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Preamble

Message of the Day

‘Am I redundant?’: how AI changed my career in bioinformatics, Nature News, 2025-10-

13.

Despite the fact that relatively few students might contemplate a research career,

particularly in bioinformatics, the article effectively communicates several key

messages. Notably, it is interesting to note that even individuals holding a Ph.D. may feel

threatened by the advent of artificial intelligence. The article further illustrates how AI is

not eliminating jobs but rather transforming them. In many fields, this transformation

redefines roles to those of oversight and supervision.

https://www.nature.com/articles/d41586-025-03135-z


Learning objectives

Backpropagation Algorithm:

Discuss the forward and backward passes, highlighting the calculation of

gradients using partial derivatives to update weights.

Vanishing Gradient Problem:

Outline the issue and present mitigation strategies, such as using activation

functions like ReLU or initializing weights with careful consideration.

In the previous lecture, we implemented a feed-forward neural network to illustrate its

functionality. To isolate our conceptual understanding of neural networks from their

training methods, we employed a basic brute-force training algorithm. Today, we will

focus on the back-propagation algorithm, a critical element in deep learning techniques.

Back-propagation



Attribution : xkcd.com/1838

Back-propagation

Learning representations by back-propagating errors

David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

We describe a new learning procedure, back-propagation, for networks of neurone-like

units. The procedure repeatedly adjusts the weights of the connections in the network

so as to minimize a measure of the difference between the actual output vector of

the net and the desired output vector. As a result of the weight adjustments, internal

https://xkcd.com/1838


‘hidden’ units which are not part of the input or output come to represent important

features of the task domain, and the regularities in the task are captured by the

interactions of these units. The ability to create useful new features distinguishes

back-propagation from earlier, simpler methods such as the perceptron-convergence

procedure.

Rumelhart, Hinton, and Williams (1986)

I am presenting here the abstract from the seminal Nature publication where Hinton and

colleagues introduced the backpropagation algorithm. This abstract is both elegant and

informative, effectively capturing the core principles of modern neural networks: the

concept of a loss function, the iterative adjustment of weights through the gradient

descent algorithm, and the critical role of hidden layers in generating useful task-

dependent features.

Nature is a prestigious journal, and it only occasionally publishes content related to

computer science.

At the time of this publication, Hinton was affiliated with Carnegie Mellon University. As a

reminder, Hinton received the Nobel Prize in Physics in 2024 for his contributions to

developing foundational methods in modern machine learning.

The abstract highlights the rationale for using hidden layers in neural networks. The

initial hidden layers learn simple representations directly from the input data, while

subsequent layers identify associations among these representations. Each layer builds

upon the knowledge of previous layers, culminating in the network’s final output.

Before the back-propagation

Limitations, such as the inability to solve the XOR classification task, essentially

stalled research on neural networks.

The perceptron was limited to a single layer, and there was no known method for

training a multi-layer perceptron.

Single-layer perceptrons are limited to solving classification tasks that are linearly

separable.

Back-propagation: contributions

The model employs mean squared error as its loss function.

Gradient descent is used to minimize loss.



A sigmoid activation function is used instead of a step function, as its derivative

provides valuable information for gradient descent.

Shows how updating internal weights using a two-pass algorithm consisting of a

forward pass and a backward pass.

Enables training multi-layer perceptrons.

Conceptual Idea

Given a network and parameters that have been initialized randomly, we can generate

predictions ( ); however, for any non-trivial task, these initial predictions are likely to be

inaccurate due to the random nature of the parameter initialization.

In the context of a binary classification problem, what level of accuracy might one

anticipate?

Correctly, one would anticipate an accuracy of approximately 50%, assuming the

dataset is balanced.

To evaluate the model’s performance, we use a loss function, here the binary cross-

entropy (also known as negative log likelihood). This loss function aggregates the loss

J(θ) = −∑
N

i=1 [yi log ŷi + (1 − yi) log(1 − ŷi)]

ŷi



across all training examples, with the inner term of the summation calculating the loss

for each individual example.

In the calculation of the loss, , where

 and  without index is an activation function, sigmoid, ReLU,

etc.

Conceptual Idea (continued)

, for all , where the  are W[l][i,j]  and b[l][j] .

In this notation, the index l  denotes the processing layers within the model. The index

i  refers to the individual units within the preceding layer, denoted as l-1 , while the

index j  corresponds to the units within the current layer l .

How many parameters are present in the model?

The model consists of three weight matrices. The dimensions of these matrices are

, , and , containing 8, 16, and 4 weights, respectively. This results in a

total of 28 weight parameters.

Additionally, there are three arrays for bias terms, containing 4, 4, and 1 biases,

respectively, summing up to 9 bias parameters.

ŷi = h(xi) = ϕk(…ϕ2(ϕ1(x)) …)

ϕl(Z) = ϕ(WlZl + bl) ϕ

J(θ)∂

∂θk
k θk

2 × 4 4 × 4 4 × 1



Overall, the model comprises 37 parameters, which is relatively small in comparison to

more complex models. For instance, the Keras model discussed in the previous lecture

had 266,610 parameters. In contemporary machine learning, it is not uncommon for

models to contain millions or even billions of parameters.

Conceptual Idea (continued)

For a fixed number of epochs: 

Alternative stopping criteria are frequently employed in training algorithms. For example,

the process may halt once the training loss reaches a sufficiently low threshold or when

the validation loss has increased over a predefined number of epochs.

Model parameters are updated simultaneously, and these updates can be efficiently

computed in parallel.

This process is known as gradient descent. As previously discussed, when parameter

updates are performed using the entire dataset, the method is referred to as batch

gradient descent. Conversely, when updates are made using a single training example,

it is termed stochastic gradient descent. Finally, when a small subset of examples,

known as a mini-batch, is used for parameter updates, the method is called mini-batch

gradient descent.

θ = θ − α∇θJ(θ)



Our current task involves determining the partial derivatives of the loss function with

respect to each of the 37 parameters of our model.

