
Introduction to Search

CSI 4106

Marcel Turcotte

Version: Nov 7, 2025 09:01

Preamble

Message of the Day

Too much social media gives AI chatbots ‘brain rot’, Nature News, 2025-10-31.

Learning Objectives

Describe the role of search algorithms in AI, crucial for planning, reasoning, and

applications like AlphaGo.

Recall key search concepts: state space, initial/goal states, actions, transition

models, cost functions.

Identify the differences of uninformed search algorithms (BFS and DFS).

Implement BFS and DFS and compare them using the 8-Puzzle problem.

Analyze performance and optimality of various search algorithms.

https://www.nature.com/articles/d41586-025-03542-2

The main objective of this presentation is to justify the role of search methods in artificial

intelligence, as well as to introduce the terminology for upcoming courses. You already

have knowledge of breadth-first and depth-first search algorithms. We will leverage this

expertise to establish the necessary vocabulary for future courses and to demonstrate

the need to develop more “intelligent” algorithms. We will study the following themes.

Uninformed Search

Informed Search

Local Search

Population-Based Metaheuristics

Adversarial Search

Monte Carlo Tree Search

This will provide us with a solid foundation to approach our final segment dedicated to

formal reasoning.

Justification

Justification

Silver et al. (2016)

Justification

We have honed our expertise in machine learning to a point where we possess a robust

understanding of neural networks and deep learning, allowing us to develop simple

models using Keras.

. . .

In recent years, Monte Carlo Tree Search (MCTS) has played a pivotal role in advancing

artificial intelligence research. After initially concentrating on deep learning, we are

now shifting our focus to search.

Justification

The integration of deep learning and MCTS underpins modern applications such as

AlphaGo, AlphaZero, and MuZero.

. . .

Search algorithms are crucial in addressing challenges in planning and reasoning and

are likely to become increasingly significant in future developments.

Search (a biased timeline)

1968 – A*: Heuristic-based search, foundational for pathfinding and planning in AI.

1970s-1980s – Population-Based Algorithms (e.g., Genetic Algorithms):

Stochastic optimization approaches useful for large, complex search spaces.

1980s – Constraint Satisfaction Problems (CSPs): Search in structured spaces

with explicit constraints; a precursor to formal problem-solving systems.

2013 – DQN: Reinforcement learning via search (Q-learning) from raw input (pixels).

2015 – AlphaGo: Game-tree search with Monte Carlo Tree Search (MCTS)

combined with deep learning.

2017 – AlphaZero: Generalized self-play with MCTS in multiple domains.

2019 – MuZero: Search in unknown environments without predefined models.

2020 – Agent57: Generalized search across multiple environments (Atari games).

2020 – AlphaGeometry: Search-based theorem proving in mathematical spaces.

2021 – FunSearch: Potentially another generalization of search techniques.

Search

https://deepmind.google/research/breakthroughs/alphago/
https://deepmind.google/discover/blog/alphazero-shedding-new-light-on-chess-shogi-and-go/
https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/

The computer that mastered Go. Nature Video posted on YouTube on 2016-01-27. (7m

52s)

In 1997, IBM’s Deep Blue defeated the reigning world chess champion, Garry Kasparov.

However, the AI community was not particularly impressed, as the system’s primary

accomplishment lay in its ability to evaluate 200 million chess positions per second.

Following the match, Kasparov remarked that Deep Blue was “as intelligent as your alarm

clock.”

Since then, significant advancements have been made. Unlike Deep Blue, AlphaZero

relies on “more interesting approaches than brute-force search, which are perhaps more

human-like in the way that they deal with the position.” This prompted Kasparov to

express his approval, stating, “I can’t hide my satisfaction that [AlphaZero] plays with a

dynamic style reminiscent of my own!”

