
Heuristic Search

CSI 4106 Introduction to Artificial Intelligence

Marcel Turcotte

Version: Nov 7, 2025 09:04

Preamble

Message of the Day

7 U of T community members named in Observer A.I. Power Index, 2025-10-08.

Learning Objectives

Comprehend informed search strategies and heuristic functions’ role in search

efficiency.

Implement and compare BFS, DFS, and Best-First Search using the 8-Puzzle

problem.

Analyze performance and optimality of various search algorithms.

https://www.utoronto.ca/celebrates/7-u-t-community-members-named-observer-ai-power-index

Summary

Search Problem Definition

A collection of states, referred to as the state space.

An initial state where the agent begins.

One or more goal states that define successful outcomes.

A set of actions available in a given state .

A transition model that determines the next state based on the current state and

selected action.

An action cost function that specifies the cost of performing action in state to

reach state .

Definitions

A path is defined as a sequence of actions.

A solution is a path that connects the initial state to the goal state.

An optimal solution is the path with the lowest cost among all possible solutions.

We assume that the path cost is the sum of the individual action costs, and all costs are

positive. The state space can be conceptualized as a graph, where the nodes represent

the states and the edges correspond to the actions.

In certain problems, multiple optimal solutions may exist. However, it is typically

sufficient to identify and report a single optimal solution. Providing all optimal solutions

can significantly increase time and space complexity for some problems.

Example: 8-Puzzle

import random
import matplotlib.pyplot as plt
import numpy as np

random.seed(58)

def is_solvable(tiles):
 # Compter les inversions dans la liste à plat des tuiles (en excluant l'
 inversions = 0
 for i in range(len(tiles)):
 for j in range(i + 1, len(tiles)):
 if tiles[i] != 0 and tiles[j] != 0 and tiles[i] > tiles[j]:

s

a s

s′

In [2]:

 inversions += 1
 return inversions % 2 == 0

def generate_solvable_board():
 # Générer une configuration de plateau aléatoire qui est garantie d'être
 tiles = list(range(9))
 random.shuffle(tiles)
 while not is_solvable(tiles):
 random.shuffle(tiles)

 return tiles

def plot_board(board, title, num_pos, position):
 ax = plt.subplot(1, num_pos, position)
 ax.set_title(title)
 ax.set_xticks([])
 ax.set_yticks([])

 board = np.array(board).reshape(3, 3).tolist() # Reconfigurer en une gri

 # Utiliser une carte de couleurs pour afficher les numéros
 cmap = plt.cm.plasma
 norm = plt.Normalize(vmin=-1, vmax=8)

 for i in range(3):
 for j in range(3):
 tile_value = board[i][j]
 color = cmap(norm(tile_value))
 ax.add_patch(plt.Rectangle((j, 2 - i), 1, 1, facecolor=color, ed
 if tile_value == 0:
 ax.add_patch(plt.Rectangle((j, 2 - i), 1, 1, facecolor='whit
 else:
 ax.text(j + 0.5, 2 - i + 0.5, str(tile_value),
 fontsize=16, ha='center', va='center', color='black'

 ax.set_xlim(0, 3)
 ax.set_ylim(0, 3)

Example: 8-Puzzle

def main():
 # Generate initial solvable board
 initial_board = generate_solvable_board()

 # Define goal state
 goal_board = [
 [1, 2, 3],
 [4, 5, 6],
 [7, 8, 0]
]

 # Plot both boards
 plt.figure(figsize=(8, 4))
 plot_board(initial_board, "Initial Board", 2, 1)

In [3]:

 plot_board(goal_board, "Goal State", 2, 2)
 plt.tight_layout()
 plt.show()

main()

Search Tree

A search tree is a conceptual tree structure where nodes represent states in a state

space, and edges represent possible actions, facilitating systematic exploration to find

a path from an initial state to a goal state.

The search algorithms we examine today construct a search tree, where each node

represents a state within the state space and each edge represents an action.

It is important to distinguish between the search tree and the state space, which can be

depicted as a graph. The structure of the search tree varies depending on the algorithm

employed to address the search problem.

Search Tree

An example of a search tree for the 8-Puzzle. The solution here is incomplete.

Frontier

Any state corresponding to a node in the search tree is considered reached. Frontier

nodes are those that have been reached but have not yet been expanded. Above,

there are 10 expanded nodes and 11 frontier nodes, resulting in a total of 21 nodes that

have been reached.

If no solution exists, the algorithm stops when the frontier becomes empty.

The frontier always contains at least one node that might lead to the goal.

In the context of the 8-puzzle, the generated board admits a solution. From this board,

we generate all possible neighbours.

Each time a node is removed from the frontier, we generate all its neighbours. This

operation applies to all nodes, including those located on an optimal path.

Frontier

n

In the 8-Puzzle, four actions are possible: slide left, right, up, or down. The search can

be visualized on a grid: purple nodes: expanded states, green nodes: frontier states

(reached but not expanded).

The diagrams correspond to the search tree presented on the previous page. For

example, the initial state can be expanded using three actions: slide left, right, and up.

Node (2, 3) can only be expanded by sliding down, while node (3, 3) can be expanded by

sliding left and down.

