
Training Artificial Neural Networks (Part 1)

CSI 4106 - Fall 2025

Marcel Turcotte

Version: Oct 21, 2025 14:38

Preamble

Message of the Day

From Turing’s Chess to Neural Game Engines: AI in Video Games Today by Alex Landa,

ODSC, 2025-09-02, a Podcast (1h 8m) featuring Julian Togelius, an Associate Professor

at New York University.

The text describes a podcast featuring Julian Togelius, an Associate Professor at New

York University and co-director of the Game Innovation Lab. Togelius is the author of

“Artificial Intelligence and Games,” which has a second edition released in 2025. For

those with access to a device on the University of Ottawa’s network, a copy of this book

is available for download.

Artificial Intelligence and Games

PDF, EPUB

I have been following Julian Togelius on social media for some time, although I have not

yet had the opportunity to read his book.

https://opendatascience.com/from-turings-chess-to-neural-game-engines-ai-in-video-games-today/
https://soundcloud.com/aixpodcast/from-turings-chess-to-neural-game-engines-ai-in-video-games-today-with-julian-togelius
https://link.springer.com/book/10.1007/978-3-031-83347-2
https://link.springer.com/content/pdf/10.1007/978-3-031-83347-2.pdf
https://link.springer.com/download/epub/10.1007/978-3-031-83347-2.epub

Learning objectives

Explain the architecture and function of feed-forward neural networks (FNNs).

Identify common activation functions and understand their impact on network

performance.

Introduce a simple but functional implementation of a feed-forward neural

networks.

Summary

3Blue1Brown (1/2)

https://youtu.be/aircAruvnKk

In my opinion, this is an excellent and informative video.

It is highly recommended that you watch this video. While it covers the concepts we

have already explored, it presents the material in a manner that is challenging to

replicate in a classroom setting.

Provides a clear explanation of the intuition behind the effectiveness of neural

networks, detailing the hierarchy of concepts briefly mentioned in the last lecture.

(5m 31s to 8m 38s)

Offers a compelling rationale for the necessity of a bias term.

Similarly, elucidates the concept of activation functions and the importance of a

squashing function.

The segment beginning at 13m 26s offers a visual explanation of the linear algebra

involved: .

3Blue1Brown (2/2)

https://www.youtube.com/watch?v=IHZwWFHWa-w

Our discussion will be on backpropagation. Viewing Gradient descent, how neural

networks learn might be helpful.

We will revisit the concept of gradient descent in our discussion on the backpropagation

algorithm. To review this topic, you can watch this video: Gradient descent, how neural

networks learn | Deep Learning Chapter 2 (duration: 20 minutes and 33 seconds).

Summary - DL

σ(WXT + b)

https://youtu.be/aircAruvnKk
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w

Deep learning (DL) is a machine learning technique that can be applied to

supervised learning (including regression and classification), unsupervised

learning, and reinforcement learning.

Inspired from the structure and function of biological neural networks found in

animals.

Comprises interconnected neurons (or units) arranged into layers.

Summary - FNN

Information in this architecture flows unidirectionally—from left to right, moving from

input to output. Consequently, it is termed a feed-forward neural network (FNN).

Neural networks have inputs and outputs.

The network consists of three layers: input, hidden, and output. The input layer

contains two nodes, the hidden layer comprises three nodes, and the output layer has

two nodes. Additional hidden layers and nodes per layer can be added, which will be

discussed later.

It is often useful to include explicit input nodes that do not perform calculations, known

as input units or input neurons. These nodes act as placeholders to introduce input

features into the network, passing data directly to the next layer without transformation.

In the network diagram, these are the light blue nodes on the left. Typically, the number

of input units corresponds to the number of features.

Summary - FNN

The number of layers and nodes can vary based on the specific requirements.

Neural networks can have a significantly large number of input nodes, often in the

hundreds or thousands, depending on the complexity of the data. Additionally, they may

contain numerous hidden layers. For instance, ResNet, which won the ILSVRC 2015

image classification task, features 152 layers. The authors of ResNet have demonstrated

results for networks with 100 and even 1000 layers (He et al. 2016). However, the

number of output nodes tends to be relatively small. In regression problems, there is

typically one output node, while in classification tasks (whether multiclass or multilabel),

the number of output nodes corresponds to the number of classes.

Consider a scenario in which one can determine the optimal number of layers and nodes

for a neural network. Empirical evidence suggests that such networks excel in

performing both classification and regression tasks. Despite the complexity arising from

a large number of parameters, which complicates the interpretation of learned patterns,

understanding the forward pass, how the network generates predictions from new input

data, is relatively straightforward.

Today’s objective is to understand the process of adjusting the network’s weights based

on its current output. Specifically, we aim to understand how to utilize the output signal

to propagate information backward through the network.

Summary - units

Introducing a fictitious input is a hack that simplifies the expression .

In the diagram above, it is important to clarify that the inputs and output pertain

specifically to this individual unit, rather than to the entire network’s global inputs and

output.

The name activation originates from the function’s role in determining whether a neuron

should be “activated” or “fired” based on its input.

