
Introduction to Artificial Neural Networks

CSI 4106 - Fall 2025

Marcel Turcotte

Version: Oct 7, 2025 17:10

Preamble

Message of the Day

https://www.youtube.com/watch?v=NUAb6zHXqdI

These Numbers Can Make AI Dangerous [Subliminal Learning] by WelchLabs, 2025-09-

04.

I appreciate the educational videos produced by WelchLabs, particularly their guest

feature on the 3Blue1Brown channel, which elucidates the mechanism by which diffusion

models convert text into images. This video assumes foundational knowledge of

embeddings and latent space, thus catering to an audience with a background in these

concepts.

But how do AI images and videos actually work? | Guest video by Welch Labs

Message of the Day (2024)

https://www.youtube.com/watch?v=NUAb6zHXqdI
https://www.youtube.com/watch?v=NUAb6zHXqdI
https://www.youtube.com/@WelchLabsVideo
https://www.youtube.com/watch?v=iv-5mZ_9CPY

Last year, the timing for this lecture could not have been better since John J. Hopfield

and Geoffrey E. Hinton were awarded the 2024 Nobel Prize in Physics “for their

fundamental discoveries and inventions enabling machine learning with artificial neural

networks.”

Learning objectives

Explain perceptrons and MLPs: structure, function, history, and limitations.

Describe activation functions: their role in enabling complex pattern learning.

Implement a feedforward neural network with Keras on Fashion-MNIST.

Interpret neural network training and results: visualization and evaluation metrics.

Familiarize with deep learning frameworks: PyTorch, TensorFlow, and Keras for

model building and deployment.

As stated at the beginning of this course, there are two primary schools of thought in

artificial intelligence: symbolic AI and connectionism. While the symbolic approach

initially dominated the field, the connectionist approach is now more prevalent. We will

now focus on connectionism.

Introduction

https://en.wikipedia.org/wiki/John_Hopfield
https://www.cs.toronto.edu/~hinton/
https://www.nobelprize.org/prizes/physics/2024/summary/

TensorFlow Playground

playground.tensorflow.org

Neural Networks (NN)

We now shift our focus to a family of machine learning models that draw inspiration

from the structure and function of biological neural networks found in animals.

AKA artificial neural networks or neural nets, abbreviated as ANN or NN.

Machine Learning Problems

https://playground.tensorflow.org/

Supervised Learning: Classification, Regression

Unsupervised Learning: Autoencoders, Self-Supervised

Reinforcement Learning: Now an Integral Component

We will begin our exploration within the framework of supervised learning.

A neuron

Attribution: Jennifer Walinga, CC BY-SA 4.0

In the study of artificial intelligence, it is logical to derive inspiration from the most well-

understood form of intelligence: the human brain. The brain is composed of a complex

network of neurons, which together form biological neural networks. Although each

neuron exhibits relatively simple behavior, it is connected to thousands of other neurons,

contributing to the intricate functionality of these networks.

A neuron can be conceptualized as a basic computational unit, and the complexity of

brain function arises from the interconnectedness of these units.

Yann LeCun and other researchers have frequently noted that artificial neural networks

used in machine learning resemble biological neural networks in much the same way that

an airplane’s wings resemble those of a bird.

Interconnected neurons

https://youtu.be/uDnHOUPRTYM

Attribution: Molecular Mechanism of Synaptic Function from the Howard Hughes

Medical Institute (HHMI). Published on YouTube on 2018-11-15.

From biology, we essentially adopt the concept of simple computational units that are

interconnected to form a network, which collectively performs complex computations.

https://creativecommons.org/licenses/by-sa/4.0
https://youtu.be/uDnHOUPRTYM
https://www.biointeractive.org/classroom-resources/molecular-mechanism-synaptic-function

While research into understanding biological neural networks is undeniably important,

the field of artificial neural networks has incorporated only a limited number of key

concepts from this research.

Connectionist

Input Layer ∈ ℝ¹⁶ Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ¹

Attribution: LeNail, (2019). NN-SVG: Publication-Ready Neural Network Architecture

Schematics. Journal of Open Source Software, 4(33), 747,

https://doi.org/10.21105/joss.00747 (GitHub)

Another characteristic of biological neural networks that we adopt is the organization of

neurons into layers, particularly evident in the cerebral cortex.

The term “connectionists” comes from the idea that nodes in these models are

interconnected. Instead of being explicitly programmed, these models learn their

behavior through training. Deep learning is a connectionist approach.

Neural networks (NNs) consist of layers of interconnected nodes (neurons), each

connection having an associated weight.

Neural networks process input data through these weighted connections, and learning

occurs by adjusting the weights based on errors in the training data.

Hierarchy of concepts

https://doi.org/10.21105/joss.00747
https://github.com/alexlenail/NN-SVG

Attribution: LeCun, Bengio, and Hinton (2015)

In the book “Deep Learning” (Goodfellow, Bengio, and Courville 2016), authors

Goodfellow, Bengio, and Courville define deep learning as a subset of machine learning

that enables computers to “understand the world in terms of a hierarchy of concepts.”