Frontier

is_empty

def is_empty(frontier):
 """Checks if the frontier is empty."""
 return len(frontier) == 0

is_goal

def is_goal(state, goal_state):
 """Determines if a given state matches the goal state."""
 return state == goal_state

Auxilliary method.

expand

In [4]:

In [5]:

def expand(state):
 """Generates successor states by moving the blank tile in all possible d
 size = int(len(state) ** 0.5) # Determine puzzle size (3 for 8-puzzle,
 idx = state.index(0) # Find the index of the blank tile represented by
 x, y = idx % size, idx // size # Convert index to (x, y) coordinates
 neighbors = []

 # Define possible moves: Left, Right, Up, Down
 moves = [(-1, 0), (1, 0), (0, -1), (0, 1)]
 for dx, dy in moves:
 nx, ny = x + dx, y + dy
 # Check if the new position is within the puzzle boundaries
 if 0 <= nx < size and 0 <= ny < size:
 n_idx = ny * size + nx
 new_state = state.copy()
 # Swap the blank tile with the adjacent tile
 new_state[idx], new_state[n_idx] = new_state[n_idx], new_state[i
 neighbors.append(new_state)
 return neighbors

print_solution

def print_solution(solution):
 """Prints the sequence of steps from the initial to the goal state."""
 size = int(len(solution[0]) ** 0.5)
 for step, state in enumerate(solution):
 print(f"Step {step}:")
 for i in range(size):
 row = state[i*size:(i+1)*size]
 print(' '.join(str(n) if n != 0 else ' ' for n in row))
 print()

Breadth-first search

from collections import deque

Breadth-first search (BFS) employs a queue to manage the frontier nodes, which are

also known as the open list.

Breadth-first search

def bfs(initial_state, goal_state):

 frontier = deque() # Initialize the queue for BFS
 frontier.append((initial_state, [])) # Each element is a tuple: (state,

 explored = set()
 explored.add(tuple(initial_state))

In [6]:

In [7]:

In [8]:

In [9]:

 iterations = 0 # simply used to compare algorithms

 while not is_empty(frontier):
 current_state, path = frontier.popleft()

 if is_goal(current_state, goal_state):
 print(f"Number of iterations: {iterations}")
 return path + [current_state] # Return the successful path

 iterations = iterations + 1

 for neighbor in expand(current_state):
 neighbor_tuple = tuple(neighbor)
 if neighbor_tuple not in explored:
 explored.add(neighbor_tuple)
 frontier.append((neighbor, path + [current_state]))

 return None # No solution found

Using tuple makes states immutable and hashable, enabling storage in a set.

Depth-First Search

def dfs(initial_state, goal_state):

 frontier = [(initial_state, [])] # Each element is a tuple: (state, pat

 explored = set()
 explored.add(tuple(initial_state))

 iterations = 0

 while not is_empty(frontier):
 current_state, path = frontier.pop()

 if is_goal(current_state, goal_state):
 print(f"Number of iterations: {iterations}")
 return path + [current_state] # Return the successful path

 iterations = iterations + 1

 for neighbor in expand(current_state):
 neighbor_tuple = tuple(neighbor)
 if neighbor_tuple not in explored:
 explored.add(neighbor_tuple)
 frontier.append((neighbor, path + [current_state]))

 return None # No solution found

Remarks

In [10]:

Breadth-first search (BFS) identifies the optimal solution, 25 moves, in 145,605

iterations.

Depth-first search (DFS) discovers a solution involving 1,157 moves in 1,187

iterations.

How can solutions be discovered more efficiently?

Will Depth-First Search (DFS) invariably yield sub-optimal solutions?

No, if the optimal solution lies along the path traversed by depth-first search (DFS)

within the search tree, then DFS will indeed identify the optimal solution.

Is it possible for DFS to discover solutions superior to the optimal solution?

Certainly not; such solutions would either be invalid (involving impossible moves) or

indicate an error in your estimation.

Does this imply that depth-first search (DFS) has no practical applications?

When is it appropriate to use DFS?

Breadth-first search (BFS) expands its frontier systematically in all directions, leading to

rapid growth in memory requirements.

In contrast, the memory usage of DFS is constrained by the number of moves needed to

reach its backtracking points or the path length of the first solution found. In all

scenarios, DFS continues expanding the frontier in one direction.

In certain applications where all possible solutions must be explored, the entire search

space must be traversed. Using BFS in these cases would be prohibitively expensive in

terms of memory. However, DFS can explore the entire space with minimal memory

usage.

The programming language Prolog includes a built-in backtracking algorithm that

enumerates all possible solutions. Backtracking is a memory-efficient variant of DFS.

Depth-limited and iterative deepening search would be alternative uninformed search

algorithms.

Finding solutions more efficiently requires domain knowledge.

Informed Search

Heuristic Search

Informed search algorithms utilize domain-specific knowledge regarding the goal

state’s location.

Heuristic Search

Let be a heuristic function that estimates the cost of the cheapest path from the

current state or node to the goal.

This approach is termed best-first search.

Heuristic Search

In route-finding problems, one might employ the straight-line distance from the

current location to the destination as a heuristic.

. . .

Although an actual path may not exist along that straight line, the algorithm will

prioritize expanding the node closest to the destination (goal) based on this straight-line

measurement.

Book Example

Source: (Russell and Norvig 2020, fig. 3.1)

Problem: Determine the shortest route between Arad (initial state) and Bucharest (goal

state).

f(n)

n

Book Example

Source: (Russell and Norvig 2020, fig. 3.16)

We have data on the direct (straight-line, as-the-crow-flies) Euclidean distances

between each city and Bucharest.