AlphaGo - The Movie

https://youtu.be/g-dKXOlsf98
https://youtu.be/g-dKXOlsf98
https://youtu.be/g-dKXOlsf98
https://www.youtube.com/@NatureVideoChannel

Yes, AlphaGo successfully defeated the world champion, Lee Sedol. (1h 30m)

AlphaGo - The Movie | Full award-winning documentary, Google DeepMind, 2020-03-13.

AlphaGo2MuZero

https://youtu.be/WXuK6gekU1Y
https://youtu.be/WXuK6gekU1Y
https://youtu.be/WXuK6gekU1Y

Attribution: MuZero: Mastering Go, chess, shogi and Atari without rules, Google

DeepMind, 2020-12-23. Schrittwieser et al. (2020)

David Silver, a principal research scientist at DeepMind and a professor at University

College London, is one of the leading researchers on these projects. He earned his PhD

at the University of Alberta, where he was supervised by Richard Sutton.

You might also want to watch the following video: AlphaGo Zero: Discovering new

knowledge. Posted on YouTube on 2017-10-18.

Search

Applications

Pathfinding and Navigation: Used in robotics and video games to find a path from

a starting point to a destination.

https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/
https://www.davidsilver.uk/
https://apps.ualberta.ca/directory/person/rsutton
https://youtu.be/WXHFqTvfFSw?si=oXsOtb2uxvU1CyKb
https://youtu.be/WXHFqTvfFSw?si=oXsOtb2uxvU1CyKb

Puzzle Solving: Solving puzzles like the 8-puzzle, mazes, or Sudoku.

Network Analysis: Analyzing networks and graphs, such as finding connectivity or

shortest paths in social networks or transportation maps.

Game Playing: Used to evaluate moves in games like chess or Go, especially when

combined with other strategies.

Applications

Scheduling: Planning and scheduling tasks in manufacturing, project

management, or airline scheduling.

Resource Allocation: Allocating resources in a network or within an organization

where constraints must be satisfied.

Configuration Problems: Solving problems where a set of components must be

assembled to meet specific requirements, such as configuring a computer system or

designing a circuit.

Applications

Decision Making under Uncertainty: Used in real-time strategy games and

simulations where decisions need to be evaluated under uncertain conditions.

Storrytelling: LLMs can effectively generate stories when guided by a valid input

plan from an automated planner. (Simon and Muise 2024)

The applications of search algorithms are both numerous and diverse.

Search has been an active area of research not only because of its wide range of

applications but also due to the potential for improvements in algorithms to significantly

reduce program execution time or facilitate the exploration of larger search spaces.

Outline

1. Deterministic & Heuristic Search: BFS, DFS, A* for pathfinding and optimization in

classical AI.

2. Population-Based Algorithms: Focus on structured problems and stochastic

search.

3. Adversarial Game Algorithms: Minimax, alpha-beta pruning, MCTS for decision-

making in competitive environments.

This lecture and the upcoming ones will thoroughly cover these topics.

Definition

** (Russell and Norvig 2020, 63)**

When the correct action to take is not immediately obvious, an agent may

need to to plan ahead: to consider a sequence of actions that form a

path to a goal state. Such an agent is called a problem-solving agent,

and the computational process it undertakes is called search.

Terminology

An agent is an entity that performs actions. A rational agent is one that acts to achieve

the “best” outcome. Conceptually, an agent perceives its environment through

sensors and interacts with it using actuators.

The definition of an agent in artificial intelligence (AI) shares some similarities with the

psychological definition, but there are key distinctions. In AI, an agent is an

autonomous entity that perceives its environment through sensors and acts upon it

using actuators to achieve specific goals. Both definitions involve perception,

decision-making, and action.

However, while psychological agents are human or biological and involve complex

cognitive and emotional processes, AI agents are computational and operate based on

algorithms designed to maximize certain performance measures or achieve

predefined objectives. The focus in AI is more on the technical implementation of these

processes, whereas in psychology, the emphasis is on understanding the cognitive and

motivational aspects of agency.

The concept of agentic design in software engineering and artificial intelligence has

experienced a resurgence in popularity.

