine learning experiments, specifying the seed of the random number generator is

crucial for ensuring reproducibility. By setting a fixed seed, programmers can guarantee

that the same sequence of random numbers will be generated each time the experiment

is run. This consistency is vital for several reasons:

1. Reproducibility: It allows other programmers to replicate the experiment with the

exact same conditions, facilitating verification and validation of results.

2. Comparative Analysis: It enables consistent comparison between different models

or algorithms under the same initial conditions, ensuring that observed differences

are due to the models themselves rather than variations in the random initialization.

3. Debugging: It aids in debugging by providing a stable environment where issues

can be consistently reproduced and investigated.

Linear Regression

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(X, y)

X_new = np.array([[-3], [3]])
y_pred = lin_reg.predict(X_new)

plt.figure(figsize=(6,4))

plt.plot(X, y, "b.")
plt.plot(X_new, y_pred, "r-")
plt.xlabel("x", fontsize=18)
plt.ylabel("y", rotation=0, fontsize=18)
plt.axis([-3, 3, 0, 10])
plt.show()

In [39]:

A linear model inadequately represents this dataset.

Adjusting the slope invariably leads to a scenario where residuals (errors) are minimized

for certain data points while remaining significant for others.

Machine Learning Engineering

Machine Learning Engineering by Andriy Burkov (A. Burkov 2020).

http://www.mlebook.com/wiki/doku.php
https://www.linkedin.com/in/andriyburkov

Covers data collection, storage, preprocessing, feature engineering, model testing

and debugging, deployment, retirement, and maintenance.

From the author of The Hundred-Page Machine Learning Book (Andriy Burkov

2019).

Available under a “read first, buy later” model.

PolynomialFeatures

from sklearn.preprocessing import PolynomialFeatures

poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform(X)

. . .

X[0]

array([-0.75275929])

. . .

X_poly[0]

array([-0.75275929, 0.56664654])

. . .

** sklearn.preprocessing.PolynomialFeatures**

Generate a new feature matrix consisting of all polynomial combinations of

the features with degree less than or equal to the specified degree. For

example, if an input sample is two dimensional and of the form , the

degree-2 polynomial features are .

PolynomialFeatures

Given two features and , PolynomialFeatures with degree=3 would add , ,

, , as well as, , , !

. . .

Warning

PolynomialFeatures(degree=d) adds features, where is

the original number of features.

Additionally, you have the option to engineer new features of your own.

In [40]:

In [41]:

In [42]:

[a, b]

[1, a, b, a2, ab, b2]

a b a2 a3

b2 b3 ab a2b ab2

(D+d)!

d!D!
D

https://themlbook.com/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html

Polynomial Regression

lin_reg = LinearRegression()
lin_reg = lin_reg.fit(X_poly, y)

X_new = np.linspace(-3, 3, 100).reshape(100, 1)
X_new_poly = poly_features.transform(X_new)
y_new = lin_reg.predict(X_new_poly)

plt.figure(figsize=(5, 3))
plt.plot(X, y, "b.")
plt.plot(X_new, y_new, "r-", linewidth=2, label="Predictions")
plt.xlabel("x_1")
plt.ylabel("y", rotation=0)
plt.legend(loc="upper left")
plt.axis([-3, 3, 0, 10])
plt.grid()
plt.show()

LinearRegression on PolynomialFeatures

lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)

Polynomial Regression

In [43]:

In [44]:

The data was generated according to the following equation, with the inclusion of

Gaussian noise.

Presented below is the learned model.

lin_reg.coef_, lin_reg.intercept_

(array([[-1.06633107, 0.56456263]]), array([1.78134581]))

1. Linearity is about the coefficients, not the raw inputs

Logistic regression is linear in its parameters (weights).

The decision boundary comes from:

where each is a feature.

If you define to be a polynomial function of the original variables (e.g.

), the model is still linear in the .

2. PolynomialFeatures only changes the feature space

PolynomialFeatures maps input to a new vector:

.

Logistic regression then finds a linear decision boundary in this expanded feature

space.

y = 0.5x2 − 1.0x + 2.0

ŷ = 0.56x2 + (−1.06)x + 1.78

In [46]:

ŷi = σ(θ0 + θ1z
(1)
i + θ2z

(2)
i + ⋯ + θD′z

(D′)
i)

z
(j)
i

z
(j)
i

z
(3)
i

= (x(1)
i

)2 z
(j)
i

(x(1)
i ,x(2)

i)

(x(1)
i

,x(2)
i

, (x(1)
i

)2,x(1)
i
x(2)
i

, (x(2)
i

)2, …)

When you map it back to the original space, that “linear” decision

surface can appear curved or wiggly, but mathematically it’s still a hyperplane in the

transformed space.

