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Preamble

Message of the Day

https://www.youtube.com/watch?v=78xby7PtGC8

Will transformers drive AI in 10 years?, Andrej Karpathy, 2025-10-27.

Andrej Karpathy is a Slovak-Canadian computer scientist born in 1986 in Bratislava, who

moved to Toronto with his family at the age of 15. He obtained a bachelor’s degree in

computer science and physics from the University of Toronto (2009) and a master’s

degree from the University of British Columbia (2011), where he worked with his advisor

Michiel van de Panne on learning controllers for physically simulated figures. He then

completed a Ph.D. at Stanford University under the supervision of Fei-Fei Li, focusing on

the intersection of computer vision and natural language processing.

Founding member and researcher at OpenAI (2015 – 2017).

Senior Director of AI and Autopilot Vision at Tesla, Inc. (2017 – 2022).

Returned to OpenAI in 2023 to lead a small team working on improving models

(notably GPT-4), before leaving the company in 2024.

Founder of Eureka Labs (since 2024), a startup focused on AI and education.

Learning objectives

Explain the Hierarchy of Concepts in Deep Learning

Understand Convolution Operations Using Kernels

Describe the Structure and Function of Convolutional Neural Networks (CNNs)

Explain Receptive Fields, Padding, and Stride in CNNs

Discusss the Role and Benefits of Pooling Layer

In the previous lecture, we examined the backpropagation algorithm, which provides a

systematic method for calculating the partial derivatives of the loss function. This

calculation is essential for applying the gradient descent algorithm, thus enabling the

adjustment of weights in a deep neural network. Today, we will cover an intensive

https://www.youtube.com/watch?v=78xby7PtGC8
https://www.youtube.com/watch?v=78xby7PtGC8
https://karpathy.ai/
https://profiles.stanford.edu/fei-fei-li


program. We will now discuss convolutional neural networks, which is a technology that

continues to be impactful.

The study of convolutional networks involves multiple levels of complexity. Please feel

free to ask questions if you need clarification.

Detailed learning objectives.

1. Softmax Layer:

Describe its functionality in converting logits into probability distributions for

classification tasks.

1. Cross-Entropy Loss:

Explain its role in measuring the dissimilarity between predicted and true probability

distributions.

1. Regularization Techniques:

Explore methods like L1, L2 regularization, and dropout to enhance neural networks’

generalization capabilities.

1. Explain the Hierarchy of Concepts in Deep Learning

Understand how deep learning models build hierarchical representations of data.

Recognize how this hierarchy reduces the need for manual feature engineering.

1. Compare Deep and Shallow Neural Networks

Discuss why deep networks are more parameter-efficient than shallow networks.

Explain the benefits of depth in neural network architectures.

1. Describe the Structure and Function of Convolutional Neural Networks (CNNs)

Understand how CNNs detect local patterns in data.

Explain how convolutional layers reduce the number of parameters through weight

sharing.

1. Understand Convolution Operations Using Kernels

Describe how kernels (filters) are applied over input data to perform convolutions.

Explain how feature maps are generated from convolution operations.

1. Explain Receptive Fields, Padding, and Stride in CNNs

Define the concept of a receptive field in convolutional layers.

Understand how padding and stride affect the output dimensions and computation.



1. Discuss the Role and Benefits of Pooling Layers

Explain how pooling layers reduce spatial dimensions and control overfitting.

Describe how pooling introduces translation invariance in CNNs.

Convolution

Hierarchy of concepts

Attribution: LeCun, Bengio, and Hinton (2015)

In the book “Deep Learning” (Goodfellow, Bengio, and Courville 2016), authors

Goodfellow, Bengio, and Courville define deep learning as a subset of machine learning

that enables computers to “understand the world in terms of a hierarchy of concepts.”

This hierarchical approach is one of deep learning’s most significant contributions. It

reduces the need for manual feature engineering and redirects the focus toward the

engineering of neural network architectures.