Backpropagation

Backpropagation is an algorithm for methodically computing the partial

derivatives of a neural network’s loss function with respect to each weight and

bias parameter.

Backpropagation applies the chain rule of calculus recursively to compute 

for all network parameters  efficiently, using intermediate quantities from the

forward pass, where  denotes the parameter  of the layer .

Chain rule

Given,

using the Lagrange notation, we have

or equivalently using Leibniz notation

The chain rule is a fundamental concept in calculus used to determine the derivative of

a composite function. Specifically, if a function  is defined as the composition of two

differentiable functions,  and , the chain rule provides a method to compute .

Conceptually, the chain rule asserts that if you know the instantaneous rate of change of

 with respect to , and the rate of change of  with respect to , you can find the rate

of change of  with respect to . This is achieved by multiplying these two rates of

change.

You now see the connection with compact layer notation, 

where , introduced in the last lecture.

Applying the chain rule recursively

∂J

∂w
(ℓ)

i,j

w
(ℓ)
i,j

w
(ℓ)
i,j wi,j ℓ

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

= ⋅
dz

dx

dz

dy

dy

dx

h

f g h′

z y y x

z x

ŷ = ϕk(…ϕ2(ϕ1(X)) …)

ϕl(Z) = ϕ(WlZl + bl)



Where  is a parameter of the model, one of those  and .

Backpropagation simplifies the computational process by decomposing it into a series of

elementary steps, where the chain rule is meticulously applied at each stage.

Consider a function depicted by a pink box, parameterized by , which produces an

output . This output  serves as the input to another function, eventually culminating in

an input to the loss function .

The expression  denotes the partial derivative of  with respect to . This derivative

quantifies the sensitivity of the loss  to changes in the parameter , indicating whether

 should be increased or decreased, and by what magnitude, to minimize the loss.

According to the chain rule, if  is already known, then  can be computed as

.

Computational graph
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A two-layer perceptron and its associated computational graph.

The network depicted on the right is more general compared to the one on the left. On

the right,  is a vector, and the pink boxes denote operations on vectors. Consequently,

each layer can accommodate an arbitrarily large number of units.

x



 refers to the weight matrices,  to the bias vectors,  to the pre-activation

vectors, and  to the activation vectors, each associated with layer .

For illustrative purposes, the representation on the right depicts the loss associated with

a single example. To compute the loss over the entire training dataset, one must

aggregate these individual losses and subsequently divide the sum by the total number

of examples, yielding the average loss.

Scalar input; one hidden node

Let

W (l) b(l) z(l)

a(l) l

J = −[y log(ŷ) + (1 − y) log(1 − ŷ)]

ŷ = a2 = σ(z2), z2 = w2 ⋅ a1 + b2

a1 = σ(z1), z1 = w1 ⋅ x + b1



The left side presents the equations for a basic neural network with a scalar input,

denoted as , and a single hidden node. Each layer in this network is characterized by

one weight, and thus, a simplified notation with a single subscript is used.

x



Conversely, the right side illustrates the network using vector notation. In this context,

 represents the weight matrix for layer . The dimensions of this matrix are defined

as , where input refers to the number of activations from the preceding

layer, and output indicates the number of nodes in the current layer.

In this discussion, we will concentrate on scalar equations to enhance clarity and

simplicity. Although our focus is on scalar forms, the principles extend to the more

general case using vector calculus.

Derivatives

W (ℓ) ℓ

input × output

∂J

∂ŷ

∂ŷ

∂z2

, , ,
∂z2

∂w2

∂z2

∂b2

∂z2

∂a1

,
∂a1

∂z1

, , ,
∂z1

∂w1

∂z1

∂b1

∂z1

∂x



Derivatives

Loss derivative w.r.t. :ŷ



Derivatives

= −( − )∂J

∂ŷ

y

ŷ

1 − y

1 − ŷ



 derivative w.r.t. :ŷ z2

= σ′ (z2) = ŷ(1 − ŷ)
∂ŷ

∂z2



Derivatives

Derivative :z2 = w2a1 + b2

= a1, = 1, = w2
∂z2

∂w2

∂z2

∂b2

∂z2

∂a1



Derivatives

Derivative :a1 = σ(z1)



Derivatives

= σ′ (z1) = a1 (1 − a1)
∂a1

∂z1



Derivative :z1 = w1x + b1

= x, = 1, = w1
∂z1

∂w1

∂z1

∂b1

∂z1

∂x



Combined derivatives

For :

Simplifies to:

w2

= ⋅ ⋅ = [−( − )] ⋅ (ŷ(1 − ŷ)) ⋅ a1
∂J

∂w2

∂J

∂ŷ

∂ŷ

∂z2

∂z2

∂w2

y

ŷ

1 − y

1 − ŷ

= (ŷ − y)a1
∂J

∂w2



Combined derivatives

For :b2



Combined derivatives

= ⋅ ⋅ = (ŷ − y) ⋅ 1 = ŷ − y
∂J

∂b2

∂J

∂ŷ

∂ŷ

∂z2

∂z2

∂b2



For :

Plug in:

Simplifies to:

w1

= ⋅ ⋅ ⋅ ⋅
∂J

∂w1

∂J

∂ŷ

∂ŷ

∂z2

∂z2

∂a1

∂a1

∂z1

∂z1

∂w1

= [−( − )] ⋅ (ŷ(1 − ŷ)) ⋅ w2 ⋅ (a1 (1 − a1)) ⋅ x
y

ŷ

1 − y

1 − ŷ

= (ŷ − y)w2 (a1 (1 − a1))x
∂J

∂w1



Combined derivatives

For :b1



Plug in:

Simplifies to:

= ⋅ ⋅ ⋅ ⋅
∂J

∂b1

∂J

∂ŷ

∂ŷ

∂z2

∂z2

∂a1

∂a1

∂z1

∂z1

∂b1

= (ŷ − y)w2 (a1 (1 − a1)) ⋅ 1

= (ŷ − y)w2 (a1 (1 − a1))
∂J

∂b1



Key derivatives



= (ŷ − y)a1

= ŷ − y

= (ŷ − y)w2 (a1 (1 − a1))x

= (ŷ − y)w2 (a1 (1 − a1))

(1)

(2)

(3)

(4)

∂J

∂w2

∂J

∂b2

∂J

∂w1

∂J

∂b1



Observation 1: The computation of key gradients necessitates the activation values

from all layers, specifically  and .