This hierarchical approach is one of deep learning’s most significant contributions. It

reduces the need for manual feature engineering and redirects the focus toward the

engineering of neural network architectures.

Basics

Computations with neurodes

where and is an indicator function:

McCulloch and Pitts (1943) termed artificial neurons, neurodes, for “neuron” + “node”.

In mathematics, , as defined above, is known as an indicator function or a

characteristic function.

These neurodes have one or more binary inputs, taking a value of 0 or 1, and one binary

output.

x1,x2 ∈ {0, 1} f(z)

f(z) = { 0, z < θ

1, z ≥ θ

f(z)

They showed that such units could implement Boolean functions such as AND, OR, and

NOT.

But also that networks of such units can compute any logical proposition.

Computations with neurodes

With , the neurode implements an AND logic gate.

With , the neurode implements an OR logic gate.

More complex logic can be constructed by multiplying the inputs by -1, which is

interpreted as inhibitory. Namely, this allows building a logical NOT.

With , x_2 y = 0 x_2 = 1 y = 1 x_2 = 0$.

Neurons can be broadly categorized into two primary types: excitatory and inhibitory.

Computations with neurodes

Digital computations can be broken down into a sequence of logical operations,

enabling neurode networks to execute any computation.

McCulloch and Pitts (1943) did not focus on learning parameter .

They introduced a machine that computes any function but cannot learn.

The period roughly from 1930 to 1950 marked a transformative shift in mathematics

toward the formalization of computation. Pioneering work by Gödel, Church, and Turing

not only established the theoretical limits and capabilities of computation—with Gödel’s

incompleteness theorems, Church’s λ‑calculus and thesis, and Turing’s model of

universal machines—but also set the stage for later developments in computer science.

McCulloch and Pitts’ 1943 model of neural networks was inspired by this early

mathematical framework linking computation to aspects of intelligence, prefiguring later

research in artificial intelligence.

From this work, we take the idea that networks of such units perform computations.

Signal propagates from one end of the network to compute a result.

y = f(x1 + x2) = { 0, x1 + x2 < θ

1, x1 + x2 ≥ θ

θ = 2

θ = 1

θ = 1 x11and multipliedby(−1), when , , if

y = f(x1 + (−1)x2) = { 0, x1 + x2 < θ

1, x1 + (−1)x2 ≥ θ

θ

Perceptron

https://youtu.be/cNxadbrN_aI

The buzz around artificial intelligence isn’t a new trend; in fact, it was already generating

excitement back in 1958, as highlighted by a quote from the New York Times.

** 1958, New York Times, July 8**

The Navy revealed the embryo of an electronic computer today that it

expects will be able to walk, talk, see, write, reproduce itself, and be

conscious of its existence.

The Machine That Changed the World - TV Series - 1992

It is observed that artificial neural networks were introduced very early, and as early as

the 1960s, they were not considered promising. Additionally, biases in the datasets used

for training these networks were already noticeable.

Perceptron

https://www.youtube.com/watch?v=Suevq-kZdIw

Threshold logic unit

Rosenblatt (1958)

In 1957, Frank Rosenblatt developed a conceptually distinct model of a neuron known as

the threshold logic unit, which he published in 1958.

In this model, both the inputs and the output of the neuron are represented as real

values. Notably, each input connection has an associated weight.

https://youtu.be/cNxadbrN_aI
https://www.imdb.com/title/tt1245829/
https://www.youtube.com/watch?v=Suevq-kZdIw

The left section of the neuron, denoted by the sigma symbol, represents the

computation of a weighted sum of its inputs, expressed as

.

This sum is then processed through a step function, right section of the neuron, to

generate the output.

Here, represents the dot product of two vectors: and . Here, denotes the

transpose of the vector , converting it from a row vector to a column vector, allowing

the dot product operation to be performed with the vector .

The dot product is then a scalar given by:

where and are the components of the vectors and , respectively.

Simple Step Functions

θ1x1 + θ2x2 + … + θDxD + b

xTθ x θ xT

x

θ

xTθ

xTθ = x(1)θ1 + x(2)θ2 + ⋯ + x(D)θD

x(j) thetaj x θ

 =

1, if

0, if

 =

1, if

0, if

-1, if

Common step functions include the heavyside function (0 if the input is negative and

1 otherwise) or the sign function (-1 if the input is negative, 0 if the input is zero, 1

otherwise).

Notation

heaviside(t)

t ≥ 0

t < 0

sign(t)

t > 0

t = 0

t < 0

Add an extra feature with a fixed value of 1 to the input. Associate it with weight ,

where is the bias/intercept term.

Notation

 is the bias/intercept term.

The threshold logic unit is analogous to logistic regression, with the primary distinction

being the substitution of the logistic (sigmoid) function with a step function. Similar to

logistic regression, the perceptron is employed for classification tasks.

