Softmax, cross-entropy, regularization

CSI 4106 - Fall 2025

Marcel Turcotte
Version: Oct 28, 2025 17:11

Preamble

Message of the Day

Why 2025 is the single most pivotal year in our lifetime, Peter Leyden, Big Think,
YouTube, 2025-10-20.

Learning objectives

e Explain the role of softmax and cross-entropy loss in measuring the dissimilarity
between predicted and true probability distributions.

e Explore methods like L1, L2 regularization, and dropout to enhance neural networks’
generalization capabilities.

In the previous lecture, we examined the backpropagation algorithm, which provides a
systematic method for calculating the partial derivatives of the loss function. This

calculation is essential for applying the gradient descent algorithm, thus enabling the

https://bigthink.com/series/the-big-think-interview/great-inflection-2025/
https://www.youtube.com/watch?v=w5k72A30kUc

adjustment of weights in a deep neural network. Today, we will look at what happens at
the output layer and regularization techniques.

Output Layers

Output Layer: Regression Task

o # of output neurons:

= 1 per dimension
e Output layer activation function:

= None, ReLU/softplus, if positive, sigmoid/tanh, if bounded
¢ Loss function:

= MeanSquaredError

In an object detection problem, determining the bounding box exemplifies a regression
task where the output is multidimensional.

How does one select an appropriate activation function?

In a feed-forward network, activation functions in the hidden layers are chosen mainly
for their impact on performance and convergence, while the activation function in the
output layer is selected according to the requirements of the task.

¢ Hidden layers:

The activation function (e.g., ReLU, GELU, tanh) mainly affects training dynamics —
such as gradient flow, nonlinearity strength, and convergence rate. The choice is
typically empirical, guided by performance, numerical stability, and optimization
behavior.

e Output layer:
The activation function is determined by the nature of the prediction task:

m Regression: linear, ReLU, or softplus (depending on range constraints)
» Binary classification: sigmoid

m Multi-class classification: softmax

m Multi-label classification: sigmoid (per output unit)

Examples of multi-output regression problems (2-4 outputs) include:
e 2 outputs:

= Predicting both the latitude and longitude of a location from an image.
= Estimating the width and height of a bounding box in object detection.

https://www.tensorflow.org/api_docs/python/tf/keras/losses/MeanSquaredError
https://keras.io/guides/keras_cv/object_detection_keras_cv/

= Forecasting temperature and humidity simultaneously.
e 3 outputs:

= Predicting the X, y, z coordinates of a point in space (e.g., hand-joint
localization).
» Estimating RGB color values from spectral measurements.
e 4 outputs:

» Predicting bounding box coordinates — (Z,,i,., Ymin, Tmazs Ymaz) — in Object

detection.

Output Layer: Multi-Label

2| S
2.

>
)

v

QV’ o>

NSV

@
\ /\ -
=

With the sigmoid activation function, this network makes multi-label predictions.

However, this network is not suitable for classification. Do you see why?

Output Layer: Classification Task

e # of output neurons:
= 1if binary, 1 per class, if multi-label or multiclass.
e Output layer activation function:

v

® sigmoid, if binary or multi-label, softmax if multi-class.
e Loss function:
= cross-entropy

Softmax

Softmax
l

Softmax ensures that all activation outputs fall between 0 and 1 and collectively sum to
1.

Observe that | have revised the representation of the output nodes to indicate that the
softmax function is applied to the entire layer, rather than to individual nodes. This
function transforms the raw output values of the layer into probabilities that sum to 1,
facilitating multi-class classification. This characteristic distinguishes it from activation
functions like ReLU or sigmoid, which are typically applied independently to each node's
output.

The \argmax function is not suitable for optimization via gradient-based methods
because its derivative is zero in all cases, similar to step functions. In contrast, the
softmax function offers both a probabilistic interpretation and a computable derivative,

making it more effective for such applications.

The \argmax function can be applied a posteriori to trained networks for class
prediction.

Softmax

The softmax function is an activation function used in multi-class classification
problems to convert a vector of raw scores into probabilities that sum to 1.

Given a vector z = [z1, 29, . . ., Z]:

e’
G(z)i = n

Zj:l e
where o(z); is the probability of the i-th class, and n is the number of classes.

Softmax emphasizes higher scores while suppressing lower ones, enabling a
probabilistic interpretation of the outputs.

We clearly see that such an activation applies for an entire layer since the denomination
depends on the values of all the zj, for jinl...n.

In the softmax function, exponentiation serves a crucial mathematical and conceptual
role: it transforms arbitrary real-valued scores into positive, normalized probabilities
while amplifying differences between inputs.

1. Ensures positivity:

The exponential function guarantees all outputs are positive, a necessary property
for valid probabilities.

2. Magnifies relative differences:

Exponentiation is a monotonic nonlinear transformation that increases large values
much more than small ones. If one logit is slightly larger, e* becomes
disproportionately larger, sharpening the distribution (useful for emphasizing the
most likely class).

