Training Artificial Neural Networks (Part 1)

CSI 4106 - Fall 2025

Marcel Turcotte
Version: Oct 21, 2025 14:38

Preamble

Message of the Day

From Turing's Chess to Neural Game Engines: Al in Video Games Today by Alex Landa,
ODSC, 2025-09-02, a Podcast (1h 8m) featuring Julian Togelius, an Associate Professor
at New York University.

The text describes a podcast featuring Julian Togelius, an Associate Professor at New
York University and co-director of the Game Innovation Lab. Togelius is the author of
"Artificial Intelligence and Games,” which has a second edition released in 2025. For
those with access to a device on the University of Ottawa's network, a copy of this book
is available for download.

o Artificial Intelligence and Games
= PDF, EPUB

| have been following Julian Togelius on social media for some time, although | have not
yet had the opportunity to read his book.

https://opendatascience.com/from-turings-chess-to-neural-game-engines-ai-in-video-games-today/
https://soundcloud.com/aixpodcast/from-turings-chess-to-neural-game-engines-ai-in-video-games-today-with-julian-togelius
https://link.springer.com/book/10.1007/978-3-031-83347-2
https://link.springer.com/content/pdf/10.1007/978-3-031-83347-2.pdf
https://link.springer.com/download/epub/10.1007/978-3-031-83347-2.epub

Learning objectives

e Explain the architecture and function of feed-forward neural networks (FNNs).

¢ |dentify common activation functions and understand their impact on network
performance.

¢ Introduce a simple but functional implementation of a feed-forward neural
networks.

Summary

3Blue1Brown (1/2)

https://youtu.be/aircAruvnKk
In my opinion, this is an excellent and informative video.

It is highly recommended that you watch this video. While it covers the concepts we
have already explored, it presents the material in a manner that is challenging to
replicate in a classroom setting.

e Provides a clear explanation of the intuition behind the effectiveness of neural
networks, detailing the hierarchy of concepts briefly mentioned in the last lecture.
(5m 31s to 8m 38s)

e Offers a compelling rationale for the necessity of a bias term.

¢ Similarly, elucidates the concept of activation functions and the importance of a
squashing function.

¢ The segment beginning at 13m 26s offers a visual explanation of the linear algebra
involved: (W XT +b).

3Blue1Brown (2/2)

https://www.youtube.com/watch?v=IHZwWFHWa-w

Our discussion will be on backpropagation. Viewing Gradient descent, how neural
networks learn might be helpful.

We will revisit the concept of gradient descent in our discussion on the backpropagation
algorithm. To review this topic, you can watch this video: Gradient descent, how neural
networks learn | Deep Learning Chapter 2 (duration: 20 minutes and 33 seconds).

Summary - DL

https://youtu.be/aircAruvnKk
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w
https://www.youtube.com/watch?v=IHZwWFHWa-w

e Deep learning (DL) is a machine learning technique that can be applied to
supervised learning (including regression and classification), unsupervised
learning, and reinforcement learning.

¢ Inspired from the structure and function of biological neural networks found in

animals.

e Comprises interconnected neurons (or units) arranged into layers.

Summary - FNN

Information in this architecture flows unidirectionally—from left to right, moving from
input to output. Consequently, it is termed a feed-forward neural network (FNN).

Neural networks have inputs and outputs.

The network consists of three layers: input, hidden, and output. The input layer
contains two nodes, the hidden layer comprises three nodes, and the output layer has
two nodes. Additional hidden layers and nodes per layer can be added, which will be
discussed later.

It is often useful to include explicit input nodes that do not perform calculations, known
as input units or input neurons. These nodes act as placeholders to introduce input
features into the network, passing data directly to the next layer without transformation.
In the network diagram, these are the light blue nodes on the left. Typically, the number
of input units corresponds to the number of features.

Summary - FNN

The number of layers and nodes can vary based on the specific requirements.

Neural networks can have a significantly large number of input nodes, often in the
hundreds or thousands, depending on the complexity of the data. Additionally, they may
contain numerous hidden layers. For instance, ResNet, which won the ILSVRC 2015
image classification task, features 152 layers. The authors of ResNet have demonstrated
results for networks with 100 and even 1000 layers (He et al. 2016). However, the
number of output nodes tends to be relatively small. In regression problems, there is
typically one output node, while in classification tasks (whether multiclass or multilabel),
the number of output nodes corresponds to the number of classes.

Consider a scenario in which one can determine the optimal number of layers and nodes
for a neural network. Empirical evidence suggests that such networks excel in

performing both classification and regression tasks. Despite the complexity arising from
a large number of parameters, which complicates the interpretation of learned patterns,

understanding the forward pass, how the network generates predictions from new input
data, is relatively straightforward.

Today's objective is to understand the process of adjusting the network'’s weights based
on its current output. Specifically, we aim to understand how to utilize the output signal

to propagate information backward through the network.

Summary - units

Inputs Output
Weights

_ .(0)
l==x 0,

(6,

0 ho(z) = ¢(x0)
x(2)/

0 o(z) ¢ is an activation function
z is a weigthed sum (dot product)

Introducing a fictitious input z(© = 1is a hack that simplifies the expression 76 + b.