Convolutional Neural Networks (CNNs) have had a profound impact on the field of

machine learning, particularly in areas involving image and video processing.

1. Revolutionizing Image Recognition: CNNs have significantly advanced the state of

the art in image recognition and classification, achieving high accuracy across

various datasets. This has led to breakthroughs in fields such as medical imaging,

autonomous vehicles, and facial recognition.

2. Feature Extraction: CNNs automatically learn to extract features from raw data,

eliminating the need for manual feature engineering. This capability has been crucial

in handling complex data patterns and has expanded the applicability of machine

learning to diverse domains.



3. Transfer Learning: CNNs facilitate transfer learning, where pre-trained networks on

large datasets can be fine-tuned for specific tasks with limited data. This has made

CNNs accessible and effective for a wide range of applications beyond their original

training scope.

4. Advancements in Deep Learning: The success of CNNs has spurred further

research in deep learning architectures, inspiring the development of more

sophisticated models like recurrent neural networks (RNNs), long short-term

memory networks (LSTMs), and transformer models.

5. Broader Application Areas: Beyond image processing, CNNs have been adapted

for natural language processing, audio processing, and even in bioinformatics for

tasks such as protein structure prediction and genomics.

6. Implications for Real-World Applications: CNNs have enabled practical

applications in fields such as healthcare, where they assist in diagnostic imaging,

and in security, where they enhance surveillance systems. They have also

contributed to advancements in virtual reality, gaming, and augmented reality.

We have explored k-nearest neighbors algorithms and decision trees to provide you with

a broader perspective on machine learning, which is not limited to neural networks

alone. Currently, we are studying convolutional neural networks to illustrate the diversity

of existing architectures in this field. Although it is impossible to cover all aspects in

detail, our aim is to provide you with a solid understanding of the different paradigms of

machine learning.

Hierarchy of concepts

Each layer detects patterns from the output of the layer preceding it.

In other words, proceeding from the input to the output of the network, the

network uncovers “patterns of patterns”.

Analyzing an image, the networks first detect simple patterns, such as

vertical, horizontal, diagonal lines, arcs, etc.

These are then combined to form corners, crosses, etc.

(This explains how transfer learning works and why selecting the bottom layers

only.)

But also …

“An MLP with just one hidden layer can theoretically model even the most

complex functions, provided it has enough neurons. But for complex

problems, deep networks have a much higher parameter efficiency than

shallow ones: they can model complex functions using exponentially



fewer neurons than shallow nets, allowing them to reach much better

performance with the same amount of training data.”

Géron (2019) § 10

During the lecture, attempt to discern why convolutional neural networks possess fewer

parameters compared to fully connected feedforward networks.

How many layers?

Start with one layer, then increase the number of layers until the model starts

overfitting the training data.

Finetune the model adding regularization (dropout layers, regularization terms,

etc.).

The number of neurons and other hyperparameters are determined using a grid search.

Observation

Consider a feed-forward network (FFN) and its model:

where

for . - The number of parameters in grows rapidly:

Two layers 1,000-unit implies 1,000,000 parameters!

Image Classification Task

Consider an RGB image with dimensions , which is relatively small by

contemporary benchmarks.

The image consists of input features.

A neural network with merely a single hidden dense layer would require over

22,658,678,784 (22 billion) parameters, highlighting the computational complexity

involved.

Convolutional Neural Network (CNN)

https://www.youtube.com/watch?v=QzY57FaENXg

hW ,b(X) = ϕk(… ϕ2(ϕ1(X)) …)

ϕl(Z) = σ(WlZ + bl)

l = 1 … k

(size of layerl−1 + 1) × size of layerl

224 × 224

224 × 224 × 3 = 150, 528

https://www.youtube.com/watch?v=QzY57FaENXg


An excellent high-level overview of CNNs.

Convolutional Neural Network (CNN)

Crucial pattern information is often local.

e.g., edges, corners, crosses.

Convolutional layers reduce parameters significantly.

Unlike dense layers, neurons in a convolutional layer are not fully connected to

the preceding layer.