Exploration

a1 ŷ = a2



import math
import random

random.seed(42)

def sigma(x):
    return 1 / (1 + math.exp(-x))

alpha = 0.1

def init():

    global w1, w2, b1, b2

    w1 = random.random()
    w2 = random.random()
    b1 = 0
    b2 = 0

We consider a straightforward neural network model. It accepts a single scalar input,

denoted as , and comprises a single hidden node characterized by a weight  and

bias . It also includes an output node with a weight  and bias . In total, the

network contains four trainable parameters.

Forward

def forward():

    global z1, w1, x, b1, a1, z2, J, y_hat

    z1 = w1 * x + b1
    a1 = sigma(z1)

    z2 = w2 * a1 + b2
    a2 = sigma(z2)

    y_hat = a2

    J = -(y * math.log(y_hat) + (1-y) * math.log(1 - y_hat))

In the forward pass, the computations progress sequentially through each layer,

calculating both preactivation and activation values, denoted as z1 , a1 , z2 , and

a2 . The value a2  represents the model’s output, which is subsequently utilized to

determine the loss.

Backward

def backward():

In [3]:

x w1

b1 w2 b2

In [4]:

In [5]:



    global alpha, w1, b1, w2, b2, a1, z1, z2, y, y_hat

    grad_J_w2 = (y_hat - y) * a1
    grad_J_b2 = y_hat - y

    grad_J_w1 = (y_hat - y) * w2 * (a1 * (1-a1)) * x
    grad_J_b1 = (y_hat - y) * w2 * (a1 * (1-a1))

    w2 = w2 - alpha * grad_J_w2
    b2 = b2 - alpha * grad_J_b2

    w1 = w1 - alpha * grad_J_w1
    b1 = b1 - alpha * grad_J_b1

During the backward pass, the partial derivatives, or gradients, are calculated for each of

the four parameters. Subsequently, these gradients are utilized to update the

corresponding weights through a process known as gradient updating.

Training

init()

x = 3.14
y = 1

forward()
print(f"Before: y_hat = {y_hat:.2}, loss = {J:.2}")

for i in range(500):
    forward()
    backward()

forward()
print(f"After: y_hat = {y_hat:.2}, loss = {J:.2}")

Before: y_hat = 0.51, loss = 0.68
After: y_hat = 0.99, loss = 0.01

The training process we have implemented is based on a single data instance. As it

stands, our basic network architecture is restricted to processing only this one example,

primarily due to the hard-coded nature of the loss function, which is specifically tailored

for a single input. However, you can experiment with various parameters to observe their

effects on the model’s performance. These parameters include setting y=0 , adjusting

the input value x , modifying the learning rate alpha , or altering the number of

training epochs.

Key derivatives

In [6]:
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Observation 2: Notice how some derivatives, such as , are computed multiple

times.

⋅∂J
∂ŷ

∂ŷ

∂z2



It is harly surprising, given that these chains follow the same path within the

computational graph.

Key derivatives

Let

Rewrite

δ1 = ⋅

δ2 = δ1 ⋅ ⋅

(9)

(10)

∂J

∂ŷ

∂ŷ

∂z2

∂z2

∂a1

∂a1

∂z1

= δ1 ⋅

= δ1 ⋅

= δ2 ⋅

= δ2 ⋅

(11)
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(13)
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∂J
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∂z1

∂w1
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In backpropagation, the process progresses from the output layer towards the input

layer, systematically calculating and storing intermediate partial derivatives.

In our initial discussion, we combined and simplified the partial derivatives. To streamline

this process, we can extend the chain rule by multiplying the local derivative with the



precomputed partial derivative that traces the path from the output layer to the local

processing unit within the computational graph. This approach not only simplifies the

process but also facilitates automation.

In the presentation, we simplified the network model by using a single scalar input and

two processing units, each equipped with an individual weight and bias. For the purpose

of demonstration, we trained this model with a single example. Expanding the model to

include additional inputs and processing nodes transforms the weights ( ) into matrices

and the biases ( ) into vectors, while the underlying mechanics transition to vector

calculus. Similarly, incorporating more layers into the network does not inherently

increase the algorithm’s complexity. It merely extends the backpropagation loop, as the

operations for each layer remain consistent. In fact, our computational graph

representation is already expressed using vector notation.

Backpropagation: top level

1. (Computational Graph Creation)

2. Initialization

3. Forward Pass

4. Compute Loss

5. Backward Pass (Backpropagation)

6. Update the parameters and repeat 3 to 6.

The algorithm stops either after a predefined number of epochs or when

convergence criteria are satisfied.

Modern frameworks like TensorFlow and PyTorch build a computational graph to

represent the operations and data flow within a neural network. In contrast, our

simplified implementation will not utilize this approach.

Backpropagation: detailed

1. (Create the computational graph.)

2. Initialize the weights and biases.

3. Forward pass: starting from the input, compute the output of each operation in the

graph, and store these values.

4. Compute loss.

w

b



5. Backward pass: starting from the output and moving backward, for each operation.

A. Compute the derivative of the output with respect to each of the inputs.

B. For each input ,

1. Update the parameters and repeat 3 to 6.

Backpropagation: 2. Initialization

Initialize the weights and biases of the neural network.

1. Zero Initialization

All weights are initialized to zero.

Symmetry problems, all neurons produce identical outputs, preventing

effective learning.

2. Random Initialization

Weights are initialized randomly, often using a uniform or normal distribution.

Breaks the symmetry between neurons, allowing them to learn.

If not scaled properly, leads to slow convergence or vanishing/exploding

gradients.