In the diagram above, it is important to clarify that the inputs and output pertain
specifically to this individual unit, rather than to the entire network’s global inputs and
output.

The name activation originates from the function’s role in determining whether a neuron
should be "activated” or “fired” based on its input.

Historically, the concept was inspired by biological neurons, where a neuron activates
and transmits a signal to other neurons if its input exceeds a certain threshold. In
artificial neural networks, the activation function serves a similar purpose by introducing
non-linearity into the model. This non-linearity is crucial because it enables the network
to learn complex patterns and representations in the data.

Common Activation Functions

Attribution: https://github.com/ageron/handson-ml3/blob/main/10_neural_net

import numpy as np
import matplotlib.pyplot as plt

from scipy.special import expit as sigmoid

def relu(z):
return np.maximum(0, z)

def derivative(f, z, eps=0.000001):
return (f(z + eps) - f(z - eps))/(2 *x eps)

max_z = 4.5
z = np.linspace(-max_z, max_z, 200)

plt.figure(figsize=(11, 3.1))

plt.subplot(121)

plt.plot(z, relu(z), "m-.", linewidth=2, label="RelLU")
plt.plot(z, sigmoid(z), "g—-", linewidth=2, label="Sigmoid")
plt.plot(z, np.tanh(z), "b-", linewidth=1, label="Tanh")
plt.grid(True)

plt.title("Activation functions")

plt.axis([-max_z, max_z, -1.65, 2.4])
plt.gca().set_yticks([-1, 0, 1, 2])

plt.legend(loc="1lower right", fontsize=13)

plt.subplot(122)

plt.plot(z, derivative(sigmoid, z), "g—-", linewidth=2, label="Sigmoid")
plt.plot(z, derivative(np.tanh, z), "b-", linewidth=1, label="Tanh")
plt.plot([-max_z, 0], [0, @], "m-.", linewidth=2)

plt.plot([0, max_z], [1, 11, "m-.", linewidth=2)

plt.plot([0, @], [0, 1], "m-.", linewidth=1.2)

plt.plot(@, 1, "mo", markersize=5)

plt.plot(1, "mx", markersize=10)

plt.grid(True)

plt.title("Derivatives")

plt.axis([-max_z, max_z, -0.2, 1.2])

0,
0,

plt.show()
Activation functions Derivatives
7 1.2
2 ./'
7
1 ./ =

p——l
——

- == Sigmoid
_1 -
—— Tanh
T T T T T T T T T _0.2 T T T T T T T T
-4 -3 -2 -1 o0 1 2 3 4 -4 -3 -2 -1 0o 1 2 3

Géron (2022) — 10_neural_nets_with_keras.ipynb
Consider the following observations:

e The sigmoid function produces outputs within the open interval (0, 1).

https://github.com/ageron/handson-ml3/blob/main/10_neural_nets_with_keras.ipynb

e The hyperbolic tangent function (tanh) has an image spanning the open interval
(—1,1).
e The Rectified Linear Unit (ReLU) function outputs values in the interval [O, oo).

Additionally, note:

e The maximum derivative value of the sigmoid function is 0.25.
e The maximum derivative value of the tanh function is 1.
e The derivative of the ReLU function is O for negative inputs and 1 for positive inputs.

Furthermore:

e A node employing ReLU as its activation function generates outputs within the range
[0, oo). However, its derivative, utilized in gradient descent during backpropagation,
is constant, taking values of either 0 or 1.

Universal Approximation

The universal approximation theorem states that a feed-forward neural network with a
single hidden layer containing a finite number of neurons can approximate any
continuous function on a compact subset of R", given appropriate weights and
activation functions.

Cybenko (1989); Hornik, Stinchcombe, and White (1989)

The Universal Approximation Theorem (UAT) is a powerful theoretical assurance: in
principle, a sufficiently wide single-hidden-layer network can approximate any
continuous function. But it is not a practical prescription. In real problems, a deep
architecture often achieves the same approximation accuracy with far fewer parameters
and in a way that is more trainable and generalizable.

e Under relatively mild assumptions (e.g. non-polynomial activation, continuity,
compact input domain), a feed-forward neural network with one hidden layer and a
sufficiently large number of neurons (i.e. “wide enough”) can approximate any
continuous function arbitrarily well (within arbitrarily small error) on a compact
domain.

e The theorem is typically an existence result. It guarantees that such a network
exists, but does not show how to find the right weights (i.e. the training procedure)
or say how many neurons are needed precisely.

e The theorem also does not guarantee anything about generalization to unseen data
(i.e. overfitting) or computational efficiency of training.

e The UAT says "there exists a wide enough network,” but it may require an
eX_trainemely large number of neurons. In many practical settings, that becomes
infeasible (too many parameters, too slow, risk of overfitting, etc.).

Some functions are "hard” to approximate by shallow (i.e. single-hidden-layer)
networks unless you use exponentially many neurons. In contrast, deeper networks
may approximate the same function with far fewer parameters.