Neurons connect only within their receptive fields (rectangular regions).

Convolutional networks originate from the domain of machine vision, which explains

their intrinsic compatibility with grid-structured inputs.

The original publication by Yann Lecun has been cited nearly 35,000 times (Lecun et al.

1998).

Kernel

Kernel

 

A kernel is a small matrix, usually , , or similar in size, that slides over the

input data (such as an image) to perform convolution.

Kernel

In [2]:

3 × 3 5 × 5



 

Beginning with the kernel positioned to overlap the upper-left corner of the input matrix.

The detailed computational process will be elaborated upon subsequently. At this stage,

it is sufficient to observe that the kernel is systematically traversed across the input

matrix, generating a distinct output with each iteration.

Kernel

 

It can be moved to the right three times.

Kernel

 

In [3]:

In [4]:

In [5]:



Kernel

 

Kernel

 

In [6]:

In [7]:



The kernel can then be moved to the second row of the input matrix, and moved to the

right three times.

How many placements of the kernel over the input matrix are there? .

Kernel Placements

 

4 × 4 = 16

In [8]:



Kernel

 In [9]:



With the kernel placed over a specific region of the input matrix, the convolution is

element-wise multiplication (each element of the kernel is multiplied by the

corresponding element of the input matrix region it overlaps) followed by a summation

of the results to produce a single scalar value.

Kernel

 

Kernel

 

In [10]:

1 × 1 + 2 × 0 + 3 × (−1) + 6 × 1 + 5 × 0 + 4 × (−1) + 1 × 1 + 2 × 0 + 3 × (−1) =

In [11]:



The 16 resulting values can be organized into an output matrix. The element at position

(0,0) in this output matrix represents the result of applying the convolution operation

with the kernel at the initial position on the input matrix. In convolutional neural

networks, the output matrix is referred to as a feature map.

It is referred to as a feature map because these outputs serve as features for the

subsequent layer. In CNNs, the term “feature map” refers to the output of a

convolutional layer after applying filters to the input data. These feature maps capture

various patterns or features from the input, such as edges or textures in image data.

The output feature maps of one layer become the input for the next layer, effectively

serving as features that the subsequent layer can use to learn more complex patterns.

This hierarchical feature extraction process is a key characteristic of CNNs, allowing

them to build progressively more abstract and high-level representations of the input

data as the network depth increases.

Blurring

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from scipy.ndimage import convolve

def apply_kernel_to_image(image_path, kernel):
    # Load the image and convert it to grayscale
    image = Image.open(image_path).convert('L')
    image_array = np.array(image)

    # Apply the convolution using the provided kernel
    convolved_array = convolve(image_array, kernel, mode='reflect')

    # Convert the convolved array back to an image
    convolved_image = Image.fromarray(convolved_array)

    # Display the original and convolved images
    plt.figure(figsize=(10, 4))

In [12]:



    plt.subplot(1, 2, 1)
    plt.title('Original Image')
    plt.imshow(image_array, cmap='gray')
    plt.axis('off')

    plt.subplot(1, 2, 2)
    plt.title('Convolved Image')
    plt.imshow(convolved_image, cmap='gray')
    plt.axis('off')

    plt.tight_layout()
    plt.show()

# Define the 3x3 averaging kernel
kernel = np.array([
    [1/9, 1/9, 1/9],
    [1/9, 1/9, 1/9],
    [1/9, 1/9, 1/9]
])

# Apply the kernel to the image (provide your image path here)
image_path = '../../assets/images/uottawa_hor_black.png'
apply_kernel_to_image(image_path, kernel)

# Define the 3x3 averaging kernel

kernel = np.array([
    [1/9, 1/9, 1/9],
    [1/9, 1/9, 1/9],
    [1/9, 1/9, 1/9]
])

A pixel is transformed into the average of itself and its eight surrounding neighbors,

resulting in a blurred effect on the image.

The application of kernels to images has been a longstanding practice in the field of

image processing.