Historically, the concept was inspired by biological neurons, where a neuron activates

and transmits a signal to other neurons if its input exceeds a certain threshold. In

artificial neural networks, the activation function serves a similar purpose by introducing

non-linearity into the model. This non-linearity is crucial because it enables the network

to learn complex patterns and representations in the data.

Common Activation Functions

Attribution: https://github.com/ageron/handson-ml3/blob/main/10_neural_net

import numpy as np
import matplotlib.pyplot as plt

x(0) = 1 xT θ + b

In [2]:

from scipy.special import expit as sigmoid

def relu(z):
 return np.maximum(0, z)

def derivative(f, z, eps=0.000001):
 return (f(z + eps) - f(z - eps))/(2 * eps)

max_z = 4.5
z = np.linspace(-max_z, max_z, 200)

plt.figure(figsize=(11, 3.1))

plt.subplot(121)
plt.plot(z, relu(z), "m-.", linewidth=2, label="ReLU")
plt.plot(z, sigmoid(z), "g--", linewidth=2, label="Sigmoid")
plt.plot(z, np.tanh(z), "b-", linewidth=1, label="Tanh")
plt.grid(True)
plt.title("Activation functions")
plt.axis([-max_z, max_z, -1.65, 2.4])
plt.gca().set_yticks([-1, 0, 1, 2])
plt.legend(loc="lower right", fontsize=13)

plt.subplot(122)
plt.plot(z, derivative(sigmoid, z), "g--", linewidth=2, label="Sigmoid")
plt.plot(z, derivative(np.tanh, z), "b-", linewidth=1, label="Tanh")
plt.plot([-max_z, 0], [0, 0], "m-.", linewidth=2)
plt.plot([0, max_z], [1, 1], "m-.", linewidth=2)
plt.plot([0, 0], [0, 1], "m-.", linewidth=1.2)
plt.plot(0, 1, "mo", markersize=5)
plt.plot(0, 1, "mx", markersize=10)
plt.grid(True)
plt.title("Derivatives")
plt.axis([-max_z, max_z, -0.2, 1.2])

plt.show()

Géron (2022) – 10_neural_nets_with_keras.ipynb

Consider the following observations:

The sigmoid function produces outputs within the open interval .(0, 1)

https://github.com/ageron/handson-ml3/blob/main/10_neural_nets_with_keras.ipynb

The hyperbolic tangent function () has an image spanning the open interval

.

The Rectified Linear Unit (ReLU) function outputs values in the interval .

Additionally, note:

The maximum derivative value of the sigmoid function is 0.25.

The maximum derivative value of the function is 1.

The derivative of the ReLU function is 0 for negative inputs and 1 for positive inputs.

Furthermore:

A node employing ReLU as its activation function generates outputs within the range

. However, its derivative, utilized in gradient descent during backpropagation,

is constant, taking values of either 0 or 1.

Universal Approximation

The universal approximation theorem states that a feed-forward neural network with a

single hidden layer containing a finite number of neurons can approximate any

continuous function on a compact subset of , given appropriate weights and

activation functions.

Cybenko (1989); Hornik, Stinchcombe, and White (1989)

The Universal Approximation Theorem (UAT) is a powerful theoretical assurance: in

principle, a sufficiently wide single-hidden-layer network can approximate any

continuous function. But it is not a practical prescription. In real problems, a deep

architecture often achieves the same approximation accuracy with far fewer parameters

and in a way that is more trainable and generalizable.

Under relatively mild assumptions (e.g. non-polynomial activation, continuity,

compact input domain), a feed-forward neural network with one hidden layer and a

sufficiently large number of neurons (i.e. “wide enough”) can approximate any

continuous function arbitrarily well (within arbitrarily small error) on a compact

domain.

The theorem is typically an existence result. It guarantees that such a network

exists, but does not show how to find the right weights (i.e. the training procedure)

or say how many neurons are needed precisely.

The theorem also does not guarantee anything about generalization to unseen data

(i.e. overfitting) or computational efficiency of training.

The UAT says “there exists a wide enough network,” but it may require an

eX_trainemely large number of neurons. In many practical settings, that becomes

infeasible (too many parameters, too slow, risk of overfitting, etc.).

tanh

(−1, 1)

[0, ∞)

tanh

[0, ∞)

R
n

Some functions are “hard” to approximate by shallow (i.e. single-hidden-layer)

networks unless you use exponentially many neurons. In contrast, deeper networks

may approximate the same function with far fewer parameters.

UAT assumes you can pick the “right” weights. But in real training, optimization

(e.g. via gradient descent) may get stuck in poor local minima, plateaus, saddle

points, or fail to converge to the approximating solution.

It gives no guarantee on how many training samples you need to realize a good

approximation, or on generalization to new data.

Even if a network can approximate a target function exactly (on training data), it may

generalize poorly if the model is over-parameterized or if regularization is

inadequate.

UAT is silent on robustness to noise, stability, or eX_trainapolation outside the

training domain.