Perceptron

b = θ0

b

θ0 = b

A perceptron consists of one or more threshold logic units arranged in a single layer,

with each unit connected to all inputs. This configuration is referred to as fully

connected or dense.

Since the threshold logic units in this single layer also generate the output, it is referred

to as the output layer.

Perceptron

As this perceptron generates multiple outputs simultaneously, it performs multiple

binary predictions, making it as a multilabel classifier (can also be used as multiclass

classifier).

Classification tasks, can be further divided into multilabel and multiclass classification.

1. Multiclass Classification:

In multiclass classification, each instance is assigned to one and only one class

out of a set of three or more possible classes. The classes are mutually

exclusive, meaning that an instance cannot belong to more than one class at the

same time.

Example: Classifying an image as either a cat, dog, or bird. Each image can

only belong to one of these categories.

2. Multilabel Classification:

In multilabel classification, each instance can be associated with multiple

classes simultaneously. The classes are not mutually exclusive, allowing for the

possibility that an instance can belong to several classes at once.

Example: Tagging an image with multiple attributes such as “outdoor,” “sunset,”

and “beach.” The image can simultaneously belong to all these labels.

The key difference lies in the relationship between classes: multiclass classification

deals with a single label per instance, while multilabel classification handles

multiple labels for each instance.

Notation

As before, introduce an additional feature with a value of 1 to the input. Assign a bias

to each neuron. Each incoming connection implicitly has an associated weight.

b

Notation

 is the input data matrix where each row corresponds to an example and each

column represents one of the features.

 is the weight matrix, structured with one row per input (feature) and one

column per neuron.

Bias terms can be represented separately; both approaches appear in the literature.

Here, is a vector with a length equal to the number of neurons.

With neural networks, the parameters of the model are often reffered to as (vector)

or (matrix), rather than .

Discussion

The algorithm to train the perceptron closely resembles stochastic gradient

descent.

In the interest of time and to avoid confusion, we will skip this algorithm and

focus on multilayer perception (MLP) and its training algorithm,

backpropagation.

Historical Note and Justification

X

D

W

b

w

W θ

Minsky and Papert (1969) demonstrated the limitations of perceptrons, notably their

inability to solve exclusive OR (XOR) classification problems:

.

This limitation also applies to other linear classifiers, such as logistic regression.

Consequently, due to these limitations and a lack of practical applications, some

researchers abandoned the perceptron.

Multilayer Perceptron

([0, 1], true), ([1, 0], true), ([0, 0], false), ([1, 1], false)

A multilayer perceptron (MLP) includes an input layer and one or more layers of

threshold logic units. Layers that are neither input nor output are termed hidden layers.

XOR Classification problem

1 0 1 0 1 1

0 1 1 0 1 1

0 0 0 0 0 0

1 1 0 1 1 0

 and are two attributes, is the target, , , and , are the output of

the top left, bottom left, and right threshold units. Clearly . The

challenge during Rosenblatt’s time was the lack of algorithms to train multi-layer

networks.

I developed an Excel spreadsheet to verify that the proposed multilayer perceptron

effectively solves the XOR classification problem.

The step function used in the above model is the heavyside function.

Feedforward Neural Network (FNN)

x

(1

) x

(2

)
y o1 o2 o3

x(1) x(2) y o1 o2 o3 = hθ(x)

hθ(x) = y, ∀x ∈ X

Information in this architecture flows unidirectionally—from left to right, moving from

input to output. Consequently, it is termed a feedforward neural network.

The network consists of three layers: input, hidden, and output. The input layer

contains two nodes, the hidden layer comprises three nodes, and the output layer has

two nodes. Additional hidden layers and nodes per layer can be added, which will be

discussed later.

It is often useful to include explicit input nodes that do not perform calculations, known

as input units or input neurons. These nodes act as placeholders to introduce input

features into the network, passing data directly to the next layer without transformation.

In the network diagram, these are the light blue nodes on the left, labeled 1 and 2.

Typically, the number of input units corresponds to the number of features.

For clarity, nodes are labeled to facilitate discussion of the weights between them, such

as between nodes 1 and 5. Similarly, the output of a node is denoted by , where

represents the node’s label. For example, for , the output would be .

Forward Pass (Computatation)

w1,5 ok k

k = 3 o3

First, it’s important to understand the information flow: this network computes two

outputs from its inputs.

To simplify the figure, I have opted not to display the bias terms, though they remain

crucial components. Specifically, represents the bias term associated with node 3.

If bias terms were not significant, the training process would naturally reduce them to

zero. Bias terms are essential as they enable the adjustment of the decision boundary,

allowing the model to learn more complex patterns that weights alone cannot capture.

By offering additional degrees of freedom, they also contribute to faster convergence

during training.