Vertical Edge detection

 

In [13]:

In [14]:



# Define the 3x3 averaging kernel

kernel = np.array([
    [-0.25, 0, 0.25],
    [-0.25, 0, 0.25],
    [-0.25, 0, 0.25]
])

This kernel detects vertical edges by emphasizing differences in intensity between

adjacent columns. It subtracts pixel values on the left from those on the right,

enhancing vertical transitions and suppressing uniform regions.

This is a type of edge detection kernel, specifically a horizontal gradient filter or a

Sobel operator. It’s designed to detect changes in intensity along the horizontal axis,

emphasizing vertical edges in an image.

When this kernel is convolved with an image:

It highlights vertical edges by calculating the difference in pixel intensity between

the left and right sides of a point.

The negative values (-1) on the left subtract intensity, while the positive values (1)

on the right add intensity, effectively measuring the horizontal gradient.

The zeros in the middle ignore the central pixel’s contribution, focusing only on the

contrast between left and right neighbors.

The result is an image where:

Vertical edges (e.g., the boundary between a dark object and a light background)

appear bright or dark, depending on the direction of the intensity change.

Horizontal edges or uniform areas tend to be suppressed (close to zero).

Imagine sliding this kernel over an image like a scanner. For each pixel:

It looks at the pixels to its left (subtracting their value with -1) and to its right

(adding their value with 1).

If the left and right sides are similar (e.g., same color), the result is near zero (no

edge).

If the left is dark and the right is light (or vice versa), the result is a strong positive or

negative value, showing a vertical edge.

In [15]:



This is useful in computer vision (like in Tesla’s CNNs) to help detect object boundaries

or lane lines by emphasizing where pixel values change sharply in the horizontal

direction.

Horizontal Edge detection

 

# Define the 3x3 averaging kernel

kernel = np.array([
    [-0.25, -0.25, -0.25],
    [0, 0, 0],
    [0.25, 0.25, 0.25]
])

This kernel detects horizontal edges by highlighting differences in intensity between

adjacent rows. It subtracts pixel values in the upper row from those in the lower row,

accentuating horizontal transitions while minimizing uniform areas.

Convolutions in Image Processing

https://www.youtube.com/watch?v=8rrHTtUzyZA

Uses the Julia programming language.

But what is a convolution?

https://youtu.be/KuXjwB4LzSA

Convolution extending beyond its application in image processing.

Kernels

In contrast to image processing, where kernels are manually defined by the user, in

convolutional networks, the kernels are automatically learned by the network.

To be continued 

In [16]:

In [17]:

…

https://www.youtube.com/watch?v=8rrHTtUzyZA
https://julialang.org/
https://youtu.be/KuXjwB4LzSA


Receptive field

Receptive field

Attribution: Géron (2019) Figure 14.2

Receptive field

Each unit is connected to neurons in its receptive fields.

Unit  in layer  is connected to the units  to ,  to  of

the layer , where  and  are respectively the height and width of the

receptive field.

Padding

Zero padding. In order to have layers of the same size, the grid can be padded with

zeros.

Padding

No padding

i, j l i i + fh − 1 j j + fw − 1

l − 1 fh fw



Half padding

Full padding

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/no_padding_no_strides.gif
https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/no_padding_no_strides.gif
https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/same_padding_no_strides.gif
https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/same_padding_no_strides.gif


Attribution: github.com/vdumoulin/conv_arithmetic

Stride

Stride. It is possible to connect a larger layer  to a smaller one  by skipping

units. The number of units skipped is called stride,  and .

. . .

Unit  in layer  is connected to the units  to ,  to

 of the layer , where  and  are respectively the height

and width of the receptive field,  and  are respectively the height and width

strides.