Naïve MLP

Data

Generate and plot the "circles" dataset
import matplotlib.pyplot as plt
from sklearn.datasets import make_circles

Generate synthetic data
X, y = make_circles(n_samples=1200, factor=0.35, noise=0.06, random_state=42

Separate coordinates for plotting
x1, x2 = X[:, 0], X[:, 1]

Plot the two classes
plt.figure(figsize=(5, 5))
plt.scatter(x1[y==0], x2[y==0], color="C0", label="class 0 (outer ring)")
plt.scatter(x1[y==1], x2[y==1], color="C1", label="class 1 (inner circle)")
plt.xlabel("x₁")
plt.ylabel("x₂")
plt.title("Dataset generated with make_circles")
plt.axis("equal") # ensures circles look round
plt.legend()
plt.show()

In [3]:

Concepts such as partial derivatives, gradient descent, and backpropagation can initially

seem daunting. To mitigate this complexity, we propose an intermediary approach by

constructing a simple yet fully operational neural network.

It is important to note that the proposed training algorithm is not intended to replace the

standard back-propagation method used in practice.

We are constructing a dataset that comprises two distinct classes: an outer ring (class 1)

and an inner circle (class 0). These classes are deliberately designed to be non-linearly

separable within the feature space, presenting a straightforward yet challenging

scenario for classification tasks.

Architecture

(x1, x2)

Our neural network, a multi-layer perceptron, is designed with two input nodes

corresponding to the two features present in our dataset. Through our experimentation

using TensorFlow Playground and Keras, as detailed in CircularSeparability, we

determined that a configuration of two hidden layers containing four neurons each is

effective for the classification of the samples.

The network produces a single output via the sigmoid activation function.

In the visualization, the black edges between units denote the model’s weights.

Additionally, we have included three nodes that output a constant value of 1 solely for

visualization purposes; these nodes do not have a counterpart in the actual model. The

gray edges connecting these nodes to other units represent the bias terms.

Utilities

def sigmoid(z):
 return 1.0 / (1.0 + np.exp(-z))

def bce_loss(y_true, y_prob, eps=1e-9):

 """Binary cross-entropy loss (average over data)."""

 y_prob = np.clip(y_prob, eps, 1 - eps)

In [4]:

file:///var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/11/CircularSeparability

 return -np.mean(y_true * np.log(y_prob) + (1 - y_true) * np.log(1 - y_pr

We are defining two utility functions, sigmoid and bce_loss . The binary cross-

entropy loss has the same definition as that of our logisic regression model. Do you

remember another name for binary cross-entropy loss?

In bce_loss , the probabilities are constrained within the interval . This

clipping ensures that the logarithmic expressions and are

avoided, thus preventing undefined or infinite values during computation.

Both functions are designed to take NumPy arrays (ndarray) as input. Namely, the

bce_loss function calculates the loss for the entire dataset without requiring explicit

iteration over individual data points.

NaïveMLP

The complete implementation is presented below and will be examined in the

subsequent slides.

class NaiveMLP:

 """
 A minimal multilayer perceptron (MLP) utilizing a brute force training
 algorithm that does not require derivative calculations.

 Please note that the suggested training algorithm is intended solely for
 didactic purposes and should not be mistaken for a genuine training algo
 """

 def __init__(self, layer_sizes, step=0.1, seed=None):

 self.sizes = list(layer_sizes)
 self.step = float(step)
 rng = np.random.default_rng(seed)

 # Initialize weights and biases

 self.W = [rng.standard_normal(size=(in_d, out_d)) * 0.5
 for in_d, out_d in zip(layer_sizes[:-1], layer_sizes[1:])]

 self.b = [np.zeros(out_d) for out_d in layer_sizes[1:]]

 def forward(self, X):

 """
 Simple forward pass: compute output activations only.

 X: shape (N, input_dim)

 Returns: output probabilities, shape (N,)

[ϵ, 1 − ϵ]

log(0) log(1 − 1) = log(0)

In [5]:

file:///var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/06/slides

 """

 a = X
 for W, b in zip(self.W, self.b):
 a = sigmoid(a @ W + b)

 return a.ravel()

 def predict(self, X, threshold=0.5):

 return (self.forward(X) >= threshold).astype(int)

 def loss(self, X, y):

 return bce_loss(y, self.forward(X))

 def _all_param_tags(self):

 """
 Yields tags referencing every scalar parameter:
 ('W', layer_idx, i, j) or ('b', layer_idx, j)
 """

 for l, W in enumerate(self.W):
 for i in range(W.shape[0]):
 for j in range(W.shape[1]):
 yield ('W', l, i, j)
 for j in range(self.b[l].shape[0]):
 yield ('b', l, j)

 def _get_param(self, tag):
 kind = tag[0]
 if kind == 'W':
 _, l, i, j = tag
 return self.W[l][i, j]
 else:
 _, l, j = tag
 return self.b[l][j]

 def _set_param(self, tag, val):
 kind = tag[0]
 if kind == 'W':
 _, l, i, j = tag
 self.W[l][i, j] = val
 else:
 _, l, j = tag
 self.b[l][j] = val

 def train(self, X, y, epochs=10, verbose=True):