3. Preserves ordering:

Since €7 is strictly increasing, the class with the highest logit before softmax
remains the one with the highest probability after.

4. Facilitates gradient-based learning:

The exponential smooths the transition between classes, providing differentiable
outputs and stable gradients for optimization with cross-entropy.

A logit is a pre-activation value (z;). Each neuron in the output layer (before activation)
produces a logit z;.

Softmax
(o2 (o2 (o2
A A B () (22) (25) 2
1.47 -0.39 0.22 0.69 0.1 0.20 1.00
5.00 6.00 4.00 0.24 0.67 0.09 1.00
0.90 0.80 110 0.32 0.29 0.39 1.00
-2.00 2.00 -3.00 0.02 0.98 0.01 1.00

Softmax values for a vector of length 3.

1. Maintains Relative Order: The softmax function preserves the relative order of the
input values. If one input is greater than another, its corresponding output will also
be greater.

2. Interpreted as probabilities: Each value is in the range 0 to 1. The output values
from the softmax function are normalized to sum to one, which allows them to be
interpreted as probabilities.

3. Relative Differences: When the relative differences among the input values are
small, the differences in the output probabilities remain small, reflecting the input
distribution. When the input values are identical, the output values will be %, where

n is the number of classes.

4. Wide Range of Values: The softmax function can effectively handle a wide range of
input values, thanks to the exponential function and normalization, which scale the
inputs to a probabilistic range.

These properties make the softmax function particularly useful for multi-class
classification tasks in machine learning.

Softmax

https://www.youtube.com/watch?v=KpKog-L9veg

Cross-entropy loss function

The cross-entropy in a multi-class classification task for one example:

https://www.youtube.com/watch?v=KpKog-L9veg

JW) = - Zyk log(y1)
k=1

Where:
e K is the number of classes.
¢ 1y, is the true distribution for the class k.
* 7, is the predicted probability of class k from the model.

e The target vector y is expressed as a one-hot encoded vector of length K, where
the element corresponding to the true class is set to 1, and all other elements are 0.

e Consequently, in the summation over classes, only the term associated with the true
class contributes a non-zero value.

o Therefore, the cross-entropy loss for a single example is given by — log(g]k), where
g}k is the predicted probability for the true class.

e The predicted probability Qk is derived from the softmax function applied in the
output layer of the neural network.

Cross-entropy loss function

¢ Classification Problem: 3 classes
= Versicolour, Setosa, Virginica.

¢ One-Hot Encoding:
» Setosa=[0,1,0].

o Softmax Outputs & Loss:
= [0.22,0.7,0.08]: Loss = — log(0.7) = 0.3567.
» [0.7,0.22,0.08]: Loss = —log(0.22) = 1.5141.
= [0.7,0.08,0.22]: Loss = — log(0.08) = 2.5257.

Among the softmax outputs, cross-entropy evaluates only the component
corresponding to k = 1 (Setosa), as the other entries in the one-hot encoded vector are
zero. This relevant element is highlighted in bold. When the softmax prediction aligns
closely with the expected value, the resulting loss is minimal (0.3567). Conversely, as
the prediction deviates further from the expected value, the loss increases (1.5141 and
2.5257).

Case: one example

Graph of —log(yx) for yx from 0 to 1

— —loglys)

loss

0.0 0.2 0.4 0.6 0.8 1.0

e In the summation, only the term where y;, = 1 contributes a non-zero value.

e Due to the negative sign preceding the summation, the value of the function is
— log (Y-

e If the predicted probability f&k is near 1, the loss approaches zero, indicating minimal
penalty.

e Conversely, as g}k nears O, indicating an incorrect prediction, the loss approaches
infinity. This substantial penalty allows cross-entropy loss to converge more quickly

than mean squared error.

Case: dataset

For a dataset with /N examples, the average cross-entropy loss over all examples is
computed as:

1 N K
L===> > tirlog(d;)

i=1 k=1

Where:

e 7 indexes over the different examples in the dataset.
e y;kand g}i,k are the true and predicted probabilities for class k of example 7,

respectively.

Regularization

Definition

Regularization comprises a set of techniques designed to enhance a model’s ability to
generalize by mitigating overfitting. By discouraging excessive model complexity,
these methods improve the model’s robustness and performance on unseen data.

Adding penalty terms to the loss

e In numerical optimization, it is standard practice to incorporate additional terms
into the objective function to deter undesirable model characteristics.

e For a minimization problem, the optimization process aims to circumvent the
substantial costs associated with these penalty terms.

Loss function

Consider the mean absolute error loss function:
1 N
MAE(X, W) = + ; w(z:) — yil

Where:

e IV are the weights of our network.
e hw(z;) is the output of the network for example i.
e y; is the true label for example 1.

Penalty term(s)

One or more terms can be added to the loss:

N
1
MAE(X, W) = %= > |hw(z;) — il + penalty
i=1

Norm

A norm is assigns a non-negative length to a vector.