Key message:

“Logistic regression always finds a linear boundary in the features you give it. If you feed

it polynomials, the linear boundary in that space looks nonlinear in the original space.”

Data

Size does matter

“However, these results suggest that we may want to reconsider the trade-off between

spending time and money on algorithm development versus spending it on corpus

development algorithms themselves.”

(x(1)
i ,x(2)

i)

Attribution: Banko and Brill (2001)

Unreasonable Effectiveness of Data

https://youtu.be/yvDCzhbjYWs

Halevy, Norvig, and Pereira (2009) and Kaplan et al. (2020).

Peter Norvig’s presentation, titled “The Unreasonable Effectiveness of Data,” runs for

just over one hour. It is noteworthy that the paper on which the presentation is based

was published in 2009, predating the success of AlexNet.

The substantial improvements observed with AlexNet in 2012 highlighted the benefits of

training deep neural networks on large image datasets.

Similarly, modern models like GPT, Gemini, Claude, and LLaMA have achieved significant

advancements in language capabilities by training on vast amounts of text data,

encompassing nearly all written material since the inception of human civilization.

Neural scaling laws describe how the performance of neural networks varies with

changes in key factors such as dataset size, number of parameters, and computational

cost Kaplan et al. (2020).

Definition

Data augmentation is a technique used to increase the diversity of a dataset by

applying various transformations to the existing data.

Purpose: Enhance the robustness and generalization capability of machine learning

models.

Data Augmentation

For Images: Rotations, translations, scaling, flipping, adding noise, etc.

How to find ancient geoglyphs using machine learning?, Sakai et al. (2024)

For Text: Synonym replacement, random insertion, deletion, and swapping of words.

Generative Adversarial Networks (GANs) (a form of deep learning) can be used to

generate new, synthetic data that mimics the distribution of the original dataset.

See also: Shumailov et al. (2024).

Prologue

https://youtu.be/yvDCzhbjYWs
https://youtube.com/shorts/DA_-6296G5o

Further readings

Machine Learning Engineering by Andriy Burkov (A. Burkov 2020).

Covers data collection, storage, preprocessing, feature engineering, model testing

and debugging, deployment, retirement, and maintenance.

From the author of The Hundred-Page Machine Learning Book (Andriy Burkov

2019).

Available under a “read first, buy later” model.

Summary

Attribute Encoding: Evaluation of techniques to avoid bias and possibly speed up

the training.

Preprocessing:

Data Scaling

Handling Missing Values

Managing Class Imbalance

Training Set Size: Impact on model efficacy and generalization.

Next lecture

We will introduce artificial neural networks.

References

http://www.mlebook.com/wiki/doku.php
https://www.linkedin.com/in/andriyburkov
https://themlbook.com/

Banko, Michele, and Eric Brill. 2001. “Scaling to Very Very Large Corpora for Natural

Language Disambiguation.” In Proceedings of the 39th Annual Meeting on Association

for Computational Linguistics, 26–33. ACL ’01. USA: Association for Computational

Linguistics. https://doi.org/10.3115/1073012.1073017.

Burkov, A. 2020. Machine Learning Engineering. True Positive Incorporated.

https://books.google.ca/books?id=HeXizQEACAAJ.

Burkov, Andriy. 2019. The Hundred-Page Machine Learning Book. Andriy Burkov.

Chawla, N V, K W Bowyer, L O Hall, and W P Kegelmeyer. 2002. “SMOTE: Synthetic

minority over-sampling technique.” Journal of Artificial Intelligence Research 16: 321–57.

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow. 3rd ed. O’Reilly Media, Inc.

Halevy, Alon, Peter Norvig, and Fernando Pereira. 2009. “The Unreasonable

Effectiveness of Data.” IEEE Intelligent Systems 24 (2): 8–12.

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon

Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. “Scaling Laws for

Neural Language Models.” https://arxiv.org/abs/2001.08361.

Pradipta, Gede Angga, Retantyo Wardoyo, Aina Musdholifah, I Nyoman Hariyasa Sanjaya,

and Muhammad Ismail. 2021. “SMOTE for Handling Imbalanced Data Problem : A

Review.” 2021 Sixth International Conference on Informatics and Computing (ICIC) 00: 1–

8. https://doi.org/10.1109/icic54025.2021.9632912.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Sakai, Masato, Akihisa Sakurai, Siyuan Lu, Jorge Olano, Conrad M. Albrecht, Hendrik F.