Stride

(l − 1) (l)

sh sw

i, j l i × sh i × sh + fh − 1 j × sw

j × sw + fw − 1 l − 1 fh fw

sh sw

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/full_padding_no_strides.gif
https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/full_padding_no_strides.gif
https://github.com/vdumoulin/conv_arithmetic/


No padding, strides

Padding, strides

Attribution: github.com/vdumoulin/conv_arithmetic

Filters

Filters

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/no_padding_strides.gif
https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/no_padding_strides.gif
https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/padding_strides.gif
https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/padding_strides.gif
https://github.com/vdumoulin/conv_arithmetic/


A window of size  is moved over the output of layers , referred to as

the input feature map, position by position.

For each location, the product is calculated between the extracted patch and a

matrix of the same size, known as a convolution kernel or filter. The sum of the

values in the resulting matrix constitutes the output for that location.

Model

Model

where  and .

Attribution: Géron (2019) Figure 14.6

Convolutional Layer

“Thus, a layer full of neurons using the same filter outputs a feature map.”

“Of course, you do not have to define the filters manually: instead, during training

the convolutional layer will automatically learn the most useful filters for its

fh × fw l − 1

zi,j,k = bk +

fh−1

∑
u=0

fw−1

∑
v=0

fn′−1

∑
k′=0

xi′,j′,k′ ⋅ wu,v,k′,k

i′ = i × sh + u j′ = j × sw + v



task.”

Géron (2019) § 14

Convolutional Layer

“(…) and the layers above will learn to combine them into more complex

patterns.”

“The fact that all neurons in a feature map share the same parameters

dramatically reduces the number of parameters in the model.”

Géron (2019) § 14

Summmary

1. Feature Map: In convolutional neural networks (CNNs), the output of a convolution

operation is known as a feature map. It captures the features of the input data as

processed by a specific kernel.

Summmary

1. Kernel Parameters: The parameters of the kernel are learned through the

backpropagation process, allowing the network to optimize its feature extraction

capabilities based on the training data.

Summmary

1. Bias Term: A single bias term is added uniformly to all entries of the feature map.

This bias helps adjust the activation level, providing additional flexibility for the

network to better fit the data.

Summmary

1. Activation Function: Following the addition of the bias, the feature map values are

typically passed through an activation function, such as ReLU (Rectified Linear

Unit). The ReLU function introduces non-linearity by setting negative values to zero

while retaining positive values, enabling the network to learn more complex

patterns.

Pooling



Pooling

A pooling layer exhibits similarities to a convolutional layer.

Each neuron in a pooling layer is connected to a set of neurons within a

receptive field.

However, unlike convolutional layers, pooling layers do not possess weights.

Instead, they produce an output by applying an aggregating function, commonly

max or mean.

Similar to convolutional layers, pooling layers allow specification of the receptive field

size, padding, and stride. For the MaxPool2D  function, the default receptive field size

is .

In a pooling layer, specifically max pooling, the max function is inherently

nondifferentiable because it involves selecting the maximum value from a set of inputs.

However, in the context of backpropagation in neural networks, we can work around this

by using a concept known as the “gradient of the max function.”

Here’s how it is done:

1. Forward Pass: During the forward pass, the max pooling layer selects the maximum

value from each pooling region (e.g., a 2x2 window) and passes these values to the

next layer.

2. Backward Pass: During backpropagation, the gradient is propagated only to the

input that was the maximum value in the forward pass. This means that the

derivative is 1 for the position that held the maximum value and 0 for all other

positions within the pooling window.

This approach effectively allows the max operation to participate in gradient-based

optimization processes like backpropagation, even though the max function itself is

nondifferentiable. By assigning the gradient to the position of the maximum value, the

network can learn which features are most important for the task at hand.

Pooling

This subsampling process leads to a reduction in network size; each window of

dimensions  is condensed to a single value, typically the maximum or mean

of that window.

According to Géron (2019), a max pooling layer provides a degree of invariance to

small translations (§ 14).

2 × 2

fh × fw



Pooling

1. Dimensionality Reduction: Pooling layers reduce the spatial dimensions (width and

height) of the input feature maps. This reduction decreases the number of

parameters and computational load in the network, which can help prevent

overfitting.