 """
 Simultaneous update:
 - For each scalar parameter θ, try θ + δ for δ in {−step, 0, +step},
 pick the δ that gives minimal loss.
 - Collect all chosen δ’s, then apply all updates together.
 """

 for ep in range(1, epochs + 1):

 base_loss = self.loss(X, y)
 updates = {}

 # Probe all parameters
 for tag in self._all_param_tags():

 theta = self._get_param(tag)
 best_delta = 0.0
 best_loss = base_loss

 for delta in (-self.step, 0.0, +self.step):
 self._set_param(tag, theta + delta)
 trial_loss = self.loss(X, y)
 if trial_loss < best_loss:
 best_loss = trial_loss
 best_delta = delta

 # restore original
 self._set_param(tag, theta)
 updates[tag] = best_delta

 # Apply all deltas together
 for tag, d in updates.items():
 if d != 0.0:
 self._set_param(tag, self._get_param(tag) + d)

 new_loss = self.loss(X, y)

 if verbose:
 print(f"Epoch {ep:3d}: loss {base_loss:.5f} → {new_loss:.5f}

 # optional early stop
 if abs(new_loss - base_loss) < 1e-12:
 break

To ensure the functionality of the resulting Jupyter Notebook, the whole class has been

included here.

Class Definition

class NaiveMLP:

 """
 A minimal multilayer perceptron (MLP) utilizing a brute force training
 algorithm that does not require derivative calculations.

 Please note that the suggested training algorithm is intended solely for
 didactic purposes and should not be mistaken for a genuine training algo
 """

In [6]:

Constructor

 def __init__(self, layer_sizes, step=0.1, seed=None):

 self.sizes = list(layer_sizes)
 self.step = float(step)
 rng = np.random.default_rng(seed)

 # Initialize weights and biases

 self.W = [rng.standard_normal(size=(in_d, out_d)) * 0.5
 for in_d, out_d in zip(layer_sizes[:-1], layer_sizes[1:])]

 self.b = [np.zeros(out_d) for out_d in layer_sizes[1:]]

Memorizing the number of layers, the number of units per layer, and the learning

algorithm’s step size. Initializing the weights () and biases ().

Python

seed = 0

rng = np.random.default_rng(seed)

layer_sizes = [2, 4, 4, 1]

[(in_d, out_d) for in_d, out_d in zip(layer_sizes[:-1], layer_sizes[1:])]

[(2, 4), (4, 4), (4, 1)]

. . .

[rng.standard_normal(size=(in_d, out_d)) * 0.5 for in_d, out_d in zip(layer_

[array([[0.06286511, -0.06605243, 0.32021133, 0.05245006],
 [-0.26783469, 0.18079753, 0.65200002, 0.47354048]]),
array([[-0.35186762, -0.63271074, -0.31163723, 0.02066299],
 [-1.16251539, -0.10939583, -0.62295547, -0.36613368],
 [-0.27212949, -0.15815008, 0.20581527, 0.52125668],
 [-0.06426733, 0.68323174, -0.33259734, 0.17575504]]),
array([[0.45173509],
 [0.04700615],
 [-0.37174962],
 [-0.46086269]])]

How many weights has this network?

Python

[out_d for out_d in layer_sizes[1:]]

In [7]:

W b

In [8]:

In [9]:

In [10]:

[4, 4, 1]

. . .

[np.zeros(out_d) for out_d in layer_sizes[1:]]

[array([0., 0., 0., 0.]), array([0., 0., 0., 0.]), array([0.])]

What is the number of bias terms in this network?

The network consists of a total of 37 parameters, which include 28 weights and 9 bias

terms.

Forward Pass

 def forward(self, X):

 """
 Simple forward pass: compute output activations.
 X: shape (N, input_dim)
 Returns: output probabilities, shape (N,)
 """

 a = X
 for W, b in zip(self.W, self.b):
 a = sigmoid(a @ W + b)

 return a.ravel()

Calculating the output activations. Determining the probability of each instance in the

dataset belonging to class 1.

The method proceeds sequentially layer-by-layer. In our running example, this involves

three distinct processing layers.

What are W and b ?

W and b are lists, each containing three elements. The list W comprises weight

matrices with dimensions , , and , while b consists of biais arrays

sized 4, 4, and 1, respectively.

What is the purpose of zip(self.W, self.b) ?

This function pairs each weight matrix with its corresponding bias array, resulting in

three tuples, one for each of the second, third, and fourth layers.

What does X represent?

Leveraging NumPy makes the code compact, but it is important to recognize the

underlying details. The parameter X encapsulates the entire dataset, comprising 200

In [11]:

In [12]:

X

2 × 4 4 × 4 4 × 1

samples with 2 features each. Within each iteration of the loop, the activations for all

units in the current layer are computed for all examples.

Making predictions

 def predict(self, X, threshold=0.5):

 return (self.forward(X) >= threshold).astype(int)

Indeed, predictions, plural.

The forward method produces an array of probabilities, each ranging from 0 to 1,

indicating the likelihood that a particular example, , belongs to class 1. By evaluating

the expression self.forward(X) >= threshold , we obtain an array of boolean

values: True if the probability exceeds the specified threshold , and False
otherwise. These boolean values are subsequently converted into binary values of zeros

and ones.

It is important to note that adjusting the decision boundary, threshold , allows for the

manipulation of the precision-recall trade-off, providing flexibility in model performance.