Book Example

Source: (Russell and Norvig 2020, fig. 3.18)

The initial state is Arad, with a heuristic value of 366. Since no path has been traversed

yet, the total estimated cost for this state is the sum of the traveled cost, which is 0, and

the direct Euclidean distance to Bucharest, which is .

Book Example

Source: (Russell and Norvig 2020, fig. 3.18)

From Arad, three cities can be reached directly: Sibiu, Timisoara, and Zerind. For each of

these destinations, we evaluate the heuristic value by adding the distance traveled so far

and the direct Euclidean distance to the final destination.

366

Sibiu has the lowest heuristic value and will thus be removed from the frontier.

Book Example

Source: (Russell and Norvig 2020, fig. 3.18)

From Sibiu, four cities can be reached directly: Arad, Fagaras, Oradea, and Rimnicu

Vilcea. For each of these destinations, we evaluate the heuristic value by adding the

distance traveled so far and the direct Euclidean distance to the final destination.

In this example, the authors chose not to detect cycles, so Arad is added to the frontier.

Which city will be removed from the frontier next?

Rimnicu Vilcea has the lowest heuristic value and will thus be removed from the frontier.

Book Example

Source: (Russell and Norvig 2020, fig. 3.18)

From Rimnicu Vilcea, three cities are directly accessible: Craiova, Pitesti, and Sibiu. To

evaluate the potential of each destination, we calculate a heuristic value by adding the

distance already traveled and the direct Euclidean distance to the final destination.

It is important to note that Sibiu is reintroduced into the frontier. Its current heuristic

value is 553, resulting from the sum of the path traveled (300) and the direct Euclidean

distance to Bucharest (253). When first introduced to the frontier, the path traveled was

140, yielding a heuristic value of 393. Although Sibiu presents a better potential than

alternative routes like Arad to Sibiu then to Arad, or Arad to Sibiu then to Oradea, it is not

a good option compared to other possibilities.

Which city will be removed from the frontier next?

The next city to be removed from the frontier will be Fagaras, as it has the lowest

heuristic value.

Book Example

Source: (Russell and Norvig 2020, fig. 3.18)

From Fagaras, two cities can be reached directly: Sibiu and Bucharest. For each of these

destinations, we evaluate the heuristic value by adding the distance traveled so far and

the direct Euclidean distance to the final destination.

Although Bucharest is the final goal, the algorithm does not stop immediately. After

calculating the heuristic values, this path may not be the most promising. The heuristic

value associated with Bucharest is 450, which corresponds only to the distance already

traveled, since it is also the final destination. The direct Euclidean distance from the last

node of the current path to the destination serves as an estimate. Although this estimate

is initially imprecise, it becomes more accurate as we approach the destination.

A crucial aspect of the algorithm is that it does not terminate upon reaching the

goal state; instead, it continues until the goal state is removed from the frontier.

This indicates that no alternative path remains that appears more promising.

The nodes Pitesti, Timisoara, and Zerind, in this order, present more favorable options

than Bucharest. Pitesti, having the lowest heuristic value, will therefore be selected to be

removed from the frontier.

Book Example

Source: (Russell and Norvig 2020, fig. 3.18)

From Pitesti, three cities can be reached directly: Bucharest, Craiova, and Rimnicu

Vilcea. For each of these destinations, we evaluate the heuristic value by adding the

distance traveled so far and the direct Euclidean distance to the final destination.

The next city to be removed from the frontier will be Bucharest, as it has the lowest

heuristic value. It is also the goal state, thus stopping the process. Arad, Sibiu, Rimnicu

Vilcea, Pitesti, Bucharest is the returned solution.

Is this solution optimal in cost?

Implementation

How can the existing breadth-first and depth-first search algorithms be modified

to implement best-first search?

This can be achieved by employing a priority queue, which is sorted according

to the values of the heuristic function .

. . .

import heapq

Remark

Breadth-first search can be interpreted as a form of best-first search, where the

heuristic function is defined as the depth of the node within the search tree,

corresponding to the path length.

Is this solution viable? The answer is nuanced. It is useful for examining the properties of

the algorithm, but using a queue will likely provide a more efficient implementation.

Can you think of a way to implement depth-first-search as a best-first-search?

h(n)

In [11]:

f(n)

A-star

 (a-star) is the most common informed search.

where

 is the path cost from the initial state to .

 is an estimate of the cost of the shortest path from to the goal state.

Hart, Nilsson, and Raphael (1968)

It is clear that is a known value and not an estimate. Consequently, the accuracy of

 improves as the execution progresses.

Admissibility

A heuristic is admissible if it never overestimates the true cost to reach the goal from

any node in the search space.

. . .

This ensures that the algorithm finds an optimal solution, as it guarantees that the

estimated cost is always a lower bound on the actual cost.

What would happen if a heuristic were to overestimate the cost of the shortest path

from to the goal?

If a heuristic were to overestimate the cost of the shortest path from to the goal, then

 might ignore or delay expanding nodes that actually lie on the optimal path, because

their values look artificially expensive. The algorithm may still find a solution, but not

necessarily the shortest one!

Admissibility

Formally, a heuristic is admissible if:

where:

 is the heuristic estimate of the cost from node to the goal.

 is the actual cost of the optimal path from node to the goal.