UAT assumes you can pick the “right"” weights. But in real training, optimization
(e.g. via gradient descent) may get stuck in poor local minima, plateaus, saddle
points, or fail to converge to the approximating solution.

It gives no guarantee on how many training samples you need to realize a good
approximation, or on generalization to new data.

Even if a network can approximate a target function exactly (on training data), it may
generalize poorly if the model is over-parameterized or if regularization is
inadequate.

UAT is silent on robustness to noise, stability, or eX_trainapolation outside the
training domain.

Naive MLP

Data

Generate and plot the "circles" dataset
import matplotlib.pyplot as plt
from sklearn.datasets import make_circles

Generate synthetic data
X, y = make_circles(n_samples=1200, factor=0.35, noise=0.06, random_state=4:Z

Separate coordinates for plotting

x1,

x2 = X[:, 01, X[:, 1]

Plot the two classes

plt.
plt.
plt.
.xlabel("x1")
.ylabel("x2")

plt
plt
plt
plt

plt.
plt.

figure(figsize=(5, 5))
scatter(x1[y==0], x2[y==0]1, color="C0", label="class @ (outer ring)")
scatter(x1[y==1], x2[y==11, color="C1", label="class 1 (inner circle)")

.title("Dataset generated with make_circles")
.axis("equal") # ensures circles look round
legend()

show()

Dataset generated with make circles

1.0
0.5 1
= 0.0+
—0.5 -

~1.0 - @ class 0 (outer ring)

L @ class 1 (inner circle)
T T T T T
-1.0 —-0.5 0.0 0.5 1.0
X1

Concepts such as partial derivatives, gradient descent, and backpropagation can initially
seem daunting. To mitigate this complexity, we propose an intermediary approach by
constructing a simple yet fully operational neural network.

It is important to note that the proposed training algorithm is not intended to replace the
standard back-propagation method used in practice.

We are constructing a dataset that comprises two distinct classes: an outer ring (class 1)
and an inner circle (class 0). These classes are deliberately designed to be non-linearly
separable within the (ml, xz) feature space, presenting a straightforward yet challenging
scenario for classification tasks.

Architecture

Our neural network, a multi-layer perceptron, is designed with two input nodes
corresponding to the two features present in our dataset. Through our experimentation
using TensorFlow Playground and Keras, as detailed in CircularSeparability, we
determined that a configuration of two hidden layers containing four neurons each is
effective for the classification of the samples.

The network produces a single output via the sigmoid activation function.

In the visualization, the black edges between units denote the model’s weights.
Additionally, we have included three nodes that output a constant value of 1 solely for
visualization purposes; these nodes do not have a counterpart in the actual model. The
gray edges connecting these nodes to other units represent the bias terms.

Utilities
def sigmoid(z):
return 1.0 / (1.0 + np.exp(-z))
def bce_loss(y_true, y_prob, eps=1e-9):
"""“"Binary cross—entropy loss (average over data)."""

y_prob = np.clip(y_prob, eps, 1 - eps)

file:///var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/11/CircularSeparability

return -np.mean(y_true *x np.log(y_prob) + (1 - y_true) * np.log(1l - y_pr

We are defining two utility functions, sigmoid and bce_loss . The binary cross-
entropy loss has the same definition as that of our logisic regression model. Do you
remember another name for binary cross-entropy loss?

In bce_loss , the probabilities are constrained within the interval [e, 1 — €]. This
clipping ensures that the logarithmic expressions log(0) and log(1 — 1) = log(0) are
avoided, thus preventing undefined or infinite values during computation.

Both functions are designed to take NumPy arrays (ndarray) as input. Namely, the
bce_loss function calculates the loss for the entire dataset without requiring explicit
iteration over individual data points.

NaiveMLP

The complete implementation is presented below and will be examined in the
subsequent slides.

class NaiveMLP:

A minimal multilayer perceptron (MLP) utilizing a brute force training

algorithm that does not require derivative calculations.

Please note that the suggested training algorithm is intended solely for
didactic purposes and should not be mistaken for a genuine training algc

def __init_ (self, layer_sizes, step=0.1, seed=None):
self.sizes = list(layer_sizes)
self.step = float(step)
rng = np.random.default_rng(seed)

Initialize weights and biases

self.W = [rng.standard_normal(size=(in_d, out_d)) * 0.5
for in_d, out_d in zip(layer_sizes[:-1], layer_sizes[1:])]
self.b = [np.zeros(out_d) for out_d in layer_sizes[1:]]

def forward(self, X):

Simple forward pass: compute output activations only.
X: shape (N, input_dim)

Returns: output probabilities, shape (N,)

file:///var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/06/slides

a =X
for W, b in zip(self.W, self.b):
a = sigmoid(a @ W + b)

return a.ravel()
def predict(self, X, threshold=0.5):

return (self.forward(X) >= threshold).astype(int)
def loss(self, X, y):

return bce_loss(y, self.forward(X))

def _all_param_tags(self):