Computing the loss

 def loss(self, X, y):

 return bce_loss(y, self.forward(X))

The method in question calculates the loss for the entire dataset.

What would happen if we would return bce_loss(y, self.predict(X)) instead of

bce_loss(y, self.forward(X)) ?

Discussion

With the exception of the training algorithm, our neural network implementation is now

complete.

For those who are not familiar with the back-propagation algorithm, how do you propose

to learn the parameters of the model?

. . .

Change weights → compute loss → keep if better → repeat.

Pseudocode

In [13]:

xi

In [14]:

pseudocode
for each epoch:
 for each parameter w in network:
 best_delta = 0
 best_loss = current_loss
 for delta in [-0.01, 0, +0.01]:
 w_temp = w + delta
 loss_temp = compute_loss(w_temp, data)
 if loss_temp < best_loss:
 best_loss = loss_temp
 best_delta = delta
 w += best_delta

It is important to note that this algorithm is fundamentally distinct from

backpropagation, which is widely used in practice. The primary reason for its

introduction is its simplicity, notably the absence of partial derivatives.

The algorithm operates over several epochs, during which the predictive accuracy for

the training set is incrementally enhanced with each iteration.

During each iteration, the algorithm evaluates whether to decrease, increase, or maintain

the current value of each parameter.

Once the optimal adjustment for each parameter is determined, all changes are

implemented simultaneously. This approach resembles the gradient descent technique

discussed earlier in the semester and offers the advantage of straightforward

parallelization.

Python

 def _all_param_tags(self):

 """
 Yields tags referencing every scalar parameter:
 ('W', layer_idx, i, j) or ('b', layer_idx, j)
 """

 for l, W in enumerate(self.W):
 for i in range(W.shape[0]):
 for j in range(W.shape[1]):
 yield ('W', l, i, j)
 for j in range(self.b[l].shape[0]):
 yield ('b', l, j)

The above implements a generator, which is a Python concept that look simple, but

packs a lot of power.

A generator is a kind of function that can pause its execution and resume later. It

produces a sequence of values, one at a time, without storing them all in memory. You

In [15]:

create one using the yield keyword.

Here is an example.

def countdown(n):
 while n > 0:
 yield n # "yield" a value and pause
 n -= 1
You can call it three times, then it will raise StopIteration .

c = countdown(3)
print(next(c)) # 3
print(next(c)) # 2
print(next(c)) # 1
try:
 print(next(c))
except StopIteration:
 print("Caught StopIteration.")

3
2
1
Caught StopIteration.

Generators are often in for loops.

for value in countdown(3):
 print(value)

3
2
1

The functions enumerate and zip both return iterators, which function similarly to

generators by facilitating lazy evaluation. This approach generates items dynamically

during iteration, thereby avoiding the need to store all items in memory simultaneously.

Python

class Demo:

 def __init__(self, layer_sizes):
 self.sizes = list(layer_sizes)
 rng = np.random.default_rng(0)
 self.W = [rng.standard_normal(size=(in_d, out_d)) * 0.5
 for in_d, out_d in zip(layer_sizes[:-1], layer_sizes[1:])]
 self.b = [np.zeros(out_d) for out_d in layer_sizes[1:]]

 def _all_param_tags(self):

In [19]:

 """
 Yields tags referencing every scalar parameter:
 ('W', layer_idx, i, j) or ('b', layer_idx, j)
 """

 for l, W in enumerate(self.W):
 for i in range(W.shape[0]):
 for j in range(W.shape[1]):
 yield ('W', l, i, j)
 for j in range(self.b[l].shape[0]):
 yield ('b', l, j)

 def show(self):

 for tag in self._all_param_tags():
 print(tag)

d = Demo([2,4,4,1])
d.show()

In [20]:

('W', 0, 0, 0)
('W', 0, 0, 1)
('W', 0, 0, 2)
('W', 0, 0, 3)
('W', 0, 1, 0)
('W', 0, 1, 1)
('W', 0, 1, 2)
('W', 0, 1, 3)
('b', 0, 0)
('b', 0, 1)
('b', 0, 2)
('b', 0, 3)
('W', 1, 0, 0)
('W', 1, 0, 1)
('W', 1, 0, 2)
('W', 1, 0, 3)
('W', 1, 1, 0)
('W', 1, 1, 1)
('W', 1, 1, 2)
('W', 1, 1, 3)
('W', 1, 2, 0)
('W', 1, 2, 1)
('W', 1, 2, 2)
('W', 1, 2, 3)
('W', 1, 3, 0)
('W', 1, 3, 1)
('W', 1, 3, 2)
('W', 1, 3, 3)
('b', 1, 0)
('b', 1, 1)
('b', 1, 2)
('b', 1, 3)
('W', 2, 0, 0)
('W', 2, 1, 0)
('W', 2, 2, 0)
('W', 2, 3, 0)
('b', 2, 0)

Python

 def _get_param(self, tag):
 kind = tag[0]
 if kind == 'W':
 _, l, i, j = tag
 return self.W[l][i, j]
 else:
 _, l, j = tag
 return self.b[l][j]

Given a tag , either ('W', l, i, j) or ('b', l, j) , the method retrieves the

weight or the bias term corresponding to the provided indices. l designates the layer;

i and j are row and column indices of W[l] , or j is an index in b[l] .