Environment Characteristics

Observability: Partially observable, or fully observable

Agent Composition: Single or multiple agents

Predictability: Deterministic or non-deterministic

State Dependency: Stateless or stateful

Temporal Dynamics: Static or dynamic

State Representation: Discrete or continuous

In this lecture, environments are assumed to be: fully observable, single agent, stateless,

deterministic, static, and discrete.

The characteristics of an environment influence the complexity of problem-solving.

A fully observable environment allows the agent to detect all relevant aspects for

decision-making.

In a deterministic environment, the agent can predict the next state based on the

current state and its subsequent action.

Stateless (Episodic) Environments involve decisions or actions that are

independent of prior actions, with experiences divided into unrelated episodes. An

example is a classification problem.

Stateful (Sequential) Environments require that each action’s outcome can affect

future decisions, as the sequence of actions impacts the state and subsequent

choices. An example is a chess game.

A dynamic environment is characterized by changes in context while the agent is

deliberating.

Chess serves as an example of a discrete environment, with a finite, though large,

number of states. In contrast, an autonomous vehicle operates within a continuous-

state and continuous-time environment.

Problem-Solving Process

Search: The process involves simulating sequences of actions until the agent achieves

its goal. A successful sequence is termed a solution.

A precise formulation facilitates the development of reusable code.

An environment characterized as stateless, single-agent, fully observable, deterministic,

static, and discrete implies that the solution to any problem within this context is a fixed

sequence of actions.

Stateless: Each decision is independent of previous actions, meaning the solution

does not depend on history.

Single Agent: There is no interaction with other agents that could introduce

variability.

Fully Observable: The agent has complete information about the environment,

allowing for precise decision-making.

Deterministic: The outcome of actions is predictable, with no randomness affecting

the result.

Static: The environment does not change over time, so the conditions remain

constant.

Discrete: The environment has a finite number of states and actions, enabling a

clear sequence of steps.

I anticipate that you are already familiar with these concepts, and thus, this initial lecture

primarily serves as a review.

Search Problem Definition

A collection of states, referred to as the state space.

An initial state where the agent begins.

One or more goal states that define successful outcomes.

A set of actions available in a given state .

A transition model that determines the next state based on the current state and

selected action.

An action cost function that specifies the cost of performing action in state to

reach state .

Definitions

A path is defined as a sequence of actions.

A solution is a path that connects the initial state to the goal state.

An optimal solution is the path with the lowest cost among all possible solutions.

We assume that the path cost is the sum of the individual action costs, and all costs are

positive. The state space can be conceptualized as a graph, where the nodes represent

the states and the edges correspond to the actions.

In certain problems, multiple optimal solutions may exist. However, it is typically

sufficient to identify and report a single optimal solution. Providing all optimal solutions

can significantly increase time and space complexity for some problems.

s

a s

s
′

Example: 8-Puzzle

import random
import matplotlib.pyplot as plt
import numpy as np

random.seed(58)

def is_solvable(tiles):
 # Count the inversions in the flattened list of tiles (excluding the bla
 # Assumption: board is square and width is odd.
 inversions = 0
 for i in range(len(tiles)):
 for j in range(i + 1, len(tiles)):
 if tiles[i] != 0 and tiles[j] != 0 and tiles[i] > tiles[j]:
 inversions += 1
 return inversions % 2 == 0

def generate_solvable_board():
 # Generate a random board configuration that is guaranteed to be solvabl
 tiles = list(range(9))
 random.shuffle(tiles)
 while not is_solvable(tiles):
 random.shuffle(tiles)

 return tiles

def plot_board(board, title, num_pos, position):
 ax = plt.subplot(1, num_pos, position)
 ax.set_title(title)
 ax.set_xticks([])
 ax.set_yticks([])

 board = np.array(board).reshape(3, 3).tolist() # Reconfigure the grid to

 # Use a color map to display the numbers
 cmap = plt.cm.plasma
 norm = plt.Normalize(vmin=-1, vmax=8)

 for i in range(3):
 for j in range(3):
 tile_value = board[i][j]
 color = cmap(norm(tile_value))
 ax.add_patch(plt.Rectangle((j, 2 - i), 1, 1, facecolor=color, ed
 if tile_value == 0:
 ax.add_patch(plt.Rectangle((j, 2 - i), 1, 1, facecolor='whit
 else:
 ax.text(j + 0.5, 2 - i + 0.5, str(tile_value),
 fontsize=16, ha='center', va='center', color='black'

 ax.set_xlim(0, 3)
 ax.set_ylim(0, 3)