Yields tags referencing every scalar parameter:
('w', layer_idx, i, j) or ('b', layer_idx, j)

for 1, W in enumerate(self.W):
for i in range(W.shape[0@]):
for j in range(W.shape[1]):
yield ('wW', 1, i, j)
for j in range(self.b[l].shapel[0]):
yield ('b', 1, j)

def _get_param(self, tag):
kind = tag[0]
if kind == 'W':
., L, i, j = tag
return self.W[ll[i, jl
else:
o L j = tag
return self.b[1][j]

def _set_param(self, tag, val):
kind = tag[0]
if kind == 'W':
L, i, j = tag
self.W[ll[i, j] = val
else:
_» L, j = tag
self.b[l][j] = val

def train(self, X, y, epochs=10, verbose=True):

Simultaneous update:

- For each scalar parameter 6, try 6 + 6 for & in {-step, 0, +step},
pick the & that gives minimal loss.

— Collect all chosen &'s, then apply all updates together.

for ep in range(1l, epochs + 1):

base_loss = self.loss(X, vy)
updates = {}

Probe all parameters

for tag in self._all_param_tags():

theta = self._get_param(tag)
best_delta = 0.0
best_loss = base_loss

for delta in (-self.step, 0.0, +self.step):
self._set_param(tag, theta + delta)
trial_loss = self.loss(X, y)
if trial_loss < best_loss:
best_loss = trial_loss
best_delta = delta

restore original
self._set_param(tag, theta)
updates[tag]l = best_delta

Apply all deltas together
for tag, d in updates.items():
if d '= 0.0:
self._set_param(tag, self._get_param(tag) + d)

new_loss = self.loss(X, y)

if verbose:
print(f"Epoch {ep:3d}: loss {base_loss:.5f} - {new_loss:.5f}

optional early stop
if abs(new_loss - base_loss) < le-12:
break

To ensure the functionality of the resulting Jupyter Notebook, the whole class has been
included here.

Class Definition

class NaiveMLP:

A minimal multilayer perceptron (MLP) utilizing a brute force training
algorithm that does not require derivative calculations.

Please note that the suggested training algorithm is intended solely for
didactic purposes and should not be mistaken for a genuine training algc

Constructor

def __init_ (self, layer_sizes, step=0.1, seed=None):
self.sizes = list(layer_sizes)
self.step = float(step)
rng = np.random.default_rng(seed)

Initialize weights and biases

self.W = [rng.standard_normal(size=(in_d, out_d)) * 0.5
for in_d, out_d in zip(layer_sizes[:-1], layer_sizes[1:])]
self.b = [np.zeros(out_d) for out_d in layer_sizes[1:]]

Memorizing the number of layers, the number of units per layer, and the learning
algorithm's step size. Initializing the weights (W) and biases (b).

Python

seed = 0
rng = np.random.default_rng(seed)
layer_sizes = [2, 4, 4, 1]

[(in_d, out_d) for in_d, out_d in zip(layer_sizes[:-1], layer_sizes[1:])]

(2, 4), (4, 4), (4, 1)]

[rng.standard_normal(size=(in_d, out_d)) * 0.5 for in_d, out_d in zip(layer_

[array([[©0.06286511, -0.06605243, ©0.32021133, 0.05245006],

[-0.26783469, 0.18079753, 0.65200002, 0.4735404811),
array([[-0.35186762, -0.63271074, -0.31163723, 0.02066299],

[-1.16251539, -0.10939583, -0.62295547, -0.36613368],

[-0.27212949, -0.15815008, 0.20581527, ©0.52125668],

[-0.06426733, 0.68323174, -0.33259734, 0.1757550411),
array([[0.451735091],

[0.04700615]1,

[-0.371749621,

[-0.4608626911)1

How many weights has this network?

Python

[out_d for out_d in layer_sizes[1:]]

(4, 4, 1]

[np.zeros(out_d) for out_d in layer_sizes[1:]]
[array([0., 0., 0., 0.]), array([0., 0., 0., 0.]), array([0.])]

What is the number of bias terms in this network?

The network consists of a total of 37 parameters, which include 28 weights and 9 bias
terms.

Forward Pass

def forward(self, X):

Simple forward pass: compute output activations.
X: shape (N, input_dim)
Returns: output probabilities, shape (N,)

a =X

for W, b in zip(self.W, self.b):
a = sigmoid(a @ W + b)

return a.ravel()

Calculating the output activations. Determining the probability of each instance in the
dataset X belonging to class 1.

The method proceeds sequentially layer-by-layer. In our running example, this involves
three distinct processing layers.

Whatare W and b ?

W and b are lists, each containing three elements. The list W comprises weight
matrices with dimensions 2 x 4,4 x 4, and 4 x 1, while b consists of biais arrays
sized 4, 4, and 1, respectively.

What is the purpose of zip(self.W, self.b) ?

This function pairs each weight matrix with its corresponding bias array, resulting in
three tuples, one for each of the second, third, and fourth layers.

What does X represent?