Forward Pass (Computatation)

import numpy as np

Sigmoid function

o3 = σ(w13x
(1) + w23x

(2) + b3)

o4 = σ(w14x
(1) + w24x

(2) + b4)

o5 = σ(w15x
(1) + w25x

(2) + b5)

o6 = σ(w36o3 + w46o4 + w56o5 + b6)

o7 = σ(w37o3 + w47o4 + w57o5 + b7)

b3

In [2]:

def sigma(x):
 return 1 / (1 + np.exp(-x))

Input (two attributes) vector, one example of our trainig set

x1, x2 = (0.5, 0.9)

Initializing the weights of layers 2 and 3 to random values

w13, w14, w15, w23, w24, w25 = np.random.uniform(low=-1, high=1, size=6)
w36, w46, w56, w37, w47, w57 = np.random.uniform(low=-1, high=1, size=6)

Initializing all 5 bias terms to random values

b3, b4, b5, b6, b7 = np.random.uniform(low=-1, high=1, size=5)

o3 = sigma(w13 * x1 + w23 * x2 + b3)
o4 = sigma(w14 * x1 + w24 * x2 + b4)
o5 = sigma(w15 * x1 + w25 * x2 + b5)
o6 = sigma(w36 * o3 + w46 * o4 + w56 * o5 + b6)
o7 = sigma(w37 * o3 + w47 * o4 + w57 * o5 + b7)

(o6, o7)

(np.float64(0.7184474803926196), np.float64(0.5083206266553244))

The example above illustrates the computation process with specific values. Before

training a neural network, it is standard practice to initialize the weights and biases with

random values. Gradient descent is then employed to iteratively adjust these

parameters, aiming to minimize the loss function.

Forward Pass (Computatation)

The information flow remains consistent even in more complex networks. Networks

with many layers are called deep neural networks (DNN).

Produced using NN-SVG, LeNail (2019).

Forward Pass (Computatation)

Same network with bias terms shown.

Produced using NN-SVG, LeNail (2019).

Activation Function

As will be discussed later, the training algorithm, known as backpropagation,

employs gradient descent, necessitating the calculation of the partial derivatives

of the loss function.

The step function in the multilayer perceptron had to be replaced, as it consists

only of flat surfaces. Gradient descent cannot progress on flat surfaces due to

their zero derivative.

Activation Function

Nonlinear activation functions are paramount because, without them, multiple

layers in the network would only compute a linear function of the inputs.

According to the Universal Approximation Theorem, sufficiently large deep

networks with nonlinear activation functions can approximate any continuous

function. See Universal Approximation Theorem.

Sigmoid

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Hyperbolic Tangent Function

σ(t) =
1

1 + e−t

This S-shaped curve, similar to the sigmoid function, produces output values ranging

from -1 to 1. According to Géron (2022), this range helps each layer’s output to be

approximately centered around 0 at the start of training, thereby accelerating

convergence.

Rectified linear unit function (ReLU)

Although the ReLU function is not differentiable at and has a derivative of 0 for

, it performs quite well in practice and is computationally efficient. Consequently, it

has become the default activation function.

Common Activation Functions

from scipy.special import expit as sigmoid

def relu(z):
 return np.maximum(0, z)

def derivative(f, z, eps=0.000001):
 return (f(z + eps) - f(z - eps))/(2 * eps)

tanh(t) = 2σ(2t) − 1

ReLU(t) = max(0, t)

t = 0

t < 0

In [6]:

max_z = 4.5
z = np.linspace(-max_z, max_z, 200)

plt.figure(figsize=(11, 3.1))

plt.subplot(121)
plt.plot([-max_z, 0], [0, 0], "r-", linewidth=2, label="Heaviside")
plt.plot(z, relu(z), "m-.", linewidth=2, label="ReLU")
plt.plot([0, 0], [0, 1], "r-", linewidth=0.5)
plt.plot([0, max_z], [1, 1], "r-", linewidth=2)
plt.plot(z, sigmoid(z), "g--", linewidth=2, label="Sigmoid")
plt.plot(z, np.tanh(z), "b-", linewidth=1, label="Tanh")
plt.grid(True)
plt.title("Activation functions")
plt.axis([-max_z, max_z, -1.65, 2.4])
plt.gca().set_yticks([-1, 0, 1, 2])
plt.legend(loc="lower right", fontsize=13)

plt.subplot(122)
plt.plot(z, derivative(np.sign, z), "r-", linewidth=2, label="Heaviside")
plt.plot(0, 0, "ro", markersize=5)
plt.plot(0, 0, "rx", markersize=10)
plt.plot(z, derivative(sigmoid, z), "g--", linewidth=2, label="Sigmoid")
plt.plot(z, derivative(np.tanh, z), "b-", linewidth=1, label="Tanh")
plt.plot([-max_z, 0], [0, 0], "m-.", linewidth=2)
plt.plot([0, max_z], [1, 1], "m-.", linewidth=2)
plt.plot([0, 0], [0, 1], "m-.", linewidth=1.2)
plt.plot(0, 1, "mo", markersize=5)
plt.plot(0, 1, "mx", markersize=10)
plt.grid(True)
plt.title("Derivatives")
plt.axis([-max_z, max_z, -0.2, 1.2])

plt.show()

Géron (2022) – 10_neural_nets_with_keras.ipynb

Universal Approximation

Definition

https://github.com/ageron/handson-ml3/blob/main/10_neural_nets_with_keras.ipynb

The universal approximation theorem (UAT) states that a feedforward neural network

with a single hidden layer containing a finite number of neurons can approximate any

continuous function on a compact subset of , given appropriate weights and

activation functions.