Example: 8-Puzzle

In [1]:

Generate initial solvable board
initial_board = generate_solvable_board()

Define goal state
goal_board = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 0]
]

Plot both boards
plt.figure(figsize=(8, 4))
plot_board(initial_board, "Initial Board", 2, 1)
plot_board(goal_board, "Goal State", 2, 2)
plt.tight_layout()
plt.show()

8-Puzzle

How can the states be represented?

What constitutes the initial state?

What defines the actions?

What would constitute a path?

What characterizes the goal state?

What would constitute a solution?

What should be the cost of an action?

In [2]:

Each state can be represented as a list containing the numbers 0 to 8. Each number

corresponds to a tile, and its position in the list reflects its location in the grid, with 0

denoting the blank space.

The initial state is a permutation of the numbers 0 to 8.

Actions include left, right, up, and down, which involve sliding an adjacent tile into

the blank space.

A path would be a sequence of actions, say left, left, up.

The transition model maps a given state and action to a new state. Not all actions

are feasible from every state; for instance, if the blank space is at the edge of the

grid, only certain moves are possible, such as down, up, or left.

The goal state is achieved when the list is ordered from 1 to 8, followed by 0,

indicating that the tiles are arranged correctly. How many goal states are there?

A solution would be a valid path transforming an initial state into a goal state.

Each action incurs a cost of 1.

How many possible states are there?

There are 9! = 362,880 states. Brut force is feasible.

How many states are there for the 15-Puzzle?

15! = 1,307,674,368,000 (1.3 trillion)!

Are all the boards solvable?

 In [4]:

Are all the boards solvable?

A board is solvable if it has the same inversion parity as the goal state.

An inversion is a pair of tiles (excluding the blank) that are in the wrong order

relative to each other, when reading the board as a one-dimensional list (left-to-

right, top-to-bottom).

When the goal is the ordered sequence from 1 to 8, there are no inversion, and

therefore parity is even.

See Archer (1999) or Slider Puzzle, Princeton

count_even_odd_parity

from itertools import permutations

def count_even_odd_parity():
 even_count = 0
 odd_count = 0

 for perm in permutations(range(9)): # 0 represents the blank
 inversions = 0
 for i in range(9):
 for j in range(i + 1, 9):
 if perm[i] != 0 and perm[j] != 0 and perm[i] > perm[j]:
 inversions += 1
 if inversions % 2 == 0:
 even_count += 1
 else:
 odd_count += 1

 return even_count, odd_count

even, odd = count_even_odd_parity()

print(f"Even parity: {even}")
print(f"Odd parity: {odd}")

In [5]:

In [6]:

https://www.cs.princeton.edu/courses/archive/spring21/cos226/assignments/8puzzle/specification.php

Even parity: 181440
Odd parity: 181440

Search Tree

A search tree is a conceptual tree structure where nodes represent states in a state

space, and edges represent possible actions, facilitating systematic exploration to find

a path from an initial state to a goal state.

The search algorithms we examine today construct a search tree, where each node

represents a state within the state space and each edge represents an action.

It is important to distinguish between the search tree and the state space, which can be

depicted as a graph. The structure of the search tree varies depending on the algorithm

employed to address the search problem.

Search Tree

An example of a search tree for the 8-Puzzle. The solution here is incomplete.

Search Tree

The root of the search tree represents the initial state of the problem.