Leveraging NumPy makes the code compact, but it is important to recognize the
underlying details. The parameter X encapsulates the entire dataset, comprising 200

samples with 2 features each. Within each iteration of the loop, the activations for all
units in the current layer are computed for all examples.

Making predictions

def predict(self, X, threshold=0.5):
return (self.forward(X) >= threshold).astype(int)
Indeed, predictions, plural.

The forward method produces an array of probabilities, each ranging from 0 to 1,
indicating the likelihood that a particular example, x;, belongs to class 1. By evaluating
the expression self.forward(X) >= threshold , we obtain an array of boolean
values: True if the probability exceeds the specified threshold , and False
otherwise. These boolean values are subsequently converted into binary values of zeros
and ones.

It is important to note that adjusting the decision boundary, threshold , allows for the
manipulation of the precision-recall trade-off, providing flexibility in model performance.

Computing the loss

def loss(self, X, y):
return bce_loss(y, self.forward(X))
The method in question calculates the loss for the entire dataset.

What would happen if we would return bce_loss(y, self.predict(X)) instead of
bce_loss(y, self.forward(X)) ?

Discussion

With the exception of the training algorithm, our neural network implementation is now
complete.

For those who are not familiar with the back-propagation algorithm, how do you propose
to learn the parameters of the model?

Change weights - compute loss > keep if better - repeat.

Pseudocode

pseudocode
for each epoch:
for each parameter w in network:
best_delta = 0
best_loss = current_1loss
for delta in [-0.01, 0, +0.01]:
w_temp = w + delta
loss_temp = compute_loss(w_temp, data)
if loss_temp < best_loss:
best_loss = loss_temp
best_delta = delta
w += best_delta

It is important to note that this algorithm is fundamentally distinct from
backpropagation, which is widely used in practice. The primary reason for its
introduction is its simplicity, notably the absence of partial derivatives.

The algorithm operates over several epochs, during which the predictive accuracy for
the training set is incrementally enhanced with each iteration.

During each iteration, the algorithm evaluates whether to decrease, increase, or maintain
the current value of each parameter.

Once the optimal adjustment for each parameter is determined, all changes are
implemented simultaneously. This approach resembles the gradient descent technique
discussed earlier in the semester and offers the advantage of straightforward
parallelization.

Python

def _all_param_tags(self):

Yields tags referencing every scalar parameter:
('W', layer_idx, i, j) or ('b', layer_idx, j)

for 1, W in enumerate(self.W):
for i in range(W.shape[0]):
for j in range(W.shape[1]):
yield ('w', 1, i, j)
for j in range(self.b[l].shape[0]):
yield ('b', 1, j)

The above implements a generator, which is a Python concept that look simple, but
packs a lot of power.

A generator is a kind of function that can pause its execution and resume later. It
produces a sequence of values, one at a time, without storing them all in memory. You

create one using the yield keyword.
Here is an example.

def countdown(n):
while n > 0:
yield n # "yield" a value and pause
n -=1
You can call it three times, then it will raise StopIteration .

c = countdow

print(next(c

print(next(c

print(next(c

try:

print(next(c))

except StopIteration:

print("Caught StopIteration.")

n(3)

)) # 3
)) # 2
)) # 1

3
2
1
Caught StopIteration.

Generators are oftenin for loops.

for value in countdown(3):
print(value)

3
2

1

The functions enumerate and zip both return iterators, which function similarly to
generators by facilitating lazy evaluation. This approach generates items dynamically
during iteration, thereby avoiding the need to store all items in memory simultaneously.

Python

class Demo:

def __init_ (self, layer_sizes):
self.sizes = list(layer_sizes)
rng = np.random.default_rng(0)
self.W = [rng.standard_normal(size=(in_d, out_d)) * 0.5
for in_d, out_d in zip(layer_sizes[:-1], layer_sizes[1:])]
self.b = [np.zeros(out_d) for out_d in layer_sizes[1:]]

def _all_param_tags(self):

Yields tags referencing every scalar parameter:
('W', layer_idx, i, j) or ('b', layer_idx, j)

for 1, W in enumerate(self.W):
for i in range(W.shape[0]):
for j in range(W.shape[1]):
yield ('wW', 1, i, j)
for j in range(self.b[l].shapel[0]):
yield ('b', 1, j)

def show(self):

for tag in self._all_param_tags():
print(tag)

d = Demo([2,4,4,1])
d.show()

('W', 0, 0, 0)
('w', 0, 0, 1)
('W', 0, o0, 2)
('w', o2, 0, 3)
('w', 0, 1, 0)
('w', 0, 1, 1)
('‘w', 0, 1, 2)
('Ww', o, 1, 3)
('b', 0, 0)
('b', 0, 1)
('b', 0, 2)
('b', @, 3)
('w', 1, o0, 0)
('w', 1, 0, 1)
('‘w', 1, 0, 2)
('‘w', 1, o, 3)
(‘w', 1, 1, 0)
('w', 1, 1, 1)
('w', 1, 1, 2)
('w', 1, 1, 3)
('w', 1, 2, 0)
('w', 1, 2, 1)
(‘w', 1, 2, 2)
('‘w', 1, 2, 3)
('w', 1, 3, 0)
(‘w', 1, 3, 1)
('w', 1, 3, 2)
('w', 1, 3, 3)
('b', 1, 0)
('b', 1, 1)
('b', 1, 2)
('b', 1, 3)
('Ww', 2, 0, 0)
('Ww', 2, 1, 0)
('w', 2, 2, 0)
('w', 2, 3, 0)
('b"', 2, 0)
Python

def _get_param(self, tag):
kind = tag[0]
if kind == 'W':
., L, i, j = tag
return self.W[1][i, j]
else:
_» L, j = tag
return self.b[1][j]