Cost Optimality

A⋆

f(n) = g(n) + h(n)

g(n) n

h(n) n

g(n)

f(n)

A⋆

n

n

A⋆

f

h(n)

h(n) ≤ h⋆(n)

h(n) n

h⋆(n) n

Cost optimality refers to an algorithm’s ability to find the least-cost solution among all

possible solutions.

. . .

In the context of search algorithms like , cost optimality means that the algorithm will

identify the path with the lowest total cost from the start to the goal, assuming an

admissible heuristic is used.

Theorem

Let be admissible, i.e., for all nodes , where is the true

cost from to a goal.

. . .

Assume non-negative action costs and that terminates when a goal is selected for

expansion (i.e., removed from the frontier).

. . .

Then returns an optimal solution.

See also: Berkeley, CS 188, Fall 2022 — Lecture Note 02: “Informed Search”,

September 2, 2022.

Proof

1. Assume for contradiction

Suppose returns a suboptimal goal with cost , where is the optimal

solution cost.

When halts, has just been selected from the frontier with .

Proof

1. Lower bound along any optimal path

Consider any node on an optimal path to an optimal goal (cost).

By admissibility,

Thus every node on an optimal path has .

A⋆

h 0 ≤ h(n) ≤ h⋆(n) n h⋆(n)

n

A⋆

A⋆

A⋆ G C > C ⋆ C ∗

A⋆ G f(G) = g(G) = C

n G⋆ C ⋆

f(n) = g(n) + h(n) ≤ g(n) + h⋆(n) = C ⋆

f(n) ≤ C ⋆

https://inst.eecs.berkeley.edu/~cs188/fa22/assets/notes/cs188-fa22-note02.pdf
https://inst.eecs.berkeley.edu/~cs188/fa22/assets/notes/cs188-fa22-note02.pdf

Proof

1. The first-unexpanded node is in frontier

When is chosen, walk from the start along an optimal path to until you reach the

first node that has not yet been expanded.

. . .

Its parent on that path has been expanded (by definition of “first”), so has been

generated and is therefore in frontier.

. . .

From Step 2, . Since , ’s best-first rule should choose

(or another node with) before , a contradiction.

Proof

1. Conclude optimality

The contradiction shows cannot return a goal with cost ; hence the returned

solution is optimal.

Q.E.D.

8-Puzzle

Can you think of a heuristic function, , for the 8-Puzzle?

Number of Inversions Distance

Can the number of inversions be used as a heuristic function, , for the 8-Puzzle?

. . .

Define the initial state
initial_board = [
 [1, 2, 3],
 [4, 5, 0],
 [7, 8, 6]
]

Define goal state
goal_board = [
 [1, 2, 3],

G G⋆

n

n

f(n) ≤ C ⋆ C ⋆ < C = f(G) A⋆ n

f ≤ C ⋆ G

A⋆ > C ⋆

h(n)

h(n)

In [12]:

 [4, 5, 6],
 [7, 8, 0]
]

Plot both boards
plt.figure(figsize=(6, 3))
plot_board(initial_board, "Initial Board", 2, 1)
plot_board(goal_board, "Goal State", 2, 2)
plt.tight_layout()
plt.show()

Calculate and .

What do you conclude?

Intuitively, counting the number of inversions in the 8-Puzzle seems like it could serve as

a heuristic — configurations with many inversions appear farther from the goal, which

has none. However, since each move changes the inversion count by 0 or 2, it fails to

provide a consistent or admissible measure of progress toward the goal.

For the initial board configuration, the heuristic function has a value of 2, while the

optimal cost, denoted , is 1. Hence, . As the inversion count

can overestimate the true cost, it cannot be considered an admissible heuristic. This is

because a single move can alter the relative order of the moved tile with respect to

multiple other tiles, potentially decreasing the inversion count by more than 1 per move.

Consequently, the inversion count fails to provide a valid lower bound on the number of

actions required.

Be careful when constructing examples to reason about the problem. For instance, it

may seem that the permutation “1, 2, 3, 4, 5, 6, 0, 8, 7” is only one move away from the

goal, since it contains just one inversion. However, recall that the parity of the inversion

count is invariant — each move changes it by 0 or 2. Because this configuration has an

odd number of inversions, no sequence of actions can transform it into the goal state

(the identity permutation).

h(s) h⋆(s)

h(s)

h⋆(s) h(s) = 2 > h⋆(s) = 1

Misplaced Tiles Distance

def misplaced_tiles_distance(state, goal_state):

 # Count the number of misplaced tiles

 misplaced_tiles = sum(1 for s, g in zip(state, goal_state) if s != g and

 return misplaced_tiles

Is this heuristic admissible?

Consider any single legal move. It slides exactly one tile into the blank. That move can fix

at most one tile that was previously misplaced; all other tiles keep their “misplaced

vs. placed” status.

Therefore, along any solution path that uses moves, the number of misplaced tiles can

drop by at most . If the start has misplaced tiles, any solution must have length at

least steps.

Hence , i.e. the heuristic is admissible.