In [21]:

Python

 def _set_param(self, tag, val):
 kind = tag[0]
 if kind == 'W':
 _, l, i, j = tag
 self.W[l][i, j] = val
 else:
 _, l, j = tag
 self.b[l][j] = val

Similar logic, but the method updates self.W[l][i, j] or self.b[l][j] = val ,

depending on the type of tag.

Training (learning)

 def train(self, X, y, epochs=10, verbose=True):

 for ep in range(1, epochs + 1):

 base_loss = self.loss(X, y)
 updates = {}

 # Probe all parameters
 for tag in self._all_param_tags():

 theta = self._get_param(tag)
 best_delta = 0.0
 best_loss = base_loss

 for delta in (-self.step, 0.0, +self.step):
 self._set_param(tag, theta + delta)
 trial_loss = self.loss(X, y)
 if trial_loss < best_loss:
 best_loss = trial_loss
 best_delta = delta

 # restore original
 self._set_param(tag, theta)
 updates[tag] = best_delta

 # Apply all deltas together
 for tag, d in updates.items():
 if d != 0.0:
 self._set_param(tag, self._get_param(tag) + d)

 new_loss = self.loss(X, y)

 if verbose:
 print(f"Epoch {ep:3d}: loss {base_loss:.5f} → {new_loss:.5f}

 # optional early stop

In [22]:

In [23]:

 if abs(new_loss - base_loss) < 1e-12:
 break

“Simultaneous” ≈ a Jacobi-style step: you pick per-parameter deltas against the same

baseline, then apply them all at once. Interactions between parameters are ignored while

you’re choosing them.

Ouf!

Does it work?

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.25, random_state=42, stratify=y
)

model = NaiveMLP([2, 4, 4, 1], step=0.06, seed=0)

print("Initial loss:", model.loss(X_train, y_train))

model.train(X_train, y_train, epochs=100)

print("Train acc:", accuracy_score(y_train, model.predict(X_train)))
print("Test acc: ", accuracy_score(y_test, model.predict(X_test)))

In [24]:

Initial loss: 0.7001969055705487
Epoch 1: loss 0.70020 → 0.69315
Epoch 2: loss 0.69315 → 0.69547
Epoch 3: loss 0.69547 → 0.69387
Epoch 4: loss 0.69387 → 0.69542
Epoch 5: loss 0.69542 → 0.69384
Epoch 6: loss 0.69384 → 0.69537
Epoch 7: loss 0.69537 → 0.69382
Epoch 8: loss 0.69382 → 0.69531
Epoch 9: loss 0.69531 → 0.69379
Epoch 10: loss 0.69379 → 0.69525
Epoch 11: loss 0.69525 → 0.69361
Epoch 12: loss 0.69361 → 0.69517
Epoch 13: loss 0.69517 → 0.69331
Epoch 14: loss 0.69331 → 0.69503
Epoch 15: loss 0.69503 → 0.69298
Epoch 16: loss 0.69298 → 0.69468
Epoch 17: loss 0.69468 → 0.69257
Epoch 18: loss 0.69257 → 0.69364
Epoch 19: loss 0.69364 → 0.69200
Epoch 20: loss 0.69200 → 0.69173
Epoch 21: loss 0.69173 → 0.69118
Epoch 22: loss 0.69118 → 0.68965
Epoch 23: loss 0.68965 → 0.68970
Epoch 24: loss 0.68970 → 0.68716
Epoch 25: loss 0.68716 → 0.68672
Epoch 26: loss 0.68672 → 0.68417
Epoch 27: loss 0.68417 → 0.68170
Epoch 28: loss 0.68170 → 0.67855
Epoch 29: loss 0.67855 → 0.67406
Epoch 30: loss 0.67406 → 0.66867
Epoch 31: loss 0.66867 → 0.66203
Epoch 32: loss 0.66203 → 0.65492
Epoch 33: loss 0.65492 → 0.64672
Epoch 34: loss 0.64672 → 0.63852
Epoch 35: loss 0.63852 → 0.62948
Epoch 36: loss 0.62948 → 0.61977
Epoch 37: loss 0.61977 → 0.60918
Epoch 38: loss 0.60918 → 0.59844
Epoch 39: loss 0.59844 → 0.58893
Epoch 40: loss 0.58893 → 0.57598
Epoch 41: loss 0.57598 → 0.56310
Epoch 42: loss 0.56310 → 0.55035
Epoch 43: loss 0.55035 → 0.53809
Epoch 44: loss 0.53809 → 0.52214
Epoch 45: loss 0.52214 → 0.50660
Epoch 46: loss 0.50660 → 0.49073
Epoch 47: loss 0.49073 → 0.47591
Epoch 48: loss 0.47591 → 0.45758
Epoch 49: loss 0.45758 → 0.44074
Epoch 50: loss 0.44074 → 0.42251
Epoch 51: loss 0.42251 → 0.41069
Epoch 52: loss 0.41069 → 0.38858
Epoch 53: loss 0.38858 → 0.36998
Epoch 54: loss 0.36998 → 0.35227
Epoch 55: loss 0.35227 → 0.34356