See also: Xavier/Glorot and He initialization (later)

Initializing weights and biases to zero works for logistic regression because it is a linear

model with a single layer. In logistic regression, each feature’s weight is independently

adjusted during training, and the optimization process can converge correctly regardless

of the initial weights, provided the data is linearly separable.

However, zero initialization does not work well for neural networks due to their multi-

layered structure. Here’s why:

1. Symmetry Breaking: Neural networks require breaking symmetry between neurons

in each layer so that they can learn different features. If all weights are initialized to

zero, each neuron in a layer will compute the same output and receive the same

gradient during backpropagation. This results in the neurons updating identically,

preventing them from learning distinct features and effectively rendering multiple

neurons redundant.

2. Non-Linearity: Neural networks rely on non-linear transformations between layers

to model complex relationships in the data. Zero initialization inhibits the ability of

neurons to activate differently, impeding the network’s capacity to capture non-

linear patterns.

u

δu = = ⋅
∂J

∂u

∂z

∂u

∂J
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Backpropagation: 3. Forward Pass

For each example in the training set (or in a mini-batch):

Input Layer: Pass input features to first layer.

Hidden Layers: For each hidden layer, compute the activations (output) by

applying the weighted sum of inputs plus bias, followed by an activation function

(e.g., sigmoid, ReLU).

Output Layer: Same process as hidden layers. Output layer activations represent

the predicted values.

The forward pass is almost identical to applying the network for prediction

( .predict() ), with the exception that intermediate (activation) results are saved, as

they are needed for the backward pass.

In practice, it is the mini-batch version of this algorithm that is being used. Stochastic

gradient descent is a special case of mini-batch gradient descent where the mini-

batch size is one.

Backpropagation: 4. Compute Loss

Calculate the loss (error) using a suitable loss function by comparing the predicted

values to the actual target values.

More on the various loss functions coming later: mean squared error for regression

tasks or cross-entropy loss for classification tasks.

A smaller loss indicates that the predicted values are closer to the actual target values.

The value of the loss function can serve as a stopping criterion, with backpropagation

halting when the loss is sufficiently small.

Crucially, the derivative of the loss function provides essential information for adjusting

the network’s weights and bias terms.

Backpropagation: 5. Backward Pass

Output Layer: Compute the gradient of the loss with respect to the output layer’s

weights and biases using the chain rule of calculus.

Hidden Layers: Propagate the error backward through the network, layer by

layer. For each layer, compute the gradient of the loss with respect to the weights

and biases. Use the derivative of the activation function to help calculate these

gradients.



Update Weights and Biases: Adjust the weights and biases using the calculated

gradients and a learning rate, which determines the step size for each update.

Common optimization techniques like gradient descent or its variants (e.g., Adam) are

employed.

At the end of the presentation, links are provided to a series of videos by Herman

Kamper. These videos elucidate the intricacies of the backpropagation algorithm across

various architectures, both with and without forks, utilizing function composition and

graph computation approaches.

While the algorithm is complex due to the numerous cases it entails, its regular structure

makes it suitable for automation. Specifically, algorithms like automatic differentiation

(autodiff) facilitate this process.

In 1970, Seppo Ilmari Linnainmaa introduced the algorithm known as reverse mode

automatic differentiation in his MSc thesis. Although he did not apply this algorithm to

neural networks, it is more general than backpropagation.

Backpropagation - Purpose

Algorithm to train multi-layer perceptrons (MLPs) by minimizing a loss function.

Enables hidden layers to learn useful internal representations by adjusting

weights and biases.

Backpropagation - Core Idea

Iteratively adjust parameters to reduce the difference between predicted and true

outputs.

Uses gradient descent on the loss function:

where  is the learning rate.

Backpropagation - Summary

1. Create the computational graph

2. Initialize weights & biases

3. Forward pass: compute activations & loss.

4. Backward pass: compute gradients using chain rule.

θ ← θ − α∇θJ(θ)

α

https://en.wikipedia.org/wiki/Seppo_Linnainmaa


5. Update parameters:

6. Repeat until convergence.

Implementation

Backpropagation - Forward Pass

Compute activations layer by layer:

,

.

Obtain prediction  and compute loss .

Backpropagation - Backward Pass

Apply chain rule to compute partial derivatives of the loss with respect to each

parameter efficiently.

Propagate gradients from output to input layers:

Where  is the elementwise (Hadamard) product.

 — the error term (or local gradient) for layer , defined as , the

sensitivity of the loss  to the preactivation .

 — the error term from the next layer (closer to the output). This is already

known from the previous step in backpropagation.

 — propagates the next layer’s error backward through the weights

of layer . Each neuron in layer  receives a weighted sum of the downstream

errors.

 — the derivative of the activation function at layer . It scales the error

according to how sensitive the neuron’s activation was to changes in its input.

SimpleMLP

W (ℓ) ← W (ℓ) − α
∂J

∂W (ℓ)

b(ℓ) ← b(ℓ) − α
∂J

∂b(ℓ)

z(ℓ) = W (ℓ)a(ℓ−1) + b(ℓ)

a(ℓ) = ϕ(z(ℓ))

ŷ J(ŷ , y)

δ(ℓ) = (W (ℓ+1)δ(ℓ+1)) ⊙ ϕ′(z(ℓ))

⊙

δ(ℓ) ℓ δ(ℓ) =
∂J

∂z(ℓ)

J z(ℓ)

δ(ℓ+1)

W (ℓ+1)δ(ℓ+1)

ℓ + 1 ℓ

ϕ′(z(ℓ)) ℓ



The complete implementation is presented below and will be examined in the

subsequent slides.

import numpy as np

# Activations & loss

def sigmoid(z):
    return 1.0 / (1.0 + np.exp(-z))

def sigmoid_prime(z):
    s = sigmoid(z)
    return s * (1.0 - s)

def relu(z):
    return np.maximum(0.0, z)

def relu_prime(z):
    return (z > 0).astype(z.dtype)

def bce_loss(y_true, y_prob, eps=1e-9):