8-Puzzle

plt.figure(figsize=(8, 2))

initial_state_8a = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]

initial_state_8b = [6, 4, 5,
 8, 2, 7,
 1, 0, 3]

goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

distance_a = misplaced_tiles_distance(initial_state_8a, goal_state_8)

distance_b = misplaced_tiles_distance(initial_state_8b, goal_state_8)

plot_board(initial_state_8a, f"h(n) = {distance_a}", 3, 1)

plot_board(goal_state_8, "Goal State", 3, 2)

plot_board(initial_state_8b, f"h(n) = {distance_b}", 3, 3)

plt.tight_layout()
plt.show()

In [13]:

k

k h(x)

h(s)

h(s) ≤ h⋆(s)

In [14]:

Best-First Search

def best_first_search(initial_state, goal_state):

 frontier = [] # Initialize the priority queue
 initial_h = misplaced_tiles_distance(initial_state, goal_state)
 # Push the initial state with its heuristic value onto the queue
 # (f(n), g(n), state, path)
 heapq.heappush(frontier, (initial_h, 0, initial_state, []))

 explored = set()
 explored.add(tuple(initial_state))

 iterations = 0

 while not is_empty(frontier):
 f, g, current_state, path = heapq.heappop(frontier)

 if is_goal(current_state, goal_state):
 print(f"Number of iterations: {iterations}")
 return path + [current_state] # Return the successful path

 iterations = iterations + 1

 for neighbor in expand(current_state):
 if tuple(neighbor) not in explored:
 new_g = g + 1 # Increment the path cost
 h = misplaced_tiles_distance(neighbor, goal_state)
 new_f = new_g + h # Calculate the new total cost
 # Push the neighbor state onto the priority queue
 heapq.heappush(frontier, (new_f, new_g, neighbor, path + [cu
 explored.add(tuple(neighbor)) # Mark neighbor as explored

 return None # No solution found

Simple Case

plt.figure(figsize=(8, 2))

initial_state_8 = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]
goal_state_8 = [1, 2, 3,

In [15]:

In [16]:

 4, 5, 6,
 7, 8, 0]

solutions = best_first_search(initial_state_8, goal_state_8)

for i, solution in enumerate(solutions):
 plot_board(solution, f"Step: {i}", 3, i+1)

plt.tight_layout()
plt.show()

Number of iterations: 2

initial_state_8 = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

best_first_search(initial_state_8, goal_state_8)

Number of iterations: 2
[[1, 2, 3, 4, 0, 6, 7, 5, 8],
[1, 2, 3, 4, 5, 6, 7, 0, 8],
[1, 2, 3, 4, 5, 6, 7, 8, 0]]

Challenging Case

initial_state_8 = [6, 4, 5,
 8, 2, 7,
 1, 0, 3]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

print("Solving 8-puzzle with best_first_search...")

solution_8_bfs = best_first_search(initial_state_8, goal_state_8)

if solution_8_bfs:
 print(f"Best_first_search Solution found in {len(solution_8_bfs) - 1} mo
 print_solution(solution_8_bfs)
else:
 print("No solution found for 8-puzzle using best_first_search.")

In [17]:

In [18]:

Solving 8-puzzle with best_first_search...
Number of iterations: 29005
Best_first_search Solution found in 25 moves:
Step 0:
6 4 5
8 2 7
1 3

Step 1:
6 4 5
8 2 7
 1 3

Step 2:
6 4 5
 2 7
8 1 3

Step 3:
6 4 5
2 7
8 1 3

Step 4:
6 5
2 4 7
8 1 3

Step 5:
 6 5
2 4 7
8 1 3

Step 6:
2 6 5
 4 7
8 1 3

Step 7:
2 6 5
4 7
8 1 3

Step 8:
2 6 5
4 1 7
8 3

Step 9:
2 6 5
4 1 7
 8 3

Step 10:
2 6 5
 1 7

4 8 3

Step 11:
2 6 5
1 7
4 8 3

Step 12:
2 6 5
1 7
4 8 3

Step 13:
2 6 5
1 7 3
4 8

Step 14:
2 6 5
1 7 3
4 8

Step 15:
2 6 5
1 3
4 7 8

Step 16:
2 5
1 6 3
4 7 8

Step 17:
2 5
1 6 3
4 7 8

Step 18:
2 5 3
1 6
4 7 8

Step 19:
2 5 3
1 6
4 7 8

Step 20:
2 3
1 5 6
4 7 8

Step 21:
 2 3
1 5 6
4 7 8

Step 22:
1 2 3
 5 6
4 7 8

Step 23:
1 2 3
4 5 6
 7 8

Step 24:
1 2 3
4 5 6
7 8

Step 25:
1 2 3
4 5 6
7 8

8-Puzzle

def manhattan_distance(state, goal_state):
 distance = 0
 size = int(len(state) ** 0.5)
 for num in range(1, len(state)):
 idx1 = state.index(num)
 idx2 = goal_state.index(num)
 x1, y1 = idx1 % size, idx1 // size
 x2, y2 = idx2 % size, idx2 // size
 distance += abs(x1 - x2) + abs(y1 - y2)
 return distance

Calculates the Manhattan distance heuristic for a given state. Is this heuristic

admissible?

Consider a relaxed version of the 8-puzzle in which a tile may move to any adjacent

square (up/down/left/right) without needing the blank. In that relaxed puzzle, the exact

number of moves needed from a state is precisely the total Manhattan distance (each

move reduces one tile’s distance by 1 and you can always move the needed tile directly).

The optimal cost of any relaxed problem is a lower bound on the optimal cost of the

original problem, therefore the Manathan distance is admissible for the real 8-puzzle.