Expanding a node involves evaluating all possible actions available from that state.

The result of an action is the new state achieved after applying that action to the

current state.

Similar to other tree structures, each node (except for the root and leaf nodes) has

a parent and may have children.

A distinctive feature of a search algorithm is its method for selecting the next node to

expand.

Frontier

Any state corresponding to a node in the search tree is considered reached. Frontier

nodes are those that have been reached but have not yet been expanded. Above,

there are 10 expanded nodes and 11 frontier nodes, resulting in a total of 21 nodes that

have been reached.

Frontier

In the 8-Puzzle, four actions are possible: slide left, right, up, or down. The search can

be visualized on a grid: purple nodes: expanded states, green nodes: frontier states

(reached but not expanded).

The diagrams correspond to the search tree presented on the previous page. For

example, the initial state can be expanded using three actions: slide left, right, and up.

Node (2, 3) can only be expanded by sliding down, while node (3, 3) can be expanded by

sliding left and down.

Frontier

Uninformed search

Definition

An uninformed search (or blind search) is a search strategy that explores the search

space using only the information available in the problem definition, without any domain-

specific knowledge, evaluating nodes based solely on their inherent properties rather

than estimated costs or heuristics.

State Representation

Plot both boards
initial_state_8 = [6, 4, 5,
 8, 2, 7,
 1, 0, 3]

In [7]:

goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

plt.figure(figsize=(4, 2))
plot_board(initial_state_8, "Initial Board", 2, 1)
plot_board(goal_state_8, "Goal State", 2, 2)
plt.tight_layout()
plt.show()

initial_state_8 = [6, 4, 5,
 8, 2, 7,
 1, 0, 3]

goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

The states are represented as lists of numbers. 0 represents the blank tile.

is_goal

def is_goal(state, goal_state):
 """Determines if a given state matches the goal state."""
 return state == goal_state

Auxilliary method.

expand

def expand(state):
 """Generates successor states by moving the blank tile in all possible d
 size = int(len(state) ** 0.5) # Determine puzzle size (3 for 8-puzzle,
 idx = state.index(0) # Find the index of the blank tile represented by
 x, y = idx % size, idx // size # Convert index to (x, y) coordinates
 neighbors = []

 # Define possible moves: Left, Right, Up, Down
 moves = [(-1, 0), (1, 0), (0, -1), (0, 1)]
 for dx, dy in moves:

In [8]:

In [9]:

In [10]:

 nx, ny = x + dx, y + dy
 # Check if the new position is within the puzzle boundaries
 if 0 <= nx < size and 0 <= ny < size:
 n_idx = ny * size + nx
 new_state = state.copy()
 # Swap the blank tile with the adjacent tile
 new_state[idx], new_state[n_idx] = new_state[n_idx], new_state[i
 neighbors.append(new_state)
 return neighbors

expand

plt.figure(figsize=(8, 2))

solutions = expand(initial_state_8)

plot_board(initial_state_8, "Initial State", 4, 1)

for i, solution in enumerate(solutions):
 plot_board(solution, f"State: {i}", 4, i+2)

plt.tight_layout()
plt.show()

expand(initial_state_8)

[[6, 4, 5, 8, 2, 7, 0, 1, 3],
[6, 4, 5, 8, 2, 7, 1, 3, 0],
[6, 4, 5, 8, 0, 7, 1, 2, 3]]

is_empty

def is_empty(frontier):
 """Checks if the frontier is empty."""
 return len(frontier) == 0

If the frontier becomes empty (no more nodes to be expanded), the problem has no

solution.

Are there 8-Puzzle boards that have no solutions?

In [11]:

In [12]:

In [13]:

The solvability of the 8-puzzle depends on the number of inversions in the initial state.

An inversion is a pair of tiles where a higher-numbered tile precedes a lower-numbered

tile when the puzzle is viewed as a sequence (excluding the blank tile).