Epoch 56: loss 0.34356 → 0.32577
Epoch 57: loss 0.32577 → 0.31462
Epoch 58: loss 0.31462 → 0.29240
Epoch 59: loss 0.29240 → 0.27704
Epoch 60: loss 0.27704 → 0.25851
Epoch 61: loss 0.25851 → 0.25409
Epoch 62: loss 0.25409 → 0.23884
Epoch 63: loss 0.23884 → 0.23260
Epoch 64: loss 0.23260 → 0.21815
Epoch 65: loss 0.21815 → 0.21238
Epoch 66: loss 0.21238 → 0.19964
Epoch 67: loss 0.19964 → 0.19350
Epoch 68: loss 0.19350 → 0.17787
Epoch 69: loss 0.17787 → 0.16963
Epoch 70: loss 0.16963 → 0.15270
Epoch 71: loss 0.15270 → 0.14804
Epoch 72: loss 0.14804 → 0.13478
Epoch 73: loss 0.13478 → 0.13357
Epoch 74: loss 0.13357 → 0.12381
Epoch 75: loss 0.12381 → 0.12041
Epoch 76: loss 0.12041 → 0.10789
Epoch 77: loss 0.10789 → 0.10512
Epoch 78: loss 0.10512 → 0.09204
Epoch 79: loss 0.09204 → 0.08493
Epoch 80: loss 0.08493 → 0.07447
Epoch 81: loss 0.07447 → 0.07243
Epoch 82: loss 0.07243 → 0.06423
Epoch 83: loss 0.06423 → 0.06479
Epoch 84: loss 0.06479 → 0.06053
Epoch 85: loss 0.06053 → 0.05940
Epoch 86: loss 0.05940 → 0.05501
Epoch 87: loss 0.05501 → 0.05465
Epoch 88: loss 0.05465 → 0.05370
Epoch 89: loss 0.05370 → 0.05036
Epoch 90: loss 0.05036 → 0.04376
Epoch 91: loss 0.04376 → 0.04596
Epoch 92: loss 0.04596 → 0.04283
Epoch 93: loss 0.04283 → 0.04213
Epoch 94: loss 0.04213 → 0.04031
Epoch 95: loss 0.04031 → 0.03879
Epoch 96: loss 0.03879 → 0.03629
Epoch 97: loss 0.03629 → 0.03574
Epoch 98: loss 0.03574 → 0.03499
Epoch 99: loss 0.03499 → 0.03293
Epoch 100: loss 0.03293 → 0.03075
Train acc: 1.0
Test acc: 1.0

Our training algorithm is brittle. Obtaining these results required experimenting with

step and seed .

Vizulalization

Plot helper: decision boundary in the original (x1, x2) plane

def plot_decision_boundary(model, X, y, title="Naïve MLP decision boundary")

 # grid over the input plane
 pad = 0.3
 x1_min, x1_max = X[:,0].min()-pad, X[:,0].max()+pad
 x2_min, x2_max = X[:,1].min()-pad, X[:,1].max()+pad

 xx, yy = np.meshgrid(
 np.linspace(x1_min, x1_max, 400),
 np.linspace(x2_min, x2_max, 400)
)
 grid = np.c_[xx.ravel(), yy.ravel()]

 # predict probabilities on the grid
 p = model.forward(grid).reshape(xx.shape)

 # filled probabilities + p=0.5 contour + data points
 plt.figure(figsize=(3.75, 3.75), dpi=140)
 plt.contourf(xx, yy, p, levels=50, alpha=0.7)
 cs = plt.contour(xx, yy, p, levels=[0.5], linewidths=2)
 plt.scatter(X[:,0], X[:,1], c=y, s=18, edgecolor="k", linewidth=0.2)
 plt.clabel(cs, fmt={0.5: "p=0.5"})
 plt.title(title)
 plt.xlabel("x₁")
 plt.ylabel("x₂")
 plt.tight_layout()
 plt.show()

plot_decision_boundary(model, X, y)

In [25]:

XOR-like data

n_samples = 800
rng = np.random.default_rng(42)

X = rng.uniform(-6, 6, size=(n_samples, 2))
x1, x2 = X[:, 0], X[:, 1]

y = ((x1 * x2) > 0).astype(int)

plt.figure(figsize=(4.5, 4.5))
plt.scatter(X[y == 0, 0], X[y == 0, 1],
 color="C0", label="class 0", edgecolor="k", linewidth=0.3)
plt.scatter(X[y == 1, 0], X[y == 1, 1],
 color="C1", label="class 1", edgecolor="k", linewidth=0.3)

plt.axhline(0, color="gray", linestyle="--", linewidth=1)
plt.axvline(0, color="gray", linestyle="--", linewidth=1)

plt.xlabel("x₁")
plt.ylabel("x₂")
plt.title("XOR-like data")
plt.xlim(-6, 6)

In [26]:

plt.ylim(-6, 6)
plt.axis("equal")
plt.legend()
plt.tight_layout()
plt.show()

Would the same architecture, 2, 4, 4, 1, work for the XOR-like dataset?