8-Puzzle

In [19]:

hManathan(s) = ∑
t∈{1,…,8}

(|xt − x⋆
t | + |yt − y⋆

t |)

plt.figure(figsize=(8, 2))

initial_state_8a = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]

initial_state_8b = [6, 4, 5,
 8, 2, 7,
 1, 0, 3]

goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

distance_a = manhattan_distance(initial_state_8a, goal_state_8)

distance_b = manhattan_distance(initial_state_8b, goal_state_8)

plot_board(initial_state_8a, f"h(n) = {distance_a}", 3, 1)

plot_board(goal_state_8, "Goal State", 3, 2)

plot_board(initial_state_8b, f"h(n) = {distance_b}", 3, 3)

plt.tight_layout()
plt.show()

8-Puzzle

Compare Manhattan vs. Misplaced Tiles heuristics.

Which is more effective?

Significant run time differences?

8-Puzzle

plt.figure(figsize=(8, 2))

initial_state_8a = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]

initial_state_8b = [6, 4, 5,

In [20]:

In [21]:

 8, 2, 7,
 1, 0, 3]

goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

distance_a_mis = misplaced_tiles_distance(initial_state_8a, goal_state_8)
distance_b_mis = misplaced_tiles_distance(initial_state_8b, goal_state_8)

distance_a_man = manhattan_distance(initial_state_8a, goal_state_8)
distance_b_man = manhattan_distance(initial_state_8b, goal_state_8)

plot_board(initial_state_8a, f"a = {distance_a_mis}, b = {distance_a_man}",

plot_board(goal_state_8, "Goal State", 3, 2)

plot_board(initial_state_8b, f"a = {distance_b_mis}, b = {distance_b_man}",

plt.tight_layout()
plt.show()

where

a = misplaced tiles distance

b = Manathan distance

8-Puzzle

plt.figure(figsize=(8, 2))

initial_state_8a = [3, 1, 2,
 4, 5, 6,
 7, 8, 0]

initial_state_8b = [8, 2, 3,
 4, 5, 6,
 1, 0, 7]

goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

distance_a_mis = misplaced_tiles_distance(initial_state_8a, goal_state_8)
distance_b_mis = misplaced_tiles_distance(initial_state_8b, goal_state_8)

In [22]:

distance_a_man = manhattan_distance(initial_state_8a, goal_state_8)
distance_b_man = manhattan_distance(initial_state_8b, goal_state_8)

plot_board(initial_state_8a, f"a = {distance_a_mis}, b = {distance_a_man}",

plot_board(goal_state_8, "Goal State", 3, 2)

plot_board(initial_state_8b, f"a = {distance_b_mis}, b = {distance_b_man}",

plt.tight_layout()
plt.show()

where

a = misplaced tiles distance

b = Manathan distance

misplaced_tiles_distance does not take into account how far a tile is from its

expected final location, whereas manhattan_distance does.

Thus, one can expect the algorithm using the Manhattan distance to select the next

node to explore more wisely.

Best-First Search

def best_first_search_revised(initial_state, goal_state):

 frontier = [] # Initialize the priority queue
 initial_h = manhattan_distance(initial_state, goal_state)
 # Push the initial state with its heuristic value onto the queue
 heapq.heappush(frontier, (initial_h, 0, initial_state, [])) # (f(n), g(

 explored = set()

 iterations = 0

 while not is_empty(frontier):
 f, g, current_state, path = heapq.heappop(frontier)

 if is_goal(current_state, goal_state):
 print(f"Number of iterations: {iterations}")
 return path + [current_state] # Return the successful path

In [23]:

 iterations = iterations + 1

 explored.add(tuple(current_state))

 for neighbor in expand(current_state):
 if tuple(neighbor) not in explored:
 new_g = g + 1 # Increment the path cost
 h = manhattan_distance(neighbor, goal_state)
 new_f = new_g + h # Calculate the new total cost
 # Push the neighbor state onto the priority queue
 heapq.heappush(frontier, (new_f, new_g, neighbor, path + [cu
 explored.add(tuple(neighbor)) # Mark neighbor as explored

 return None # No solution found

When expanding a node in the search tree, it is crucial to note that we do not

immediately evaluate its descendant nodes to determine if they are goal nodes. Instead,

these descendants are added to the frontier, which is a priority queue. This allows their

 values to be compared with those of other nodes in the frontier, ensuring that the

most promising nodes are considered first based on their estimated total cost.

Consequently, it is possible for the frontier to include nodes that are goal nodes.

However, their values may be higher than those of other nodes deemed more

promising, as these other nodes might lead to a shorter path to the goal.

Simple Case

plt.figure(figsize=(8, 2))

initial_state_8 = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

solutions = best_first_search_revised(initial_state_8, goal_state_8)

for i, solution in enumerate(solutions):
 plot_board(solution, f"Step: {i}", 3, i+1)

plt.tight_layout()
plt.show()

Number of iterations: 2

f(n)

f(n)

In [24]:

initial_state_8 = [1, 2, 3,
 4, 0, 6,
 7, 5, 8]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

best_first_search_revised(initial_state_8, goal_state_8)

Number of iterations: 2
[[1, 2, 3, 4, 0, 6, 7, 5, 8],
[1, 2, 3, 4, 5, 6, 7, 0, 8],
[1, 2, 3, 4, 5, 6, 7, 8, 0]]

Challenging Case

initial_state_8 = [6, 4, 5,
 8, 2, 7,
 1, 0, 3]
goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

print("Solving 8-puzzle with best_first_search...")

solution_8_bfs = best_first_search_revised(initial_state_8, goal_state_8)

if solution_8_bfs:
 print(f"Best_first_search Solution found in {len(solution_8_bfs) - 1} mo
 print_solution(solution_8_bfs)
else:
 print("No solution found for 8-puzzle using best_first_search.")