    """Binary cross-entropy averaged over samples (with clipping for stabili

    y_prob = np.clip(y_prob, eps, 1 - eps)
    return -np.mean(y_true * np.log(y_prob) + (1 - y_true) * np.log(1 - y_pr

# Initializers

def he_init(rng, fan_in, fan_out):

    # He normal: good for ReLU

    std = np.sqrt(2.0 / fan_in)
    return rng.normal(0.0, std, size=(fan_in, fan_out))

def xavier_init(rng, fan_in, fan_out):

    # Glorot/Xavier normal: good for sigmoid/tanh

    std = np.sqrt(2.0 / (fan_in + fan_out))
    return rng.normal(0.0, std, size=(fan_in, fan_out))

# SimpleMLP (API mirrors NaiveMLP)

class SimpleMLP:

    """
    Minimal MLP for binary classification.

    - Hidden: ReLU (default) with He init; or 'sigmoid' with Xavier init
    - Output: Sigmoid + BCE (δ_L = a_L - y)
    - API: forward -> probas (N,), predict_proba, predict, loss, train
    """
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    def __init__(self, layer_sizes, lr=0.1, seed=None, l2=0.0,
                 hidden_activation="relu", lr_decay=None):
        """
        layer_sizes: e.g., [2, 4, 4, 1]
        lr: learning rate
        l2: L2 regularization strength (0 disables)
        hidden_activation: 'relu' (default) or 'sigmoid'
        lr_decay: optional float in (0,1); multiply lr by this every epoch (
        """
        self.sizes = list(layer_sizes)
        self.lr = float(lr)
        self.base_lr = float(lr)
        self.lr_decay = lr_decay
        self.l2 = float(l2)
        self.hidden_activation = hidden_activation
        rng = np.random.default_rng(seed)

        # Initialize weights/biases per layer
        self.W = []
        for din, dout in zip(self.sizes[:-1], self.sizes[1:]):
            if hidden_activation == "relu":
                Wk = he_init(rng, din, dout)
            else:
                Wk = xavier_init(rng, din, dout)
            self.W.append(Wk)
        self.b = [np.zeros(dout) for dout in self.sizes[1:]]

    # activations (hidden vs output)

    def _act(self, z, last=False):
        if last:
            return sigmoid(z)  # output layer
        return relu(z) if self.hidden_activation == "relu" else sigmoid(z)

    def _act_prime(self, z, last=False):
        if last:
            return sigmoid_prime(z)  # rarely needed with BCE+sigmoid
        return relu_prime(z) if self.hidden_activation == "relu" else sigmoi

    # forward (public): returns probabilities (N,)

    def forward(self, X):
        a = X
        L = len(self.W)
        for ell, (W, b) in enumerate(zip(self.W, self.b), start=1):
            a = self._act(a @ W + b, last=(ell == L))
        return a.ravel()

    # Aliases to match NaiveMLP

    def predict_proba(self, X):
        return self.forward(X)

    def predict(self, X, threshold=0.5):
        return (self.predict_proba(X) >= threshold).astype(int)



    def loss(self, X, y):

        # BCE + optional L2
        p = self.predict_proba(X)
        base = bce_loss(y, p)
        if self.l2 > 0:
            reg = 0.5 * self.l2 * sum((W**2).sum() for W in self.W)
            # Normalize reg by number of samples to be consistent with mean 
            base += reg / max(1, X.shape[0])
        return base

    # internal: forward caches for backprop

    def _forward_full(self, X):
        a = X
        activations = [a]
        zs = []
        L = len(self.W)
        for ell, (W, b) in enumerate(zip(self.W, self.b), start=1):
            z = a @ W + b
            a = self._act(z, last=(ell == L))
            zs.append(z)
            activations.append(a)
        return activations, zs

    # training: mini-batch gradient descent with backprop

    def train(self, X, y, epochs=30, batch_size=None, verbose=True, shuffle=

        """
        X: (N, d), y: (N,) in {0,1}
        batch_size: None -> full-batch; else int
        """

        N = X.shape[0]
        idx = np.arange(N)
        B = N if batch_size is None else int(batch_size)

        for ep in range(1, epochs + 1):
            if shuffle:
                np.random.shuffle(idx)
            if self.lr_decay:
                self.lr = self.base_lr * (self.lr_decay ** (ep - 1))

            base_loss = self.loss(X, y)

            for start in range(0, N, B):
                sl = idx[start:start+B]
                Xb = X[sl]
                yb = y[sl].reshape(-1, 1)  # (B,1)

                # Forward caches
                activations, zs = self._forward_full(Xb)
                A_L = activations[-1]          # (B,1)
                Bsz = Xb.shape[0]



                # Backprop
                # Output layer: BCE + sigmoid => delta_L = (A_L - y)

                delta = (A_L - yb)             # (B,1)

                grads_W = [None] * len(self.W)
                grads_b = [None] * len(self.b)

                # Last layer grads

                grads_W[-1] = activations[-2].T @ delta / Bsz   # (n_{L-1}, 
                grads_b[-1] = delta.mean(axis=0)                # (1,)

                # Hidden layers: l = L-1 down to 1

                for l in range(2, len(self.sizes)):
                    z = zs[-l]                                  # (B, n_l)
                    sp = self._act_prime(z, last=False)         # (B, n_l)
                    delta = (delta @ self.W[-l+1].T) * sp       # (B, n_l)
                    grads_W[-l] = activations[-l-1].T @ delta / Bsz  # (n_{l
                    grads_b[-l] = delta.mean(axis=0)                 # (n_l,

                # L2 regularization (add to grads)

                if self.l2 > 0:
                    for k in range(len(self.W)):
                        grads_W[k] = grads_W[k] + self.l2 * self.W[k]

                # Gradient step

                for k in range(len(self.W)):
                    self.W[k] -= self.lr * grads_W[k]
                    self.b[k] -= self.lr * grads_b[k]

            new_loss = self.loss(X, y)
            if verbose:
                print(f"Epoch {ep:3d} | loss {base_loss:.5f} → {new_loss:.5f

Activation functions

def sigmoid(z):
    return 1.0 / (1.0 + np.exp(-z))

def sigmoid_prime(z):
    s = sigmoid(z)
    return s * (1.0 - s)

def relu(z):
    return np.maximum(0.0, z)

def relu_prime(z):
    return (z > 0).astype(z.dtype)

In [8]:



As stated in a previous lecture, the derivative of the sigmoid function is conveniently

expressed as the product of the sigmoid function itself and one minus the sigmoid

function.