If the initial state and the goal state do not have the same inversion parity, then the

board has no solution.

print_solution

def print_solution(solution):
 """Prints the sequence of steps from the initial to the goal state."""
 size = int(len(solution[0]) ** 0.5)
 for step, state in enumerate(solution):
 print(f"Step {step}:")
 for i in range(size):
 row = state[i*size:(i+1)*size]
 print(' '.join(str(n) if n != 0 else ' ' for n in row))
 print()

Cycles

. . .

A path that revisits the same states forms a cycle.

Allowing cycles would render the resulting search tree infinite.

To prevent this, we monitor the states that have been reached, though this incurs a

memory cost.

Breadth-first search

Breadth-first search

from collections import deque

Breadth-first search (BFS) employs a queue to manage the frontier nodes, which are

also known as the open list.

Breadth-first search

def bfs(initial_state, goal_state):

 frontier = deque() # Initialize the queue for BFS

In [14]:

In [15]:

In [16]:

 frontier.append((initial_state, [])) # Each element is a tuple: (state,

 explored = set()
 explored.add(tuple(initial_state))

 iterations = 0 # simply used to compare algorithms

 while not is_empty(frontier):
 current_state, path = frontier.popleft()

 if is_goal(current_state, goal_state):
 print(f"Number of iterations: {iterations}")
 return path + [current_state] # Return the successful path

 iterations = iterations + 1

 for neighbor in expand(current_state):
 neighbor_tuple = tuple(neighbor)
 if neighbor_tuple not in explored:
 explored.add(neighbor_tuple)
 frontier.append((neighbor, path + [current_state]))

 return None # No solution found

Find the shortest path from the initial state to the goal state.

Simple Case

plt.figure(figsize=(8, 2))

initial_state_8 = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

solutions = bfs(initial_state_8, goal_state_8)

for i, solution in enumerate(solutions):
 plot_board(solution, f"Step: {i}", 3, i+1)

plt.tight_layout()
plt.show()

Number of iterations: 12

In [17]:

initial_state_8 = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

bfs(initial_state_8, goal_state_8)

Number of iterations: 12
[[1, 2, 3, 4, 0, 6, 7, 5, 8],
[1, 2, 3, 4, 5, 6, 7, 0, 8],
[1, 2, 3, 4, 5, 6, 7, 8, 0]]

Challenging Case

initial_state_8 = [6, 4, 5,
 8, 2, 7,
 1, 0, 3]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

print("Solving 8-puzzle with BFS...")

solution_8_bfs = bfs(initial_state_8, goal_state_8)

if solution_8_bfs:
 print(f"BFS Solution found in {len(solution_8_bfs) - 1} moves:")
 print_solution(solution_8_bfs)
else:
 print("No solution found for 8-puzzle using BFS.")

In [18]:

In [19]:

Solving 8-puzzle with BFS...
Number of iterations: 145605
BFS Solution found in 25 moves:
Step 0:
6 4 5
8 2 7
1 3

Step 1:
6 4 5
8 2 7
 1 3

Step 2:
6 4 5
 2 7
8 1 3

Step 3:
6 4 5
2 7
8 1 3

Step 4:
6 5
2 4 7
8 1 3

Step 5:
 6 5
2 4 7
8 1 3

Step 6:
2 6 5
 4 7
8 1 3

Step 7:
2 6 5
4 7
8 1 3

Step 8:
2 6 5
4 1 7
8 3

Step 9:
2 6 5
4 1 7
 8 3

Step 10:
2 6 5
 1 7

4 8 3

Step 11:
2 6 5
1 7
4 8 3

Step 12:
2 6 5
1 7
4 8 3

Step 13:
2 6 5
1 7 3
4 8

Step 14:
2 6 5
1 7 3
4 8

Step 15:
2 6 5
1 3
4 7 8

Step 16:
2 5
1 6 3
4 7 8

Step 17:
2 5
1 6 3
4 7 8

Step 18:
2 5 3
1 6
4 7 8

Step 19:
2 5 3
1 6
4 7 8

Step 20:
2 3
1 5 6
4 7 8

Step 21:
 2 3
1 5 6
4 7 8

Step 22:
1 2 3
 5 6
4 7 8

Step 23:
1 2 3
4 5 6
 7 8

Step 24:
1 2 3
4 5 6
7 8

Step 25:
1 2 3
4 5 6
7 8

BFS Search Tree

The search tree above illustrates the first 20 iterations of the breadth-first search (BFS)

for the specified initial goal.