Cybenko (1989); Hornik, Stinchcombe, and White (1989)

In mathematical terms, a subset of is considered compact if it is both closed and

bounded.

Closed: A set is closed if it contains all its boundary points. In other words, it

includes its limit points or accumulation points.

Bounded: A set is bounded if there exists a real number (M) such that the distance

between any two points in the set is less than .

In the context of the universal approximation theorem, compactness ensures that the

function being approximated is defined on a finite and well-behaved region, which is

crucial for the theoretical guarantees provided by the theorem.

Single Hidden Layer

R
n

R
n

M

Notation adapted to follow that of Cybenko (1989).

Effect of Varying w

def logistic(x, w, b):
 """Compute the logistic function with parameters w and b."""
 return 1 / (1 + np.exp(-(w * x + b)))

Define a range for x values.
x = np.linspace(-10, 10, 400)

Plot 1: Varying w (steepness) with b fixed at 0.
plt.figure(figsize=(6,4))

y =

N

∑
i=1

αiσ(w1,ix + bi)

In [7]:

w_values = [0.5, 1, 2, 5] # different steepness values
b = 0 # fixed bias

for w in w_values:
 plt.plot(x, logistic(x, w, b), label=f'w = {w}, b = {b}')
plt.title('Effect of Varying w (with b = 0)')
plt.xlabel('x')
plt.ylabel(r'$\sigma(wx+b)$')
plt.legend()
plt.grid(True)

plt.show()

Sigmoid activation function: .

Effect of Varying b

Plot 2: Varying b (horizontal shift) with w fixed at 1.
plt.figure(figsize=(6,4))
w = 1 # fixed steepness
b_values = [-5, -2, 0, 2, 5] # different bias values

for b in b_values:
 plt.plot(x, logistic(x, w, b), label=f'w = {w}, b = {b}')
plt.title('Effect of Varying b (with w = 1)')
plt.xlabel('x')
plt.ylabel(r'$\sigma(wx+b)$')
plt.legend()
plt.grid(True)

plt.show()

σ(wx + b)

In [8]:

Sigmoid activation function: .

Effect of Varying w

def relu(x, w, b):
 """Compute the ReLU activation with parameters w and b."""
 return np.maximum(0, w * x + b)

Define a range for x values.
x = np.linspace(-10, 10, 400)

Plot 1: Varying w (scaling) with b fixed at 0.
plt.figure(figsize=(6,4))
w_values = [0.5, 1, 2, 5] # different scaling values
b = 0 # fixed bias

for w in w_values:
 plt.plot(x, relu(x, w, b), label=f'w = {w}, b = {b}')
plt.title('Effect of Varying w (with b = 0) on ReLU Activation')
plt.xlabel('x')
plt.ylabel('ReLU(wx+b)')
plt.legend()
plt.grid(True)

plt.show()

σ(wx + b)

In [9]:

ReLU activation function: np.maximum(0, w * x + b) .

Effect of Varying b

Plot 2: Varying b (horizontal shift) with w fixed at 1.
plt.figure(figsize=(6,4))
w = 1 # fixed scaling
b_values = [-5, -2, 0, 2, 5] # different bias values

for b in b_values:
 plt.plot(x, relu(x, w, b), label=f'w = {w}, b = {b}')
plt.title('Effect of Varying b (with w = 1) on ReLU Activation')
plt.xlabel('x')
plt.ylabel('ReLU(wx+b)')
plt.legend()
plt.grid(True)

plt.show()

In [10]:

ReLU activation function: np.maximum(0, w * x + b) .

Single Hidden Layer

See also: Chapter 4: A visual proof that neural nets can compute any function, Neural

Networks and Deep Learning by Michael Nielsen.

Demonstration with code

Defining the function to be approximated

def f(x):
 return 2 * x**3 + 4 * x**2 - 5 * x + 1

Generating a dataset, x in [-4,2), f(x) as above

X = 6 * np.random.rand(1000, 1) - 4

y =

N

∑
i=1

αiσ(w1,ix + bi)

In [11]:

http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

y = f(X.flatten())

Increasing the number of neurons

from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import train_test_split

X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.1, r

models = []

sizes = [1, 2, 5, 10, 100]

for i, n in enumerate(sizes):

 models.append(MLPRegressor(hidden_layer_sizes=[n], max_iter=5000, random_s

 models[i].fit(X_train, y_train)

MLPRegressor is a multi-layer perceptron regressor from sklearn. Its default activation

function is relu .