We’re including ReLU as well.

Loss

def bce_loss(y_true, y_prob, eps=1e-9):

    """Binary cross-entropy averaged over samples (with clipping for stabili

    y_prob = np.clip(y_prob, eps, 1 - eps)

    return -np.mean(y_true * np.log(y_prob) + (1 - y_true) * np.log(1 - y_pr

Initializers

def he_init(rng, fan_in, fan_out):

    # He normal: good for ReLU

    std = np.sqrt(2.0 / fan_in)
    return rng.normal(0.0, std, size=(fan_in, fan_out))

def xavier_init(rng, fan_in, fan_out):

    # Glorot/Xavier normal: good for sigmoid/tanh

    std = np.sqrt(2.0 / (fan_in + fan_out))
    return rng.normal(0.0, std, size=(fan_in, fan_out))

In the upcoming lecture, we will explore the issue of the vanishing gradient, a common

challenge encountered in deep neural networks. One approach to mitigating this

problem involves modifying the activation functions and adjusting the weight

initialization methods.

Class definition + constructor

class SimpleMLP:

    def __init__(self, layer_sizes, lr=0.1, seed=None, l2=0.0,
                 hidden_activation="relu", lr_decay=None):

        self.sizes = list(layer_sizes)
        self.lr = float(lr)
        self.base_lr = float(lr)
        self.lr_decay = lr_decay
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        self.l2 = float(l2)
        self.hidden_activation = hidden_activation
        rng = np.random.default_rng(seed)

        # Initialize weights/biases per layer
        self.W = []
        for din, dout in zip(self.sizes[:-1], self.sizes[1:]):
            if hidden_activation == "relu":
                Wk = he_init(rng, din, dout)
            else:
                Wk = xavier_init(rng, din, dout)
            self.W.append(Wk)
        self.b = [np.zeros(dout) for dout in self.sizes[1:]]

The constructor aligns with that of NaiveMLP , with the key difference being that it

retains a learning rate rather than a step value. Additionally, the initialization of weights

varies based on the specific activation functions employed.

Forward (public)

    def forward(self, X):
        a = X
        L = len(self.W)
        for ell, (W, b) in enumerate(zip(self.W, self.b), start=1):
            a = self._act(a @ W + b, last=(ell == L))
        return a.ravel()

. . .

where _act  is defined as follows:

    def _act(self, z, last=False):
        if last:
            return sigmoid(z)  # output layer
        return relu(z) if self.hidden_activation == "relu" else sigmoid(z)

The SimpleMLP  model incorporates two distinct implementations of the forward
method: one tailored for prediction tasks and the other for model training.

Forward (private)

    def _forward_full(self, X):
        a = X
        activations = [a]
        zs = []
        L = len(self.W)
        for ell, (W, b) in enumerate(zip(self.W, self.b), start=1):
            z = a @ W + b
            a = self._act(z, last=(ell == L))
            zs.append(z)
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            activations.append(a)
        return activations, zs

The private method forward  differs in that it retains both the preactivation values

( zs ) and the activation values ( activations ). This retention is important, as these

values are required during the backward propagation phase.

Training

    def train(self, X, y, epochs=30, batch_size=None, verbose=True, shuffle=

        """
        X: (N, d), y: (N,) in {0,1}
        batch_size: None -> full-batch; else int
        """

        N = X.shape[0]
        idx = np.arange(N)
        B = N if batch_size is None else int(batch_size)

        for ep in range(1, epochs + 1):
            if shuffle:
                np.random.shuffle(idx)
            if self.lr_decay:
                self.lr = self.base_lr * (self.lr_decay ** (ep - 1))

            base_loss = self.loss(X, y)

            for start in range(0, N, B):
                sl = idx[start:start+B]
                Xb = X[sl]
                yb = y[sl].reshape(-1, 1)  # (B,1)

                # Forward caches
                activations, zs = self._forward_full(Xb)
                A_L = activations[-1]          # (B,1)
                Bsz = Xb.shape[0]

                # Backprop
                # Output layer: BCE + sigmoid => delta_L = (A_L - y)

                delta = (A_L - yb)             # (B,1)

                grads_W = [None] * len(self.W)
                grads_b = [None] * len(self.b)

                # Last layer grads

                grads_W[-1] = activations[-2].T @ delta / Bsz   # (n_{L-1}, 
                grads_b[-1] = delta.mean(axis=0)                # (1,)

                # Hidden layers: l = L-1 down to 1
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                for l in range(2, len(self.sizes)):
                    z = zs[-l]                                  # (B, n_l)
                    sp = self._act_prime(z, last=False)         # (B, n_l)
                    delta = (delta @ self.W[-l+1].T) * sp       # (B, n_l)
                    grads_W[-l] = activations[-l-1].T @ delta / Bsz  # (n_{l
                    grads_b[-l] = delta.mean(axis=0)                 # (n_l,

                # L2 regularization (add to grads)

                if self.l2 > 0:
                    for k in range(len(self.W)):
                        grads_W[k] = grads_W[k] + self.l2 * self.W[k]

                # Gradient step

                for k in range(len(self.W)):
                    self.W[k] -= self.lr * grads_W[k]
                    self.b[k] -= self.lr * grads_b[k]

            new_loss = self.loss(X, y)
            if verbose:
                print(f"Epoch {ep:3d} | loss {base_loss:.5f} → {new_loss:.5f

Our implementation successfully replicates several key features of contemporary

frameworks. It provides options to define the batch size and to decide whether to shuffle

the data.