Hamann, and Marcus Freitag. 2024. “AI-accelerated Nazca survey nearly doubles the

number of known figurative geoglyphs and sheds light on their purpose.” Proceedings of

the National Academy of Sciences 121 (40): e2407652121.

https://doi.org/10.1073/pnas.2407652121.

Shumailov, Ilia, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and

Yarin Gal. 2024. “AI models collapse when trained on recursively generated data.” Nature

631 (8022): 755–59. https://doi.org/10.1038/s41586-024-07566-y.

Appendix: Pipeline

Pipeline

https://doi.org/10.3115/1073012.1073017
https://books.google.ca/books?id=HeXizQEACAAJ
https://arxiv.org/abs/2001.08361
https://doi.org/10.1109/icic54025.2021.9632912
http://aima.cs.berkeley.edu/
https://doi.org/10.1073/pnas.2407652121
https://doi.org/10.1038/s41586-024-07566-y

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

num_pipeline = Pipeline([
 ('imputer', SimpleImputer(strategy="median")),
 ('attribs_adder', CombinedAttributesAdder()),
 ('std_scaler', StandardScaler()),
])

training_num_tr = num_pipeline.fit_transform(training_num)

full_pipeline = ColumnTransformer([
 ("num", num_pipeline, num_attribs),
 ("cat", OneHotEncoder(), ["sequence"]),
])

training_prepared = full_pipeline.fit_transform(training)

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

In [47]:

mailto:Marcel.Turcotte@uOttawa.ca

Attribution: Generated by DALL-E, via ChatGPT (GPT-4), OpenAI, September 30, 2024.

See next page for interactions.

GPT-4o interactions 2024-09-30

I presented GPT-4o with an image of the main character from Marcel the Shell With

Shoes On and had the following interactions.

Marcel: How would you describe the subject of the image, its artistic quality, technique,

and rendering style?

GPT-4o: The image depicts a whimsical character that resembles a small shell with one

large, expressive eye. It stands on two legs wearing shoes, giving it a cute and almost

anthropomorphic appearance. The character has a surreal and quirky look, which lends

it a sense of personality and charm.

https://a24films.com/films/marcel-the-shell-with-shoes-on
https://a24films.com/films/marcel-the-shell-with-shoes-on

Artistic Quality:

The image is rendered with a high degree of polish and smoothness, possibly created

digitally. The textures, shading, and lighting are soft and subtle, giving the character a

smooth and rounded look. The rendering captures a delicate balance between realism

(in the textures of the shell and shoes) and cartoon-like abstraction (in the exaggerated

eye and small stature).

Technique:

The artist appears to have employed a blend of digital painting and 3D-like modeling

techniques, with careful attention to detail in the reflections in the eye and the textures

of the shell and shoes. The color palette is muted, using soft tones that evoke a gentle,

friendly atmosphere.

Rendering Style:

The rendering style is a mix of minimalist and hyperrealist elements. The minimalism is

seen in the simplified forms of the character—particularly the body and legs—while the

hyperrealism comes through in the detailing of the eye and the subtle textures. This

gives the character a tactile, almost tangible quality while maintaining its fantastical,

imaginative essence.

The overall effect of the design is both charming and surreal, combining everyday

objects (a shell, shoes) with anthropomorphic and fantastical elements to create a

unique, playful character.

Marcel: Create an image based on the following description: The image depicts a

whimsical character that resembles a small shell with one large, expressive eye. It stands

on two legs wearing shoes, giving it a cute and almost anthropomorphic appearance.

The character has a surreal and quirky look, which lends it a sense of personality and

charm.

Artistic Quality:

The image is rendered with a high degree of polish and smoothness, possibly created

digitally. The textures, shading, and lighting are soft and subtle, giving the character a

smooth and rounded look. The rendering captures a delicate balance between realism

(in the textures of the shell and shoes) and cartoon-like abstraction (in the exaggerated

eye and small stature).

Technique:

The artist appears to have employed a blend of digital painting and 3D-like modeling

techniques, with careful attention to detail in the reflections in the eye and the textures

of the shell and shoes. The color palette is muted, using soft tones that evoke a gentle,

friendly atmosphere.

Rendering Style:

The rendering style is a mix of minimalist and hyperrealist elements. The minimalism is

seen in the simplified forms of the character—particularly the body and legs—while the

hyperrealism comes through in the detailing of the eye and the subtle textures. This

gives the character a tactile, almost tangible quality while maintaining its fantastical,

imaginative essence.

The overall effect of the design is both charming and surreal, combining everyday

objects (a shell, shoes) with anthropomorphic and fantastical elements to create a

unique, playful character.

GTP-4o: Here is the image based on the description you provided. Let me know if you’d

like to make any adjustments!