XOR-like data (continued)

X_train, X_test, y_train, y_test = train_test_split(
 X, y, test_size=0.25, random_state=42, stratify=y
)

model = NaiveMLP([2, 4, 4, 1], step=0.06, seed=0)

print("Initial loss:", model.loss(X_train, y_train))

model.train(X_train, y_train, epochs=1000, verbose=False)

print("Final loss:", model.loss(X_train, y_train))

print("Train acc:", accuracy_score(y_train, model.predict(X_train)))
print("Test acc: ", accuracy_score(y_test, model.predict(X_test)))

Initial loss: 0.7029764953722529
Final loss: 3.4494531195516116e-07
Train acc: 1.0
Test acc: 0.99

In [27]:

XOR-like data (continued)

plot_decision_boundary(model, X, y)

Our simple neural network, along with its naïve training algorithm, was evaluated on two

distinct tests. Despite the simplicity of the model, it successfully learned significantly

different decision boundaries without necessitating the engineering of additional

features.

For the sake of simplicity and clarity in this example, we utilized the raw data without

applying any scaling. However, in practical scenarios, it is customary to scale or

normalize features prior to training neural networks or any models that rely on gradient-

based optimization. Scaling facilitates faster and more stable convergence of training

algorithms, although it introduces additional preprocessing and postprocessing steps.

Since the primary objective here is to comprehend the training mechanism rather than

optimize for efficiency, we have deliberately chosen to omit scaling in this instance.

Before training,

In [28]:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)
After training, when you want to visualize the decision boundary in the original feature

space, you’d unscale the coordinates using scaler.inverse_transform .

Drawbacks

Computational inefficiency.

Scalability limitations.

Fixed step size (±η) lacks adaptivity.

Poor coordination of parameters.

No directional or magnitude information.

Lack of sophisticated optimizer features.

Potential for over-fitting or poor generalisation.

Computational inefficiency: trying every parameter with three deltas each epoch

scales poorly as model size grows.

Fixed step size (±η) lacks adaptivity: too small → very slow; too large →

overshoot/oscillate.

Poor coordination of parameters: each parameter updated ignoring interactions →

slower convergence in coupled networks.

Discrete local search (rather than derivative-based): no directional or magnitude

information → many epochs needed, risk of zig-zagging or getting stuck.

Scalability limitations: full loss evaluation per parameter change → infeasible for

large datasets or many parameters.

Lack of sophisticated optimizer features: no momentum, adaptive rates,

regularization built in → weaker performance and reliability.

Potential for over-fitting or poor generalisation: aggressive training on full-batch loss

without built-in regularisation may tailor too much to training data.

Limited insight into update magnitude: only ±η or 0 choices mean no fine-tuning of

step size per parameter or epoch.

Notation

Notation

A two-layer perceptron computes:

where

Where is an activation function, a weight matrix, an input matrix, and a bias

vector.

Notation

A 3-layer perceptron computes:

where

ŷ = ϕ2(ϕ1(X))

ϕl(Z) = ϕ(WlZl + bl)

ϕ W X b

ŷ = ϕ3(ϕ2(ϕ1(X)))

ϕl(Z) = ϕ(WlZl + bl)

Notation

A -layer perceptron computes:

where

A feed-forward network exhibits a consistent structure, where each layer executes the

same type of computation on varying inputs. Specifically, the input to layer is the

output from layer .

k

ŷ = ϕk(… ϕ2(ϕ1(X)) …)

ϕl(Z) = ϕ(WlZl + bl)

l

l − 1

In this notation, it is highlighted that only the first layer receives the input attributes

directly. Each subsequent layer then processes the activations from the preceding layer,

facilitating the learning of new representations. This underscores the consistent

architecture of feedforward networks. As we will explore in the next lecture, increasing

the number of layers does not inherently increase the algorithm’s complexity.

Prologue

Summary

Framed deep learning as layered function approximation across tasks.

Described FNNs: inputs → hidden layers → outputs; information flowed forward only.

Noted units used bias and activations; clarified why non-linearity mattered.

Reviewed sigmoid/tanh/ReLU ranges and derivative behavior.

Stated the Universal Approximation Theorem and its practical limits.

Built a tiny MLP and computed predictions and BCE loss on toy data.

Demonstrated a naïve, non-gradient training algorithm; it worked but scaled poorly

and was brittle.

Established compact layer notation, where

, to prepare for backprop.

Next lecture

We will introduce backprop, and discuss vanishing gradient, softmax, and

regularization.

References

Cybenko, George V. 1989. “Approximation by Superpositions of a Sigmoidal Function.”

Mathematics of Control, Signals and Systems 2: 303–14.

https://api.semanticscholar.org/CorpusID:3958369.

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow. 3rd ed. O’Reilly Media, Inc.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep Residual

Learning for Image Recognition.” In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 770–78. https://doi.org/10.1109/CVPR.2016.90.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer Feedforward

Networks Are Universal Approximators.” Neural Networks 2 (5): 359–66.

https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8.

ŷ = ϕk(… ϕ2(ϕ1(X)) …)

ϕl(Z) = ϕ(WlZl + bl)

https://api.semanticscholar.org/CorpusID:3958369
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/
https://doi.org/10.1016/0893-6080(89)90020-8

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