In general, you should shuffle the data before (and usually at the start of every epoch

during) neural network training.

1. Breaks ordering bias: If the dataset has any underlying order (e.g., sorted by class,

time, or difficulty), training sequentially could make the model overfit early batches

and generalize poorly.

2. Improves stochasticity: Shuffling ensures each mini-batch provides a

representative mix of the data distribution, stabilizing the stochastic gradient

descent (SGD) updates and improving convergence.

3. Prevents periodic patterns: Without shuffling, the optimizer might see similar

samples repeatedly in the same order, leading to oscillations or slower convergence.

Exception:

Time-series or sequential data:

If the order carries meaning (temporal or causal structure), do not shuffle across

time.

Our method incorporates a dynamic training schedule that progressively reduces the

learning rate as the number of training epochs increases.



Testing

from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_circles
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = make_circles(n_samples=200, factor=0.5, noise=0.08, random_state=1)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ran

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

model = SimpleMLP([2, 4, 4, 1], lr=0.3, seed=42, hidden_activation="relu", l

model.train(X_train, y_train, epochs=150, batch_size=32, verbose=False)

print("Train acc:", accuracy_score(y_train, model.predict(X_train)))
print(" Test acc:", accuracy_score(y_test, model.predict(X_test)))

Train acc: 0.9357142857142857
Test acc: 0.9166666666666666

Automatic differentiation

Automatic differentiation (autodiff) systematically applies the chain rule to compute

exact derivatives of functions expressed as computer programs. It propagates

derivatives through elementary operations, either forward (from inputs to outputs) or

backward (from outputs to inputs), enabling efficient and precise gradient computation

essential for optimization and learning algorithms.

Baydin et al. (2017)

Training

Vanishing gradients

Vanishing gradient problem: Gradients become too small, hindering weight

updates.

Stalled neural network research (again) in early 2000s.

Sigmoid and its derivative (range: 0 to 0.25) were key factors.

Common initialization: Weights/biases from  contributed to the issue.
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Glorot and Bengio (2010) shed light on the problems.

The vanishing gradient problem often occurs with activation functions like the sigmoid

and hyperbolic tangent (tanh), leading to difficulties in training deep neural networks due

to diminishing gradients that slow down learning.

In contrast, the exploding gradient problem, which involves gradients growing

excessively large, is typically observed in architectures such as recurrent neural

networks (RNNs).

Both issues can significantly affect the stability and convergence of gradient-based

optimization techniques, thereby hindering the effective training of deep models.

Vanishing gradients: solutions

Alternative activation functions: Rectified Linear Unit (ReLU) and its variants (e.g.,

Leaky ReLU, Parametric ReLU, and Exponential Linear Unit).

Weight Initialization: Xavier (Glorot) or He initialization.

Other techniques exists to mitigate the problem, including those:

Batch Normalization: Implement batch normalization to standardize the inputs to

each layer, which can help stabilize and accelerate training by reducing internal

covariate shift and maintaining effective gradient flow.

Residual Networks: Use residual connections, as seen in ResNet architectures,

which allow gradients to flow more easily through the network by providing shortcut

paths that bypass one or more layers.

Glorot and Bengio

Figure 6



Figure 7



Glorot and Bengio (2010), page 254.

The graphs presented illustrate the normalized histograms of activation values and

back-propagated gradients associated with the hyperbolic tangent activation function.

The produce the top diagrams, Glorot and Bengio used an initialization method that was

popular at the time, whereas the bottom diagrams have been produced using a new

scheme (Glorot).

In Glorot & Bengio (2010), layers are numbered from input (layer 1) to output (layer L).

So:

Early layers = close to input.

Later layers = close to output.

Figures 6 and 7 present histograms depicting activation values and gradient values,

respectively, for each layer.

Activations:

In networks suffering from the vanishing gradient problem, activations tend to

shrink as we move from input to output — i.e. lower mean and variance in deeper

layers. The deeper you go, the “flatter” the signal becomes.

Gradients:

Conversely, gradients vanish as we go from the output layer back toward the input.

Small gradients in early (input-side) layers, somewhat larger near the output.

So:

Low activations deeper in the network.

Low gradients toward the input.

Glorot & Bengio’s main contributions and messages:

1. Root cause identified:

They analyzed how the variance of activations and gradients evolves across layers,

showing that improper initialization causes the signal (both forward and backward)

to either vanish or explode exponentially with depth.

2. Analytical condition:

For stable training, the variance of activations and gradients should remain

roughly constant across layers.

This led to the “Xavier initialization” (now standard):



which keeps signal variance balanced both ways.

1. Empirical verification:

Figures 6 and 7 demonstrate how poor initialization (e.g., too small or too large)

causes vanishing/exploding activations and gradients, while Xavier initialization

keeps them stable.

2. Broader message:

Successful deep learning depends crucially on:

Proper weight initialization (maintaining signal flow).

Appropriate activation functions (e.g. sigmoid vs tanh vs ReLU).

Balanced scaling of activations and gradients during both forward and

backward passes.

Vanishing gradient

Mechanism:

In deep networks with saturating nonlinearities (like sigmoid/tanh), backprop

multiplies many small derivatives (<1), causing exponentially smaller gradients in

earlier layers.

Effect:

Early layers learn extremely slowly, effectively “frozen” — while later layers (closer to

output) keep adapting.

Solutions:

Xavier or He initialization (variance-preserving).

Non-saturating activations (ReLU family).

Glorot and Bengio

Objective: Mitigate the unstable gradients problem in deep neural networks.

Signal Flow:

Forward Direction: Ensure stable signal propagation for accurate predictions.

Reverse Direction: Maintain consistent gradient flow during backpropagation.

Glorot and Bengio (2010): pay attention to signal flow in both directions!