Increasing the number of neurons

Create a colormap
colors = plt.colormaps['cool'].resampled(len(sizes))

X_valid = np.sort(X_valid,axis=0)

for i, n in enumerate(sizes):

 y_pred = models[i].predict(X_valid)

 plt.plot(X_valid, y_pred, "-", color=colors(i), label="Number of neurons =

y_true = f(X_valid)
plt.plot(X_valid, y_true, "r.", label='Actual')

plt.legend()
plt.show()

In [12]:

In [13]:

https://scikit-learn.org/dev/modules/generated/sklearn.neural_network.MLPRegressor.html

In the example above, I retained only 10% of the data as the test set because the

function being approximated is straightforward and noise-free. This decision was made

to ensure that the true curve does not overshadow the other results.

Increasing the number of neurons

for i, n in enumerate(sizes):

 plt.plot(models[i].loss_curve_, "-", color=colors(i), label="Number of neu

plt.title('MLPRegressor Loss Curves')
plt.xlabel('Iterations')
plt.ylabel('Loss')

plt.legend()
plt.show()

In [14]:

As expected, increasing neuron count reduces loss.

Universal Approximation

https://youtu.be/CqOfi41LfDw

This video effectively conveys the underlying intuition of the universal approximation

theorem. (18m 53s)

The video effectively elucidates key concepts (terminology) in neural networks, including

nodes, layers, weights, and activation functions. It demonstrates the process of

summing activation outputs from a preceding layer, akin to the aggregation of curves.

Additionally, the video illustrates how scaling an output by a weight not only alters the

amplitude of a curve but also inverts its orientation when the weight is negative.

Moreover, it clearly depicts the function of bias terms in vertically shifting the curve,

contingent on the sign of the bias.

Let’s code

Frameworks

https://youtu.be/CqOfi41LfDw

PyTorch and TensorFlow are the leading platforms for deep learning.

PyTorch has gained considerable traction in the research community. Initially

developed by Meta AI, it is now part of the Linux Foundation.

TensorFlow, created by Google, is widely adopted in industry for deploying models

in production environments.

Official PyTorch Documentary: Powering the AI Revolution

Keras

Keras is a high-level API designed to build, train, evaluate, and execute models across

various backends, including PyTorch, TensorFlow, and JAX, Google’s high-performance

platform.

Keras is powerful enough for most projects.

As highlighted in previous Quotes of the Day, François Chollet, a Google engineer, is the

originator and one of the primary developers of the Keras project.

Fashion-MNIST dataset

“Fashion-MNIST is a dataset of Zalando’s article images—consisting of a training set of

60,000 examples and a test set of 10,000 examples. Each example is a 28x28

grayscale image, associated with a label from 10 classes.”

Attribution: Géron (2022) – 10_neural_nets_with_keras.ipynb

Loading

import tensorflow as tf

fashion_mnist = tf.keras.datasets.fashion_mnist

(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()

X_train, y_train = X_train_full[:-5000], y_train_full[:-5000]
X_valid, y_valid = X_train_full[-5000:], y_train_full[-5000:]

Setting aside 5000 examples as a validation set.

Exploration

X_train.shape

In [16]:

In [17]:

https://pytorch.org/
https://www.tensorflow.org/
https://youtu.be/rgP_LBtaUEc
https://keras.io/
https://jax.readthedocs.io/en/latest/quickstart.html
https://keras.io/
https://github.com/zalandoresearch/fashion-mnist
https://en.zalando.de/?_rfl=de
https://github.com/ageron/handson-ml3/blob/main/10_neural_nets_with_keras.ipynb

(55000, 28, 28)

. . .

X_train.dtype

dtype('uint8')

. . .

Transforming the pixel intensities from integers in the range 0 to 255 to floats in the

range 0 to 1.

X_train = X_train / 255.0
X_valid = X_valid / 255.0

What are these images anyway!

plt.figure(figsize=(2, 2))
plt.imshow(X_train[0], cmap="binary")
plt.axis('off')
plt.show()

. . .

y_train

array([9, 0, 0, ..., 9, 0, 2], shape=(55000,), dtype=uint8)

. . .