In [25]:

In [26]:

Solving 8-puzzle with best_first_search...
Number of iterations: 2255
Best_first_search Solution found in 25 moves:
Step 0:
6 4 5
8 2 7
1 3

Step 1:
6 4 5
8 2 7
 1 3

Step 2:
6 4 5
 2 7
8 1 3

Step 3:
6 4 5
2 7
8 1 3

Step 4:
6 5
2 4 7
8 1 3

Step 5:
 6 5
2 4 7
8 1 3

Step 6:
2 6 5
 4 7
8 1 3

Step 7:
2 6 5
4 7
8 1 3

Step 8:
2 6 5
4 1 7
8 3

Step 9:
2 6 5
4 1 7
 8 3

Step 10:
2 6 5
 1 7

4 8 3

Step 11:
2 6 5
1 7
4 8 3

Step 12:
2 6 5
1 7
4 8 3

Step 13:
2 6 5
1 7 3
4 8

Step 14:
2 6 5
1 7 3
4 8

Step 15:
2 6 5
1 3
4 7 8

Step 16:
2 5
1 6 3
4 7 8

Step 17:
2 5
1 6 3
4 7 8

Step 18:
2 5 3
1 6
4 7 8

Step 19:
2 5 3
1 6
4 7 8

Step 20:
2 3
1 5 6
4 7 8

Step 21:
 2 3
1 5 6
4 7 8

Step 22:
1 2 3
 5 6
4 7 8

Step 23:
1 2 3
4 5 6
 7 8

Step 24:
1 2 3
4 5 6
7 8

Step 25:
1 2 3
4 5 6
7 8

Experiments

def best_first_search_count(initial_state, goal_state):
 frontier = [] # Initialize the priority queue
 initial_h = misplaced_tiles_distance(initial_state, goal_state)
 # Add the initial state with its heuristic value to the queue
 heapq.heappush(frontier, (initial_h, 0, initial_state, [])) # (f(n), g(

 explored = set()
 explored.add(tuple(initial_state))

 iterations = 0

 while not is_empty(frontier):
 f, g, current_state, path = heapq.heappop(frontier)

 if is_goal(current_state, goal_state):
 return len(path), iterations

 iterations = iterations + 1

 for neighbor in expand(current_state):
 if tuple(neighbor) not in explored:
 new_g = g + 1 # Increment the path cost
 h = misplaced_tiles_distance(neighbor, goal_state)
 new_f = new_g + h # Compute the new total cost
 # Add the neighboring state to the priority queue
 heapq.heappush(frontier, (new_f, new_g, neighbor, path + [cu
 explored.add(tuple(neighbor)) # Mark the neighbor as explor

 return None, None # No solution found

In [28]:

def best_first_search_revised_count(initial_state, goal_state):
 frontier = [] # Initialize the priority queue
 initial_h = manhattan_distance(initial_state, goal_state)
 # Add the initial state with its heuristic value to the queue
 heapq.heappush(frontier, (initial_h, 0, initial_state, [])) # (f(n), g(

 explored = set()
 explored.add(tuple(initial_state))

 iterations = 0

 while not is_empty(frontier):
 f, g, current_state, path = heapq.heappop(frontier)

 if is_goal(current_state, goal_state):
 return len(path), iterations

 iterations = iterations + 1

 for neighbor in expand(current_state):
 if tuple(neighbor) not in explored:
 new_g = g + 1 # Increment the path cost
 h = manhattan_distance(neighbor, goal_state)
 new_f = new_g + h # Compute the new total cost
 # Add the neighboring state to the priority queue
 heapq.heappush(frontier, (new_f, new_g, neighbor, path + [cu
 explored.add(tuple(neighbor)) # Mark the neighbor as explor

 return None, None # No solution found

We introduce two novel functions: each returning the length of the solution as well as the

number of iterations performed. These functions will be used in our upcoming

experimental analyses.

1000 Experiments

goal_state_8 = [1, 2, 3,
 4, 5, 6,
 7, 8, 0]

moves = []
iterations_a = []
iterations_b = []

for i in range(1000):
 initial_state_8 = generate_solvable_board()
 nb_moves, nb_iterations_a = best_first_search_count(initial_state_8, goa
 nb_moves, nb_iterations_b = best_first_search_revised_count(initial_stat
 moves.append(nb_moves)
 iterations_a.append(nb_iterations_a)
 iterations_b.append(nb_iterations_b)

import seaborn as sns

In [29]:

In [30]:

import matplotlib.pyplot as plt

Set up the subplot structure
fig, axes = plt.subplots(1, 2, figsize=(10, 5), sharey=True)

Plot histogram for `moves`
sns.histplot(moves, bins=20, kde=True, color='green', ax=axes[0], edgecolor=
axes[0].set_title("Histogram moves")
axes[0].set_xlabel("Moves")
axes[0].set_ylabel("Frequency")

Plot histogram for `iterations`
sns.histplot(iterations_a, kde=True, color='red', ax=axes[1], edgecolor='bla

Plot histogram for `iterations`
sns.histplot(iterations_b, kde=True, color='blue', ax=axes[1], edgecolor='bl
axes[1].set_title("Histogram of iterations")
axes[1].set_xlabel("Iterations")

Show the plot
plt.legend()
plt.tight_layout()
plt.show()

Scatter Plot (Manathan)

Create scatter plot

plt.figure(figsize=(8, 6))
plt.scatter(moves, iterations_b, color='blue', edgecolor='black')

Add titles and labels
plt.title("Scatter Plot: Moves vs Iterations")
plt.xlabel("Moves")
plt.ylabel("Iterations")

In [31]:

Display the plot
plt.show()

Exploration

Breadth-first search (BFS) is guaranteed to find the shortest path, or lowest-cost

solution, assuming all actions have unit cost.