Depth-First Search

Depth-First Search

def dfs(initial_state, goal_state):

 frontier = [(initial_state, [])] # Each element is a tuple: (state, pat

 explored = set()
 explored.add(tuple(initial_state))

In [20]:

 iterations = 0

 while not is_empty(frontier):
 current_state, path = frontier.pop()

 if is_goal(current_state, goal_state):
 print(f"Number of iterations: {iterations}")
 return path + [current_state] # Return the successful path

 iterations = iterations + 1

 for neighbor in expand(current_state):
 neighbor_tuple = tuple(neighbor)
 if neighbor_tuple not in explored:
 explored.add(neighbor_tuple)
 frontier.append((neighbor, path + [current_state]))

 return None # No solution found

What is the behaviour of depth-First Search (dfs)?

Depth-First Search (DFS) consistently expands the deepest node.

When does the deepening process halt?

It ceases when all child nodes correspond to states that have already been visited.

What happens next?

The algorithm backtracks to the most recent frontier node.

If all children of this node also correspond to previously visited states, the algorithm

continues to backtrack further.

DFS Search Tree

DFS Search Tree

Simple Case

plt.figure(figsize=(8, 2))

initial_state_8 = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

solutions = dfs(initial_state_8, goal_state_8)

for i, solution in enumerate(solutions):
 plot_board(solution, f"Step: {i}", 3, i+1)

plt.tight_layout()
plt.show()

Number of iterations: 2

initial_state_8 = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

bfs(initial_state_8, goal_state_8)

Number of iterations: 12
[[1, 2, 3, 4, 0, 6, 7, 5, 8],
[1, 2, 3, 4, 5, 6, 7, 0, 8],
[1, 2, 3, 4, 5, 6, 7, 8, 0]]

Challenging Case

initial_state_8 = [6, 4, 5,
 8, 2, 7,
 1, 0, 3]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

print("Solving 8-puzzle with DFS...")

solution_8_bfs = dfs(initial_state_8, goal_state_8)

In [21]:

In [22]:

In [23]:

if solution_8_bfs:
 print(f"DFS Solution found in {len(solution_8_bfs) - 1} moves:")
 # print_solution(solution_8_bfs)
else:
 print("No solution found for 8-puzzle using DFS.")

Solving 8-puzzle with DFS...
Number of iterations: 1187
DFS Solution found in 1157 moves:

Remarks

Breadth-first search (BFS) identifies the optimal solution, 25 moves, in 145,605

iterations.

Depth-first search (DFS) discovers a solution involving 1,157 moves in 1,187

iterations.

How can solutions be discovered more efficiently?

Will Depth-First Search (DFS) invariably yield sub-optimal solutions?

No, if the optimal solution lies along the path traversed by depth-first search (DFS)

within the search tree, then DFS will indeed identify the optimal solution.

Is it possible for DFS to discover solutions superior to the optimal solution?

Certainly not; such solutions would either be invalid (involving impossible moves) or

indicate an error in your estimation.

Does this imply that depth-first search (DFS) has no practical applications?

When is it appropriate to use DFS?

Breadth-first search (BFS) expands its frontier systematically in all directions, leading to

rapid growth in memory requirements.

In contrast, the memory usage of DFS is constrained by the number of moves needed to

reach its backtracking points or the path length of the first solution found. In all

scenarios, DFS continues expanding the frontier in one direction.

In certain applications where all possible solutions must be explored, the entire search

space must be traversed. Using BFS in these cases would be prohibitively expensive in

terms of memory. However, DFS can explore the entire space with minimal memory

usage.