Since the labels are integers, 0 to 9. Class names will become handy.

class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
 "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]

First 40 images

n_rows = 4
n_cols = 10
plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2))

In [18]:

In [19]:

In [20]:

In [21]:

In [22]:

In [23]:

for row in range(n_rows):
 for col in range(n_cols):
 index = n_cols * row + col
 plt.subplot(n_rows, n_cols, index + 1)
 plt.imshow(X_train[index], cmap="binary", interpolation="nearest")
 plt.axis('off')
 plt.title(class_names[y_train[index]])
plt.subplots_adjust(wspace=0.2, hspace=0.5)
plt.show()

Creating a model

tf.random.set_seed(42)

model = tf.keras.Sequential()

model.add(tf.keras.layers.InputLayer(shape=[28, 28]))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(300, activation="relu"))
model.add(tf.keras.layers.Dense(100, activation="relu"))
model.add(tf.keras.layers.Dense(10, activation="softmax"))

model.summary()

model.summary()

Model: "sequential_1"

In [24]:

In [25]:

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━
┃ Layer (type) ┃ Output Shape ┃ Par
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━
│ flatten_1 (Flatten) │ (None, 784) │
├─────────────────────────────────┼────────────────────────┼───────────
│ dense_3 (Dense) │ (None, 300) │ 235
├─────────────────────────────────┼────────────────────────┼───────────
│ dense_4 (Dense) │ (None, 100) │ 30
├─────────────────────────────────┼────────────────────────┼───────────
│ dense_5 (Dense) │ (None, 10) │ 1
└─────────────────────────────────┴────────────────────────┴───────────
 Total params: 266,610 (1.02 MB)
 Trainable params: 266,610 (1.02 MB)
 Non-trainable params: 0 (0.00 B)

As observed, dense_3 has parameters, while .

Could you explain the origin of the additional parameters?

Similarly, dense_3 has parameters, while .

Can you explain why?

Creating a model (alternative)

extra code – clear the session to reset the name counters
tf.keras.backend.clear_session()
tf.random.set_seed(42)

model = tf.keras.Sequential([
 tf.keras.Input(shape=(28, 28)),
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(300, activation="relu"),
 tf.keras.layers.Dense(100, activation="relu"),
 tf.keras.layers.Dense(10, activation="softmax")
])

model.summary()

model.summary()

Model: "sequential"

235, 500 784 × 300 = 235, 200

30, 100 300 × 100 = 30, 000

In [26]:

In [27]:

In [28]:

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━
┃ Layer (type) ┃ Output Shape ┃ Par
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━
│ flatten (Flatten) │ (None, 784) │
├─────────────────────────────────┼────────────────────────┼───────────
│ dense (Dense) │ (None, 300) │ 235
├─────────────────────────────────┼────────────────────────┼───────────
│ dense_1 (Dense) │ (None, 100) │ 30
├─────────────────────────────────┼────────────────────────┼───────────
│ dense_2 (Dense) │ (None, 10) │ 1
└─────────────────────────────────┴────────────────────────┴───────────
 Total params: 266,610 (1.02 MB)
 Trainable params: 266,610 (1.02 MB)
 Non-trainable params: 0 (0.00 B)

Compiling the model

model.compile(loss="sparse_categorical_crossentropy",
 optimizer="adam",
 metrics=["accuracy"])

sparse_categorical_crossentropy is the appropriate function for a multiclass

classification problem (more later).

The method compile allows to set the loss function, as well as other parameters.

Keras then prepares the model for training.

Training the model

history = model.fit(X_train, y_train, epochs=30,
 validation_data=(X_valid, y_valid))

The model is provided with both a taining set and a validation set. At each step, the

model will report its performance on both sets. This will also allow to visualize the

accuracy and loss curves on both sets (more later).

When calling the fit method in Keras (or similar frameworks), each step corresponds

to the evaluation of a mini-batch. A mini-batch is a subset of the training data, and

during each step, the model updates its weights based on the error calculated from this

mini-batch.

An epoch is defined as one complete pass through the entire training dataset. During an

epoch, the model processes multiple mini-batches until it has seen all the training data

once. This process is repeated for a specified number of epochs to optimize the model’s

performance.

Visualization

In [29]:

In [30]:

import pandas as pd

pd.DataFrame(history.history).plot(
 figsize=(8, 5), xlim=[0, 29], ylim=[0, 1], grid=True, xlabel="Epoch",
 style=["r--", "r--.", "b-", "b-*"])
plt.legend(loc="lower left") # extra code
plt.show()

Evaluating the model on our test

model.evaluate(X_test, y_test)

[121.29401397705078, 0.8600999712944031]

Making predictions

X_new = X_test[:3]
y_proba = model.predict(X_new)
y_proba.round(2)

array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
 [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
 [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)

. . .

In [31]:

In [32]:

In [33]:

y_pred = y_proba.argmax(axis=-1).astype(int)
y_pred

. . .

y_new = y_test[:3]
y_new

As can be seen, the predictions are unambiguous, with only one class per prediction

exhibiting a high value.