The £, norm of a vector z = [z1, 22, . . ., 2] is defined as:

n 1/p
|z]lp = (Z |Zi|p>
=1

With larger p, the ﬁp norm increasingly highlights larger z; values due to exponentiation.

A norm is a function that assigns a non-negative length or size to each vector in a vector
space, satisfying certain properties: positivity, scalar multiplication, the triangle
inequality, and the property that the norm is zero if and only if the vector is zero.

¢ and £5 norms

The £; norm (Manhattan norm) is

n
Izl = |2l
i=1
The ¢, norm (Euclidean norm) is:

][> = w’g

¢1 and ¢5 regularization

Below, a and 3 determine the degree of regularization applied; setting these values to
zero effectively disables the regularization term.

MAE(X, W) Z \haw () — yi| + oy + Bla

Guidelines

e /1 Regularization:

= Promotes sparsity, setting many weights to zero.

= Useful for feature selection by reducing feature reliance.
¢ (> Regularization:

= Promotes small, distributed weights for stability.

= |deal when all features contribute and reducing complexity is key.

See kong_and_yu-2018 for an example.

Keras example

import tensorflow as tf
from tensorflow.python.keras.layers import Dense

regularizer = tf.keras.regularizers.12(0.001)
dense = Dense(50, kernel_regularizer=regularizer)

This layer specifically utilizes £5 regularization, in contrast to the prior discussion where
regularization was applied globally across the entire model.

Dropout

Dropout is a regularization technique in neural networks where randomly selected
neurons are ignored during training, reducing overfitting by preventing co-adaptation
of features.

Hinton et al. (2012)

Dropout

e During each training step, each neuron in a dropout layer has a probability p of being
excluded from the computation, typical values for p are between 10% and 50%.

e While seemingly counterintuitive, this approach prevents the network from
depending on specific neurons, promoting the distribution of learned
representations across multiple neurons.

Dropout

e Dropout is one of the most popular and effective methods for reducing overfitting.
e The typical improvement in performance is modest, usually around 1 to 2%.

During training, each neuron in a dropout layer is randomly excluded (set to zero) with a
probability p—the dropout rate.

When dropout “sets a neuron to zero,” it means that for the current training step (mini-
batch), that neuron’s output activation is replaced by zero. The neuron still exists in the

file:///var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/T/kong_and_yu-2018

network — its weights are not removed or altered — but its output contributes nothing to
the forward or backward pass for that batch.

In the next batch, a new random mask is sampled, so a different subset of neurons is
dropped. Over many iterations, all neurons participate, but never all at once.

At inference time, dropout is disabled—all neurons are active, and their outputs are not
scaled.

Keras

import keras
from keras.models import Sequential
from keras.layers import InputlLayer, Dropout, Flatten, Dense

model = tf.keras.Sequential([
InputLayer(shape=[28, 28]),
Flatten(),
Dropout(rate=0.2),
Dense (300, activation="relu"),
Dropout(rate=0.2),
Dense (100, activation="relu"),
Dropout(rate=0.2),
Dense(10, activation="softmax")

1)

Adding Dropout layers to the Fashion-MNIST model from last lecture.

The dropout rate may differ between layers; larger rates can be applied to larger layers,
while smaller rates are suitable for smaller layers. It is common practice in many
networks to apply dropout only after the final hidden layer.

Definition

Early stopping is a regularization technique that halts training once the model’s
performance on a validation set begins to degrade, preventing overfitting by stopping
before the model learns noise.

Geoffrey Hinton calls this the “beautiful free lunch.”

Early Stopping

3.5

= alidation set

= = Training set
3.0 1

2.5 1

2.0 1 Best model

RMSE
-~

1.5 T

l.D_ -‘"""--..__ _____

0.5 1

0.0

T T T
0 100 200 300 400 500
Epoch

Attribution: Géron (2022), 04_training_linear_models.ipynb.

Prologue

Summary

¢ Loss Functions:
= Regression Tasks: Mean Squared Error (MSE).
= Classification Tasks: Cross-Entropy Loss with Softmax activation for multi-
class outputs.
e Regularization Techniques:
= L1 and L2 Regularization: Add penalty terms to the loss to discourage large
weights.
= Dropout: Randomly deactivate neurons during training to prevent overfitting.
= Early Stopping: Halt training when validation performance deteriorates.

Next lecture

e We will introduce convolutional neural networks.

References

https://github.com/ageron/handson-ml3/blob/main/04_training_linear_models.ipynb

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow. 3rd ed. O'Reilly Media, Inc.

Hinton, Geoffrey E., Nitish Srivastava, Alex Krizhevsky, llya Sutskever, and Ruslan
Salakhutdinov. 2012. “Improving Neural Networks by Preventing Co-Adaptation of
Feature Detectors.” CoRR abs/1207.0580. http://arxiv.org/abs/1207.0580.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th
ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca
School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

http://arxiv.org/abs/1207.0580
http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