Var(W) =
2

nin + nout



Glorot and Bengio

Variance Matching:

Forward Pass: Ensure the output variance of each layer matches its input variance.

Backward Pass: Maintain equal gradient variance before and after passing through

each layer.

Keras employs Glorot initialization by default, which is well-suited for activation

functions such as sigmoid, tanh, and softmax.

He initialization

A similar but slightly different initialization method design to work with ReLU, as well as

Leaky ReLU, ELU, GELU, Swish, and Mish.

. . .

Ensure that the initialization method matches the chosen activation function.

import tensorflow as tf
from tensorflow.python.keras.layers import Dense

dense = Dense(50, activation="relu", kernel_initializer="he_normal")

AKA Kaiming initialization.

Glorot Initialization (Xavier Initialization): This method sets the initial weights

based on the number of input and output units for each layer, aiming to keep the

variance of activations consistent across layers. It is particularly effective for

activation functions like sigmoid and tanh.

He Initialization: This approach adjusts the weight initialization to be suitable for

layers using ReLU and its variants, by scaling the variance according to the number

of input units only.

Note

Randomly initializing the weights[1] is sufficient to break symmetry in a neural network,

allowing the bias terms to be set to zero without impacting the network’s ability to

learn effectively.

Activation Function: Leaky ReLU
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[1] Proper initialization of weights, such as using Xavier/Glorot or He initialization, is

crucial and should be aligned with the choice of activation function to ensure optimal

network performance.

import numpy as np
import matplotlib.pyplot as plt

# Define the Leaky ReLU function
def leaky_relu(x, alpha=0.21):
    return np.where(x > 0, x, alpha * x)

# Define the derivative of the Leaky ReLU function
def leaky_relu_derivative(x, alpha=0.2):
    return np.where(x > 0, 1, alpha)

# Generate a range of input values
x_values = np.linspace(-4, 4, 400)

# Compute the Leaky ReLU and its derivative
leaky_relu_values = leaky_relu(x_values)
leaky_relu_derivative_values = leaky_relu_derivative(x_values)

# Create the plot
plt.figure(figsize=(5, 3))

# Plot the Leaky ReLU
plt.subplot(1, 2, 1)
plt.plot(x_values, leaky_relu_values, label='Leaky ReLU', color='blue')
plt.title('Leaky ReLU Activation Function')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.axhline(0, color='black',linewidth=0.5)
plt.axvline(0, color='black',linewidth=0.5)
plt.legend()

# Plot the derivative of the Leaky ReLU
plt.subplot(1, 2, 2)
plt.plot(x_values, leaky_relu_derivative_values, label='Derivative of Leaky 
plt.title('Derivative of Leaky ReLU')
plt.xlabel('x')
plt.ylabel("f'(x)")
plt.grid(True)
plt.axhline(0, color='black',linewidth=0.5)
plt.axvline(0, color='black',linewidth=0.5)
plt.legend()

# Show the plots
plt.tight_layout()
plt.show()
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The Leaky ReLU, a variant of the standard ReLU activation function, effectively mitigates

the issue of dying ReLU nodes. For negative input values, it introduces a linear

component with a slope governed by the parameter negative_slope .

When the input to the ReLU activation function, the weighted sum plus bias, is negative

for all the training examples, the output value of ReLU is zero. But also, its derivative is 0,

which effectively deactivates the neuron. Leaky ReLU, or other variants, effectively

mitigates the issue.

import tensorflow as tf
from tensorflow.python.keras.layers import Dense

leaky_relu = tf.keras.layers.LeakyReLU(negative_slope=0.2)
dense = tf.keras.layers.Dense(50, activation=leaky_relu, 
kernel_initializer="he_normal")
Keras proposes 18 layer activation functions at the time of writing.

Prologue

Summary

https://keras.io/api/layers/activations/#available-activations


Attribution: Angermueller et al. (2016)

Summary

Concept Role

Activation functions Introduce non-linearity (e.g., Sigmoid, ReLU).

Loss function Measures prediction error (e.g., Binary Cross-Entropy).

Learning rate (α) Controls step size in parameter updates.

Gradient descent Optimization method for weight adjustment.

Chain rule Mechanism for propagating derivatives backward.

Automatic
differentiation

Software implementation of backprop (e.g., TensorFlow,
PyTorch).

Summary

Vanishing Gradient Problem:

Gradients become too small during backpropagation, hindering training.

Mitigation strategies include using ReLU activation functions and proper weight

initialization (Glorot or He initialization).

Weight Initialization:

Random initialization breaks symmetry and allows effective learning.

Glorot initialization suits sigmoid and tanh activations.

He initialization is optimal for ReLU and its variants.

3Blue1Brown



A series of videos, with animations, providing the intuition behind the backpropagation

algorithm.

Neural networks (playlist)

What is backpropagation really doing? (12m 47s)

Backpropagation calculus (10m 18s)

Prerequisite: Gradient descent, how neural networks learn? (20m 33s)

StatQuest

Neural Networks Pt. 2: Backpropagation Main Ideas (17m 34s)

Backpropagation Details Pt. 1: Optimizing 3 parameters simultaneously (18m 32s)

Backpropagation Details Pt. 2: Going bonkers with The Chain Rule (13m 9s)

Prerequisites: The Chain Rule (18m 24s) & Gradient Descent, Step-by-Step (23m 54s)

Herman Kamper

One of the most thorough series of videos on the backpropagation algorithm.

Introduction to neural networks (playlist)

Backpropagation (without forks) (31m 1s)

Backprop for a multilayer feedforward neural network (4m 2s)

Computational graphs and automatic differentiation for neural networks

(6m 56s)

Common derivatives for neural networks (7m 18s)

A general notation for derivatives (in neural networks) (7m 56s)

Forks in neural networks (13m 46s)

Backpropagation in general (now with forks) (3m 42s)

Free book with implementation

In his book, Neural Networks and Deep Learning, Michael Nielsen provides a

comprehensive Python implementation of a neural network.

Next lecture

We will introduce various architectures of artificial neural networks.
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