Givena tag,either ('W', 1, i, j) or ('b', 1, j) ,the method retrieves the
weight or the bias term corresponding to the provided indices. 1 designates the layer;
i and j arerow and column indices of W[1] ,or j isanindexin b[1] .

Python

def _set_param(self, tag, val):
kind = tagl[0]
if kind == 'W':
v L, i, j = tag
self.W[l]l[i, j] = val
else:
L J = tag
self.b[l][j] = val

Similar logic, but the method updates self.W[l]1[i, j] or self.b[l][j] = val,
depending on the type of tag.

Training (learning)

def train(self, X, y, epochs=10, verbose=True):
for ep in range(1l, epochs + 1):

base_loss = self.loss(X, vy)
updates = {}

Probe all parameters
for tag in self._all_param_tags():

theta = self._get_param(tag)
best_delta = 0.0
best_loss = base_loss

for delta in (-self.step, 0.0, +self.step):
self._set_param(tag, theta + delta)
trial_loss = self.loss(X, y)
if trial_loss < best_loss:
best_loss = trial_loss
best_delta = delta

restore original
self._set_param(tag, theta)
updates[tag]l = best_delta

Apply all deltas together
for tag, d in updates.items():
if d !'= 0.0:
self._set_param(tag, self._get_param(tag) + d)
new_loss = self.loss(X, y)

if verbose:
print(f"Epoch {ep:3d}: loss {base_loss:.5f} - {new_loss:.5f}

optional early stop

if abs(new_loss - base_loss) < le-12:
break

“Simultaneous” = a Jacobi-style step: you pick per-parameter deltas against the same

baseline, then apply them all at once. Interactions between parameters are ignored while

you're choosing them.

Ouf!

Does it work?

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.25, random_state=42, stratify=y
)

model = NaiveMLP([2, 4, 4, 1], step=0.06, seed=0)
print("Initial loss:", model.loss(X_train, y_train))

model.train(X_train, y_train, epochs=100)

print("Train acc:", accuracy_score(y_train, model.predict(X_train)))
print("Test acc: ", accuracy_score(y_test, model.predict(X_test)))

Initial loss:
: loss

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

loss
loss
loss
loss
loss
loss
loss
loss

: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss
: loss

0.

7001969055705487

[SESEES IS IR SIS BN BRGNS BN NG R G IS IS BRI C IGS BN G BN G IR G IS IS BN G R C IS I G I G IR G IS I G RN G I G IS B GS BNGS I G IS B S IGS IGS I GS I GS I G IR G I S S BN G RGBS I S I G I S I S

. 70020
.69315
. 69547
.69387
69542
.69384
.69537
.69382
.69531
.69379
.69525
.69361
.69517
.69331
.69503
.69298
.69468
. 69257
.69364
.69200
.69173
.69118
.68965
.68970
.68716
.68672
.68417
.68170
.67855
.67406
.66867
.66203
. 65492
. 64672
.63852
.62948
.61977
.60918
.59844
.58893
.57598
.56310
.55035
.53809
.52214
.50660
.49073
.47591
.45758
. 44074
42251
.41069
. 38858
.36998
. 35227

-

-

-

L S A A A

l

L S A A A

l

L S A A A

l

L S A A A

l

L S A A A

l

L A A A

l

[SEUSI SIS NG RGN G RN BN G RGN G NS BN G IR G I S RN BN IR G RN G IS BN G RN G I G IS BN G I G I S IS NG I G I G I GS BN G IR G I G I S BN G IR G I G G BN G I G I G I G I G I G TGS IS BN G I G R G I S I G I S

0.
.69547
.69387
.69542
.69384
.69537
.69382
.069531
.69379
.69525
.69361
.69517
.69331
.69503
.69298
.069468
.69257
.69364
.69200
.69173
.69118
.68965
.68970
.068716
.68672
.68417
.68170
.67855
.67406
.66867
.66203
.65492
.64672
.63852
.62948
.61977
.60918
.59844
.58893
.57598
.56310
.55035
.53809
.52214
.50660
.49073
.47591
.45758
.44074
.42251
.41069
.38858
.36998
.35227
.34356