Pooling

1. Feature Extraction: By summarizing the presence of features in a region, pooling

layers help retain the most critical information while discarding less important

details. This process enables the network to focus on the most salient features.

Pooling

1. Translation Invariance: Pooling introduces a degree of invariance to translations

and distortions in the input. For instance, max pooling captures the most prominent

feature in a local region, making the network less sensitive to small shifts or

variations in the input.

Pooling

1. Noise Reduction: Pooling can help smooth out noise in the input by aggregating

information over a region, thus emphasizing consistent features over random

variations.

Pooling

1. Hierarchical Feature Learning: By reducing the spatial dimensions progressively

through the layers, pooling layers allow the network to build a hierarchical

representation of the input data, capturing increasingly abstract and complex

features at deeper layers.

Keras

import tensorflow as tf
from functools import partial  

DefaultConv2D = partial(tf.keras.layers.Conv2D, kernel_size=3, padding="same

model = tf.keras.Sequential([     
  DefaultConv2D(filters=64, kernel_size=7, input_shape=[28, 28, 1]), 
  tf.keras.layers.MaxPool2D(),     

In [18]:



  DefaultConv2D(filters=128),
  DefaultConv2D(filters=128),
  tf.keras.layers.MaxPool2D(),
  DefaultConv2D(filters=256),
  DefaultConv2D(filters=256),
  tf.keras.layers.MaxPool2D(),
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(units=128, activation="relu", kernel_initializer="he
  tf.keras.layers.Dropout(0.5),
  tf.keras.layers.Dense(units=64, activation="relu", kernel_initializer="he_
  tf.keras.layers.Dropout(0.5),
  tf.keras.layers.Dense(units=10, activation="softmax") ])  

model.summary()

Model: "sequential_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━
┃ Layer (type)                    ┃ Output Shape           ┃       Par
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━
│ conv2d_5 (Conv2D)               │ (None, 28, 28, 64)     │         3
├─────────────────────────────────┼────────────────────────┼───────────
│ max_pooling2d_3 (MaxPooling2D)  │ (None, 14, 14, 64)     │          
├─────────────────────────────────┼────────────────────────┼───────────
│ conv2d_6 (Conv2D)               │ (None, 14, 14, 128)    │        73
├─────────────────────────────────┼────────────────────────┼───────────
│ conv2d_7 (Conv2D)               │ (None, 14, 14, 128)    │       147
├─────────────────────────────────┼────────────────────────┼───────────
│ max_pooling2d_4 (MaxPooling2D)  │ (None, 7, 7, 128)      │          
├─────────────────────────────────┼────────────────────────┼───────────
│ conv2d_8 (Conv2D)               │ (None, 7, 7, 256)      │       295
├─────────────────────────────────┼────────────────────────┼───────────
│ conv2d_9 (Conv2D)               │ (None, 7, 7, 256)      │       590
├─────────────────────────────────┼────────────────────────┼───────────
│ max_pooling2d_5 (MaxPooling2D)  │ (None, 3, 3, 256)      │          
├─────────────────────────────────┼────────────────────────┼───────────
│ flatten_1 (Flatten)             │ (None, 2304)           │          
├─────────────────────────────────┼────────────────────────┼───────────
│ dense_3 (Dense)                 │ (None, 128)            │       295
├─────────────────────────────────┼────────────────────────┼───────────
│ dropout_2 (Dropout)             │ (None, 128)            │          
├─────────────────────────────────┼────────────────────────┼───────────
│ dense_4 (Dense)                 │ (None, 64)             │         8
├─────────────────────────────────┼────────────────────────┼───────────
│ dropout_3 (Dropout)             │ (None, 64)             │          
├─────────────────────────────────┼────────────────────────┼───────────
│ dense_5 (Dense)                 │ (None, 10)             │          
└─────────────────────────────────┴────────────────────────┴───────────
 Total params: 1,413,834 (5.39 MB)
 Trainable params: 1,413,834 (5.39 MB)
 Non-trainable params: 0 (0.00 B)

Géron (2022) Chapter 11, test accuracy of 92% on the Fashion-MNIST dataset

The previously discussed model, which comprised fully connected (Dense) layers,

attained a test accuracy of 88%.