Predicted vs Observed

plt.figure(figsize=(7.2, 2.4))
for index, image in enumerate(X_new):
 plt.subplot(1, 3, index + 1)
 plt.imshow(image, cmap="binary", interpolation="nearest")
 plt.axis('off')
 plt.title(class_names[y_test[index]])
plt.subplots_adjust(wspace=0.2, hspace=0.5)
plt.show()

Test Set Performance

from sklearn.metrics import classification_report

y_proba = model.predict(X_test)
y_pred = y_proba.argmax(axis=-1).astype(int)

Test Set Performance

print(classification_report(y_test, y_pred))

In [34]:

In [35]:

In [36]:

In [38]:

In [39]:

 precision recall f1-score support

 0 0.82 0.80 0.81 1000
 1 0.96 0.98 0.97 1000
 2 0.86 0.63 0.73 1000
 3 0.91 0.81 0.86 1000
 4 0.64 0.91 0.75 1000
 5 0.99 0.94 0.96 1000
 6 0.68 0.64 0.66 1000
 7 0.94 0.94 0.94 1000
 8 0.96 0.98 0.97 1000
 9 0.92 0.96 0.94 1000

 accuracy 0.86 10000
 macro avg 0.87 0.86 0.86 10000
weighted avg 0.87 0.86 0.86 10000

Prologue

Summary

Introduction to Neural Networks and Connectionism

Shift from symbolic AI to connectionist approaches in artificial intelligence.

Inspiration from biological neural networks and the human brain’s structure.

Computations with Neurodes and Threshold Logic Units

Early models of neurons (neurodes) capable of performing logical operations

(AND, OR, NOT).

Limitations of simple perceptrons in solving non-linearly separable problems

like XOR.

Multilayer Perceptrons (MLPs) and Feedforward Neural Networks (FNNs)

Overcoming perceptron limitations by introducing hidden layers.

Structure and information flow in feedforward neural networks.

Explanation of forward pass computations in neural networks.

Activation Functions in Neural Networks

Importance of nonlinear activation functions (sigmoid, tanh, ReLU) for enabling

learning of complex patterns.

Role of activation functions in backpropagation and gradient descent

optimization.

Universal Approximation Theorem and its implications for neural networks.

Deep Learning Frameworks

Overview of PyTorch and TensorFlow as leading platforms for deep learning.

Introduction to Keras as a high-level API for building and training neural

networks.

Discussion on the suitability of different frameworks for research and industry

applications.

Hands-On Implementation with Keras

Loading and exploring the Fashion-MNIST dataset.

Building a neural network model using Keras’ Sequential API.

Compiling the model with appropriate loss functions and optimizers for

multiclass classification.

Training the model and visualizing training and validation metrics over epochs.

Evaluating model performance on test data and interpreting results.

Making Predictions and Interpreting Results

Using the trained model to make predictions on new data.

Visualizing predictions alongside actual images and labels.

Understanding the output probabilities and class assignments in the context of

the dataset.

3Blue1Brown on Deep Learning

But what is a Neural Network?

youtu.be/aircAruvnKk

19 minutes

Gradient descent, how neural networks learn?

youtu.be/IHZwWFHWa-w

21 minutes

What is backpropagation really doing?

youtu.be/Ilg3gGewQ5U

14 minutes

Backpropagation calculus

youtu.be/Ilg3gGewQ5U

Next lecture

We will discuss the training algorithm for artificial neural networks.

References

Cybenko, George V. 1989. “Approximation by Superpositions of a Sigmoidal Function.”

Mathematics of Control, Signals and Systems 2: 303–14.

https://api.semanticscholar.org/CorpusID:3958369.

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow. 3rd ed. O’Reilly Media, Inc.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Adaptive

Computation and Machine Learning. MIT Press.

https://youtu.be/aircAruvnKk
https://youtu.be/IHZwWFHWa-w
https://youtu.be/Ilg3gGewQ5U
https://youtu.be/Ilg3gGewQ5U
https://api.semanticscholar.org/CorpusID:3958369

https://dblp.org/rec/books/daglib/0040158.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer Feedforward

Networks Are Universal Approximators.” Neural Networks 2 (5): 359–66.

https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature 521

(7553): 436–44. https://doi.org/10.1038/nature14539.

LeNail, Alexander. 2019. “NN-SVG: Publication-Ready Neural Network Architecture

Schematics.” Journal of Open Source Software 4 (33): 747.

https://doi.org/10.21105/joss.00747.

McCulloch, Warren S, and Walter Pitts. 1943. “A logical calculus of the ideas immanent in

nervous activity.” The Bulletin of Mathematical Biophysics 5 (4): 115–33.

https://doi.org/10.1007/bf02478259.

Minsky, Marvin, and Seymour Papert. 1969. Perceptrons: An Introduction to

Computational Geometry. Cambridge, MA, USA: MIT Press.

Rosenblatt, F. 1958. “The perceptron: A probabilistic model for information storage and

organization in the brain.” Psychological Review 65 (6): 386–408.

https://doi.org/10.1037/h0042519.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

https://dblp.org/rec/books/daglib/0040158
https://doi.org/
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1038/nature14539
https://doi.org/10.21105/joss.00747
https://doi.org/10.1007/bf02478259
https://doi.org/10.1037/h0042519
http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