69315

Epoch 56: loss 0.34356 - 0.32577
Epoch 57: loss 0.32577 - 0.31462
Epoch 58: loss 0.31462 - 0.29240
Epoch 59: loss 0.29240 - 0.27704
Epoch 60: loss 0.27704 - 0.25851
Epoch 61: loss 0.25851 - 0.25409
Epoch 62: loss 0.25409 - 0.23884
Epoch 63: loss 0.23884 - 0.23260
Epoch 64: loss 0.23260 - 0.21815
Epoch 65: loss 0.21815 - 0.21238
Epoch 66: loss 0.21238 - 0.19964
Epoch 67: loss 0.19964 - 0.19350
Epoch 68: loss 0.19350 - 0.17787
Epoch 69: loss 0.17787 - 0.16963
Epoch 70: loss 0.16963 - 0.15270
Epoch 71: loss 0.15270 - 0.14804
Epoch 72: loss 0.14804 - 0.13478
Epoch 73: loss 0.13478 - 0.13357
Epoch 74: loss 0.13357 - 0.12381
Epoch 75: loss 0.12381 - 0.12041
Epoch 76: loss 0.12041 - 0.10789
Epoch 77: loss 0.10789 - 0.10512
Epoch 78: loss 0.10512 - 0.09204
Epoch 79: loss 0.09204 - 0.08493
Epoch 80: loss 0.08493 - 0.07447
Epoch 81: loss 0.07447 - 0.07243
Epoch 82: loss 0.07243 - 0.06423
Epoch 83: loss 0.06423 - 0.06479
Epoch 84: loss 0.06479 - 0.06053
Epoch 85: loss 0.06053 - 0.05940
Epoch 86: loss 0.05940 - 0.05501
Epoch 87: loss 0.05501 - 0.05465
Epoch 88: loss 0.05465 - 0.05370
Epoch 89: loss 0.05370 - 0.05036
Epoch 90: loss 0.05036 - 0.04376
Epoch 91: loss 0.04376 - 0.04596
Epoch 92: loss 0.04596 - 0.04283
Epoch 93: loss 0.04283 - 0.04213
Epoch 94: loss 0.04213 - 0.04031
Epoch 95: loss 0.04031 - 0.03879
Epoch 96: loss 0.03879 - 0.03629
Epoch 97: loss 0.03629 - 0.03574
Epoch 98: loss 0.03574 - 0.03499
Epoch 99: loss 0.03499 - 0.03293
Epoch 100: loss ©0.03293 - 0.03075

Train acc: 1.0
Test acc: 1.0

Our training algorithm is brittle. Obtaining these results required experimenting with
step and seed.

Vizulalization

Plot helper: decision boundary in the original (x1, x2) plane
def plot_decision_boundary(model, X, y, title="Naive MLP decision boundary")

grid over the input plane
pad = 0.3

x1_min, x1_max
X2_min, x2_max

X[:,0]1.min()=-pad, X[:,0].max()+pad
X[:,1].min()=-pad, X[:,1].max()+pad

XX, yy = np.meshgrid(
np.linspace(x1_min, x1_max, 400),
np.linspace(x2_min, x2_max, 400)

)

grid = np.c_[xx.ravel(), yy.ravel()]

predict probabilities on the grid
p = model.forward(grid).reshape(xx.shape)

filled probabilities + p=0.5 contour + data points
plt.figure(figsize=(3.75, 3.75), dpi=140)
plt.contourf(xx, yy, p, levels=50, alpha=0.7)

cs = plt.contour(xx, yy, p, levels=[0.5], linewidths=2)
plt.scatter(X[:,0]1, X[:,1], c=y, s=18, edgecolor="k", linewidth=0.2)
plt.clabel(cs, fmt={0.5: "p=0.5"})

plt.title(title)

plt.xlabel("x1")

plt.ylabel("x2")

plt.tight_layout()

plt.show()

plot_decision_boundary(model, X, vy)

Naive MLP decision boundary

-1.0 -=0.5 0.0 0.5 1.0
X1

XOR-like data

n_samples = 800
rng = np.random.default_rng(42)

X = rng.uniform(-6, 6, size=(n_samples, 2))
x1, x2 = X[:, 01, XI[:, 1]

y = ((x1 % x2) > 0).astype(int)

plt.figure(figsize=(4.5, 4.5))
plt.scatter(X[y == 0, 0], X[y == 0, 1],

color="C0", label="class 0", edgecolor="k", linewidth=0.3)
plt.scatter(X[y == 1, 0], X[y == 1, 1],

color="C1", label="class 1", edgecolor="k", linewidth=0.3)

plt.axhline(@, color="gray", linestyle="--", linewidth=1)
plt.axvline(@, color="gray", linestyle="--", linewidth=1)

plt.xlabel("x1")
plt.ylabel("x2")
plt.title("X0R-1like data")
plt.xlim(-6, 6)

plt.ylim(-6, 6)
plt.axis("equal")
plt.legend()
plt.tight_layout()
plt.show()

XOR-like data

l @ .t.: + ‘..'i -= !#?'.
® o0 class 0

6 :'.. & #t'! -v Al : class 1
IR

Would the same architecture, 2, 4, 4, 1, work for the XOR-like dataset?