We will look at pooling next.

Convolutional Neural Networks

The architecture involves sequentially stacking several convolutional layers, each

followed by a ReLU activation layer, and then a pooling layer. As this process continues,

the spatial dimensions of the image representation decrease. Concurrently, the number

of feature maps increases, as illustrated in our Keras example. At the top of this stack, a

standard feedforward neural network is incorporated.

AlexNet

......

... ...

Krizhevsky, Sutskever, and Hinton (2012)

Attribution: Prince (2023)

AlexNet consists of eight layers with learnable parameters: five convolutional layers

followed by three fully connected layers. The architecture also includes max-pooling

layers, ReLU activation functions, and dropout to improve training performance and

reduce overfitting.

VGG



......

... ...

Simonyan and Zisserman (2015)

Attribution: Prince (2023)

Complementary information can be found here.

Convolutional networks (ConvNets) currently set the state of the art in

visual recognition. The aim of this project is to investigate how the

ConvNet depth affects their accuracy in the large-scale image recognition

setting.

Our main contribution is a rigorous evaluation of networks of increasing

depth, which shows that a significant improvement on the prior-art

configurations can be achieved by increasing the depth to 16-19 weight

layers, which is substantially deeper than what has been used in the prior

art. To reduce the number of parameters in such very deep networks, we

use very small 3×3 filters in all convolutional layers (the convolution stride

is set to 1). Please see our publication for more details.

ConvNets Performance

https://www.robots.ox.ac.uk/~vgg/research/very_deep/


Attribution: Prince (2023)

StatQuest

https://youtu.be/HGwBXDKFk9I

The video presents a straightforward example that differentiates between images of the

letter O and the letter X, utilizing a single filter for this purpose. This approach simplifies

the explanation, making it easy to follow. In practical applications, however, each

convolutional layer typically contains dozens or even hundreds of filters.

Final Word

As you might expect, the number of layers and filters are hyperparameters that are

optimized through the process of hyperparameter tuning.

https://youtu.be/HGwBXDKFk9I


Attribution: @stefaan_cotteni
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Convolutional Layers
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Summary

Hierarchy of Concepts in Deep Learning

Deep learning models represent data through layers of increasing abstraction.

Each layer learns patterns based on the outputs of preceding layers (“patterns

of patterns”).

This hierarchical learning reduces reliance on manual feature engineering.

Deep networks achieve better performance with fewer parameters compared to

shallow networks.

Convolutional Neural Networks (CNNs)

CNNs specialize in processing data with a grid-like topology (e.g., images).

They detect local patterns using convolutional layers with shared weights.

Neurons in convolutional layers connect only within their receptive fields, not

fully connected.

This local connectivity and weight sharing significantly reduce the number of

parameters.

Kernels and Convolution Operations

Kernels (filters) are small matrices that slide over the input data to perform

convolutions.

The convolution operation involves element-wise multiplication and summation.

Kernels can be designed to detect specific features like edges and textures.

Feature maps are generated, highlighting where certain features are detected in

the input.

Receptive Field, Padding, and Stride

Receptive Field: The local region of the input that a neuron is sensitive to.

Padding: Adding zeros around the input to maintain spatial dimensions after

convolution.

Stride: The step size with which the kernel moves over the input data.

https://emojis.sh/emoji/desperate-and-discouraged-emoji-xiBgGFCW51


These parameters control the output size and computation in convolutional

layers.

Filters and Feature Maps

Filters are learned during training and are crucial for feature detection.

All neurons in a feature map share the same filter parameters.

This sharing leads to efficient parameter usage and consistent feature detection

across the input.

Convolutional Layers

Perform convolutions followed by adding a bias term and applying an activation

function (e.g., ReLU).