Develop a program that performs the following tasks:

1. Generate a random configuration of the 8-Puzzle.

2. Determine the shortest path using breadth-first search.

3. Identify the optimal solution using the algorithm.

4. Compare the costs of the solutions obtained in steps 2 and 3. There should be no

discrepancy if identifies cost-optimal solutions.

5. Repeat the process.

Exploration

The heuristic is considered admissible, yet it typically results in inefficient

exploration of the search space. Develop a program to investigate this concept.

Demonstrate that when all actions are assumed to have unit cost, both and breadth-

A⋆

A⋆

h(n) = 0

A⋆

first search (BFS) explore the search space similarly. Specifically, they examine all paths

of length one, followed by paths of length two, and so forth.

Remarks

Breadth-first search (BFS) identifies the optimal solution, 25 moves, in 145,605

iterations.

Depth-first search (DFS) discovers a solution involving 1,157 moves in 1,187

iterations.

**Best-First Search ** using the Manathan distance identifies the optimal solution,

25 moves, in 2,255 iterations.

Measuring Performance

Completeness: Does the algorithm ensure that a solution will be found if one

exists, and accurately indicate failure when no solution exists?

Cost Optimality: Does the algorithm identify the (a) solution with the lowest path

cost among all possible solutions?

Are all three algorithms complete? What are the necessary conditions?

Do all three algorithms guarantee cost optimality?

Measuring Performance

Time Complexity: How does the time required by the algorithm scale with respect

to the number of states and actions?

Space Complexity: How does the space required by the algorithm scale with

respect to the number of states and actions?

Alternatively, complexity can be evaluated based on the depth () and branching factor

() of the search tree, instead of the number of states (nodes) and actions (edges) in the

state space.

What is the time and space complexity of breadth-first-search?

Videos by Sebastian Lague

A* Pathfinding (E01: algorithm explanation) posted on 2014-12-16.

A* Pathfinding (E02: node grid) posted on 2014-12-18.

d

b

O(bd)

https://www.youtube.com/watch?v=-L-WgKMFuhE
https://www.youtube.com/watch?v=nhiFx28e7JY

A* Pathfinding (E03: algorithm implementation) posted on 2014-12-19.

A* Pathfinding (E04: heap optimization) posted on 2014-12-24.

A* Pathfinding (E05: units) posted on 2015-01-06.

A* Pathfinding (E06: weights) posted on 2015-01-11.

A* Pathfinding (E07: smooth weights) posted on 2016-12-30.

A* Pathfinding (E08: path smoothing 1/2) posted on 2017-01-31.

A* Pathfinding (E09: path smoothing 2/2) posted on 2017-01-31.

A* Pathfinding (E10: threading) posted on 2017-02-03.

A* Pathfinding Tutorial (Unity) (play list)

A resource dedicated to

Amit’s A* Pages

Prologue

Summary

Informed Search and Heuristics

Best-First Search

Implementations

Informed Search and Heuristics:

Introduced the concept of heuristic functions (h(n)) to estimate costs.

Best-First Search:

Uses heuristics to prioritize nodes that seem closer to the goal.

Implemented with a priority queue sorted by estimated cost.

Manhattan Distance Heuristic:

Calculates the sum of the distances of tiles from their goal positions.

Used in the 8-Puzzle to guide the search more efficiently.

Comparative Analysis:

BFS: Optimal solution in 145,605 iterations (25 moves).

DFS: Suboptimal solution in 1,187 iterations (1,157 moves).

Best-First Search: Optimal solution in 2,255 iterations (25 moves).

Demonstrated that informed search algorithms can find optimal solutions more

efficiently.

Next lecture

A⋆

https://www.youtube.com/watch?v=mZfyt03LDH4
https://www.youtube.com/watch?v=3Dw5d7PlcTM
https://www.youtube.com/watch?v=dn1XRIaROM4
https://www.youtube.com/watch?v=T0Qv4-KkAUo
https://www.youtube.com/watch?v=Tb-rM3wGwv4
https://www.youtube.com/watch?v=NjQjl-ZBXoY
https://www.youtube.com/watch?v=bfevcsANSr4
https://www.youtube.com/watch?v=TFyEWDMQUKc
https://www.youtube.com/playlist?list=PLFt_AvWsXl0cq5Umv3pMC9SPnKjfp9eGW
http://theory.stanford.edu/~amitp/GameProgramming/

We will examine additional search algorithms.

References

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. 1968. “A Formal Basis for the

Heuristic Determination of Minimum Cost Paths.” IEEE Transactions on Systems Science

and Cybernetics 4 (2): 100–107. https://doi.org/10.1109/tssc.1968.300136.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

https://doi.org/10.1109/tssc.1968.300136
http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