XOR-like data (continued)

[n [27]: X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.25, random_state=42, stratify=y
)

model = NaiveMLP([2, 4, 4, 1], step=0.06, seed=0)
print("Initial loss:", model.loss(X_train, y_train))
model.train(X_train, y_train, epochs=1000, verbose=False)
print("Final loss:", model.loss(X_train, y_train))

print("Train acc:", accuracy_score(y_train, model.predict(X_train)))
print("Test acc: ", accuracy_score(y_test, model.predict(X_test)))

Initial loss: 0.7029764953722529
Final loss: 3.4494531195516116e-07
Train acc: 1.0

Test acc: 0.99

XOR-like data (continued)

plot_decision_boundary(model, X, y)

Naive MLP decision boundary

Our simple neural network, along with its naive training algorithm, was evaluated on two
distinct tests. Despite the simplicity of the model, it successfully learned significantly
different decision boundaries without necessitating the engineering of additional
features.

For the sake of simplicity and clarity in this example, we utilized the raw data without
applying any scaling. However, in practical scenarios, it is customary to scale or
normalize features prior to training neural networks or any models that rely on gradient-
based optimization. Scaling facilitates faster and more stable convergence of training
algorithms, although it introduces additional preprocessing and postprocessing steps.
Since the primary objective here is to comprehend the training mechanism rather than
optimize for efficiency, we have deliberately chosen to omit scaling in this instance.

Before training,

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)
After training, when you want to visualize the decision boundary in the original feature

space, you'd unscale the coordinates using scaler.inverse_transform.

Drawbacks

e Computational inefficiency.

e Scalability limitations.

o Fixed step size (+n) lacks adaptivity.

e Poor coordination of parameters.

e No directional or magnitude information.

e Lack of sophisticated optimizer features.

e Potential for over-fitting or poor generalisation.

o Computational inefficiency: trying every parameter with three deltas each epoch
scales poorly as model size grows.

o Fixed step size (+n) lacks adaptivity: too small = very slow; too large -
overshoot/oscillate.

e Poor coordination of parameters: each parameter updated ignoring interactions >
slower convergence in coupled networks.

e Discrete local search (rather than derivative-based): no directional or magnitude
information - many epochs needed, risk of zig-zagging or getting stuck.

e Scalability limitations: full loss evaluation per parameter change - infeasible for
large datasets or many parameters.

e |ack of sophisticated optimizer features: no momentum, adaptive rates,
regularization built in > weaker performance and reliability.

e Potential for over-fitting or poor generalisation: aggressive training on full-batch loss
without built-in regularisation may tailor too much to training data.

e Limited insight into update magnitude: only +n or O choices mean no fine-tuning of
step size per parameter or epoch.

Notation

Notation

A two-layer perceptron computes:

y = ¢2(¢1(X))

where

¢1(Z) = ¢(WiZ; + by)

Where ¢ is an activation function, W a weight matrix, X an input matrix, and b a bias
vector.

Notation

A 3-layer perceptron computes:

9 = ¢3(pa2(91(X)))

where

¢1(Z) = ¢(WiZ; + by)

¢1 P2 P3

Notation

A k-layer perceptron computes:

where
¢u(Z) = ¢(WiZ1 + bi)

A feed-forward network exhibits a consistent structure, where each layer executes the
same type of computation on varying inputs. Specifically, the input to layer [is the
output from layer [— 1.

In this notation, it is highlighted that only the first layer receives the input attributes
directly. Each subsequent layer then processes the activations from the preceding layer,
facilitating the learning of new representations. This underscores the consistent
architecture of feedforward networks. As we will explore in the next lecture, increasing
the number of layers does not inherently increase the algorithm’s complexity.

Prologue

Summary

e Framed deep learning as layered function approximation across tasks.

e Described FNNs: inputs = hidden layers - outputs; information flowed forward only.

o Noted units used bias and activations; clarified why non-linearity mattered.

e Reviewed sigmoid/tanh/ReLU ranges and derivative behavior.

e Stated the Universal Approximation Theorem and its practical limits.

e Built a tiny MLP and computed predictions and BCE loss on toy data.

e Demonstrated a naive, non-gradient training algorithm; it worked but scaled poorly
and was brittle.

* Established compact layer notation, § = ¢(. .. ¢2(¢1(X))...) where
d1(Z) = p(W1Z; + by), to prepare for backprop.

Next lecture

e We will introduce backprop, and discuss vanishing gradient, softmax, and
regularization.

References

Cybenko, George V. 1989. "Approximation by Superpositions of a Sigmoidal Function.”
Mathematics of Control, Signals and Systems 2: 303-14.
https://api.semanticscholar.org/CorpusID:3958369.

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow. 3rd ed. O'Reilly Media, Inc.

He, Kaiming, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. "Deep Residual
Learning for Image Recognition." In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 770-78. https://doi.org/10.1109/CVPR.2016.90.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer Feedforward
Networks Are Universal Approximators." Neural Networks 2 (5): 359-66.
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8.

https://api.semanticscholar.org/CorpusID:3958369
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/
https://doi.org/10.1016/0893-6080(89)90020-8

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th
ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca
School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