The activation function introduces non-linearity, allowing the network to learn

complex patterns.

The use of shared weights and biases reduces the total number of parameters.

Pooling Layers

Purpose: Reduce the spatial dimensions of feature maps to control overfitting

and computation.

Types:

Max Pooling: Takes the maximum value within a pooling window.

Average Pooling: Computes the average value within a pooling window.

Benefits:

Dimensionality reduction leads to fewer parameters and faster

computation.

Introduces translation invariance, making the network robust to shifts and

distortions.

Helps in hierarchical feature learning by focusing on prominent features.

Building CNN Architectures

CNNs are built by stacking convolutional and pooling layers.

Spatial dimensions decrease while the number of feature maps increases in

deeper layers.

Often culminates with fully connected layers for classification tasks.

Example architectures can be implemented using frameworks like Keras.

Hyperparameter Tuning

Key hyperparameters include the number of layers, filters, kernel sizes, strides,

and padding.

Proper tuning is essential for achieving optimal model performance.

Overfitting can be controlled using techniques like dropout and regularization.

Future Directions

Feature Attribution:

Techniques like saliency maps and activation maximization help interpret

model decisions.

Essential for applications requiring explainability (e.g., self-driving cars).

Transfer Learning:



Involves using pre-trained models on new tasks to save time and resources.

Particularly useful when labeled data is scarce.

Future Directions

When integrating CNNs into your projects, consider exploring the following topics:

Feature Attribution: Various techniques are available to visualize what the network

has learned. For example, in the context of self-driving cars, it is crucial to ensure

that the network focuses on relevant features, avoiding distractions.

Transfer Learning: This approach enables the reuse of weights from pre-trained

networks, which accelerates the learning process, reduces computational demands,

and facilitates network training even with a limited number of examples.

There are also 1D convolutions, which are often applied in bioinformatics.

Further Reading



Understanding Deep Learning (Prince 2023) is a recently published textbook

focused on the foundational concepts of deep learning.

It begins with fundamental principles and extends to contemporary topics such as

transformers, diffusion models, graph neural networks, autoencoders, adversarial

networks, and reinforcement learning.

The textbook aims to help readers comprehend these concepts without delving

excessively into theoretical details.

It includes sixty-eight Python notebook exercises.

The book follows a “read-first, pay-later” model.

http://udlbook.com/


Resources

A guide to convolution arithmetic for deep learning

Authors: Vincent Dumoulin and Francesco Visin

Last revised: 11 Jan 2018

arXiv:1603.07285

GitHub Repository

Next lecture

We will introduce solution spaces.

References

Géron, Aurélien. 2019. Hands-on Machine Learning with Scikit-Learn, Keras, and

TensorFlow. 2nd ed. O’Reilly Media.

———. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. 3rd

ed. O’Reilly Media, Inc.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Adaptive

Computation and Machine Learning. MIT Press.

https://dblp.org/rec/books/daglib/0040158.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. “ImageNet Classification

with Deep Convolutional Neural Networks.” In Advances in Neural Information Processing

Systems, edited by F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger. Vol. 25.

Curran Associates, Inc.

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a

Paper.pdf.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature 521

(7553): 436–44. https://doi.org/10.1038/nature14539.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-Based Learning Applied

to Document Recognition.” Proceedings of the IEEE 86 (11): 2278–2324.

https://doi.org/10.1109/5.726791.

Prince, Simon J. D. 2023. Understanding Deep Learning. The MIT Press.

http://udlbook.com.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

https://arxiv.org/abs/1603.07285
https://github.com/vdumoulin/conv_arithmetic/
https://dblp.org/rec/books/daglib/0040158
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
http://udlbook.com/
http://aima.cs.berkeley.edu/


Simonyan, Karen, and Andrew Zisserman. 2015. “Very Deep Convolutional Networks for

Large-Scale Image Recognition.” In International Conference on Learning

Representations.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

mailto:Marcel.Turcotte@uOttawa.ca