The programming language Prolog includes a built-in backtracking algorithm that

enumerates all possible solutions. Backtracking is a memory-efficient variant of DFS.

Depth-limited and iterative deepening search would be alternative uninformed search

algorithms.

Finding solutions more efficiently requires domain knowledge.

Prologue

Summary

Justification for Studying Search

Key Terminology and Concepts

Uninformed Search Algorithms

Breadth-First Search (BFS)

Depth-First Search (DFS)

Implementations

Justification for Studying Search:

Emphasized the shift from solely focusing on machine learning to incorporating

search algorithms.

Highlighted the role of search in advanced AI systems like AlphaGo, AlphaZero,

and MuZero.

Noted that search algorithms are crucial for planning, reasoning, and will be

increasingly significant.

Historical Timeline of Search Algorithms:

Presented a biased timeline from 1968’s A* algorithm to recent developments

like MuZero and Agent57.

Showed the evolution from heuristic-based search to integrating deep learning

with search methods.

Applications of Search:

Pathfinding and Navigation: Finding optimal paths in robotics and games.

Puzzle Solving: Solving problems like the 8-puzzle and Sudoku.

Network Analysis: Analyzing connectivity and shortest paths in networks.

Game Playing: Evaluating moves in games like chess or Go.

Scheduling and Resource Allocation: Planning tasks and allocating resources

efficiently.

Configuration Problems: Assembling components to meet specific

requirements.

Decision Making under Uncertainty: Making decisions in dynamic and

uncertain environments.

Storytelling: Guiding language models with plans from automated planners.

Key Terminology and Concepts:

Agent: An entity that performs actions to achieve goals.

Environment Characteristics: Fully observable, single-agent, deterministic,

static, and discrete environments were focused on.

Search Problem Definition:

State Space: All possible states.

Initial State: Where the agent starts.

Goal State(s): Desired outcome(s).

Actions: Possible moves from a state.

Transition Model: Rules determining state changes.

Action Cost Function: Cost associated with actions.

Uninformed Search Algorithms:

Breadth-First Search (BFS):

Explores the search space level by level.

Guarantees the shortest path but can be memory-intensive.

Implemented using a queue.

Depth-First Search (DFS):

Explores as deep as possible along each branch before backtracking.

Less memory usage but may not find the shortest path.

Implemented using a stack.

Implementing Uninformed Search:

Used the 8-Puzzle as an example problem.

Represented states as lists of numbers, with 0 as the blank tile.

Demonstrated BFS and DFS implementations in Python.

Showed that BFS found the optimal solution in more iterations, while DFS found

a suboptimal solution faster.

Limitations of Uninformed Search:

Inefficient for large or complex problems due to exhaustive nature.

Lack of domain knowledge leads to unnecessary exploration.

Next lecture

We will further explore heuristic functions and examine additional search algorithms.

References

Archer, Aaron F. 1999. “A Modern Treatment of the 15 Puzzle.” The American

Mathematical Monthly 106 (9): 793–99.

https://doi.org/10.1080/00029890.1999.12005124.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent

Sifre, Simon Schmitt, Arthur Guez, et al. 2020. “Mastering Atari, Go, chess and shogi by

planning with a learned model.” Nature 588 (7839): 604–9.

https://doi.org/10.1038/s41586-020-03051-4.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den

Driessche, Julian Schrittwieser, et al. 2016. “Mastering the game of Go with deep neural

networks and tree search.” Nature 529 (7587): 484–89.

https://doi.org/10.1038/nature16961.

Simon, Nisha, and Christian Muise. 2024. “Want To Choose Your Own Adventure? Then

First Make a Plan.” Proceedings of the Canadian Conference on Artificial Intelligence.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

https://doi.org/10.1080/00029890.1999.12005124
http://aima.cs.berkeley.edu/
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/nature16961
mailto:Marcel.Turcotte@uOttawa.ca

