Heuristic Search

CSI 4106 Introduction to Artificial Intelligence

Marcel Turcotte
Version: Nov 7, 2025 09:04

Preamble

Message of the Day

7 U of T community members named in Observer A.l. Power Index, 2025-10-08.

Learning Objectives

e Comprehend informed search strategies and heuristic functions’ role in search
efficiency.

¢ Implement and compare BFS, DFS, and Best-First Search using the 8-Puzzle
problem.

e Analyze performance and optimality of various search algorithms.

https://www.utoronto.ca/celebrates/7-u-t-community-members-named-observer-ai-power-index

Summary

Search Problem Definition

e A collection of states, referred to as the state space.

e An initial state where the agent begins.

e One or more goal states that define successful outcomes.
¢ A set of actions available in a given state s.

¢ A transition model that determines the next state based on the current state and
selected action.

e An action cost function that specifies the cost of performing action a in state s to
reach state s’.

Definitions

e A path is defined as a sequence of actions.
o A solution is a path that connects the initial state to the goal state.
¢ An optimal solution is the path with the lowest cost among all possible solutions.

We assume that the path cost is the sum of the individual action costs, and all costs are
positive. The state space can be conceptualized as a graph, where the nodes represent
the states and the edges correspond to the actions.

In certain problems, multiple optimal solutions may exist. However, it is typically
sufficient to identify and report a single optimal solution. Providing all optimal solutions
can significantly increase time and space complexity for some problems.

Example: 8-Puzzle

import random
import matplotlib.pyplot as plt
import numpy as np

random.seed(58)

def is_solvable(tiles):
Compter les inversions dans la liste a plat des tuiles (en excluant 1'
inversions = 0
for i in range(len(tiles)):
for j in range(i + 1, len(tiles)):
if tiles[i] != @ and tiles[j] !'= @ and tiles[i] > tiles[j]:

def

def

inversions += 1
return inversions % 2 ==

generate_solvable_board():
Générer une configuration de plateau aléatoire qui est garantie d'étre
tiles = list(range(9))
random.shuffle(tiles)
while not is_solvable(tiles):
random.shuffle(tiles)

return tiles

plot_board(board, title, num_pos, position):
ax = plt.subplot(1l, num_pos, position)
ax.set_title(title)

ax.set_xticks([1)

ax.set_yticks([1)

board = np.array(board).reshape(3, 3).tolist() # Reconfigurer en une gri

Utiliser une carte de couleurs pour afficher les numéros
cmap = plt.cm.plasma
norm = plt.Normalize(vmin=-1, vmax=8)

for i in range(3):
for j in range(3):

tile_value = board[i] [j]
color = cmap(norm(tile_value))
ax.add_patch(plt.Rectangle((j, 2 - i), 1, 1, facecolor=color, ec
if tile_value ==

ax.add_patch(plt.Rectangle((j, 2 - i), 1, 1, facecolor='whit
else:

ax.text(j + 0.5, 2 = i + 0.5, str(tile_value),

fontsize=16, ha='center', va='center', color='black'

ax.set_xlim(@, 3)
ax.set_ylim(0, 3)

Example: 8-Puzzle

def

main():
Generate initial solvable board
initial_board = generate_solvable_board()

Define goal state
goal_board = [

[1, 2, 31,

[47 5' 6]’

[7, 8, 0]
]

Plot both boards
plt.figure(figsize=(8, 4))
plot_board(initial_board, "Initial Board", 2, 1)

plot_board(goal_board, "Goal State", 2, 2)
plt.tight_layout()
plt.show()

main()

Initial Board Goal State

Search Tree

A search tree is a conceptual tree structure where nodes represent states in a state

space, and edges represent possible actions, facilitating systematic exploration to find
a path from an initial state to a goal state.

The search algorithms we examine today construct a search tree, where each node
represents a state within the state space and each edge represents an action.

It is important to distinguish between the search tree and the state space, which can be
depicted as a graph. The structure of the search tree varies depending on the algorithm
employed to address the search problem.

Search Tree

An example of a search tree for the 8-Puzzle. The solution here is incomplete.

Frontier

Any state corresponding to a node in the search tree is considered reached. Frontier
nodes are those that have been reached but have not yet been expanded. Above,
there are 10 expanded nodes and 11 frontier nodes, resulting in a total of 21 nodes that
have been reached.

If no solution exists, the algorithm stops when the frontier becomes empty.
The frontier always contains at least one node that might lead to the goal.

In the context of the 8-puzzle, the generated board admits a solution. From this board,
we generate all possible neighbours.

Each time a node n is removed from the frontier, we generate all its neighbours. This
operation applies to all nodes, including those located on an optimal path.

Frontier

g M g S

1 | - iy - T ppp—— - iy - |
\ ! \ [\ ! \ ! \ 1
\ ’ \ ’ \ ’ \ ’ \ ’
\\.r// \\.r// \~1_// \\T// \~1_//
1 | ! 1 |
! | ! 1 |
	! 1	
	!	
	!	
	!	
!	!	
	! !	
	!	
	!	
!	! ! !	
/L\ ,L\		
7 N e N		
1 \ 1 \		
1 e e B i i g gy -		
\ / \ !		
\ 4 \ 4		
N N -		
=T T		
1 1		
! !		
1 1		
1 1		
1 1		
1		
1 1		
1 1		
1 1		
~L		
7 N		
/ \		
] g		
\ !		
\ /		
\‘1—’/		
1		
1		
1		
1		
1		
!		
L		
7 N		
1 \		
] e i i i		
\ !		
\ /		
~ .		
~r-		
1 1 1		
! 1 1		
1 1 1		
1 1 1		
1 1 1		
1 1		
1 1 1		
1 1 1		
1 1 1		
1 1		
L L L
7 N e N 7 N e N
! \ ! \ I \ ! \
1 | - | - | B B e 4 |
\ / \ ! \ ! \ !
\ 4 \ / \ 4 \ 4
~ - N - ~ - N .

In the 8-Puzzle, four actions are possible: slide left, right, up, or down. The search can
be visualized on a grid: purple nodes: expanded states, green nodes: frontier states
(reached but not expanded).

The diagrams correspond to the search tree presented on the previous page. For
example, the initial state can be expanded using three actions: slide left, right, and up.
Node (2, 3) can only be expanded by sliding down, while node (3, 3) can be expanded by
sliding left and down.

Frontier

-
|
|
|
I
I
I
|
I
|
|
|

Fmmmm———————

Fmm—————————

is_empty

def is_empty(frontier):
"""Checks if the frontier is empty.
return len(frontier) ==

is_goal

def is_goal(state, goal_state):
"""Determines if a given state matches the goal state.
return state == goal_state

Auxilliary method.

expand

def expand(state):
""""Generates successor states by moving the blank tile in all possible c
size = int(len(state) *x 0.5) # Determine puzzle size (3 for 8-puzzle,
idx = state.index(@) # Find the index of the blank tile represented by
X, y = idx % size, idx // size # Convert index to (x, y) coordinates
neighbors = []

Define possible moves: Left, Right, Up, Down
moves = [(-1, @), (1, o), (o, -1), (@, 1)]
for dx, dy in moves:
nx, ny = x + dx, y + dy
Check if the new position is within the puzzle boundaries
if 0 <= nx < size and @ <= ny < size:
n_idx = ny * size + nx
new_state = state.copy()
Swap the blank tile with the adjacent tile
new_state[idx], new_state[n_idx] = new_state[n_idx], new_stateli
neighbors.append(new_state)
return neighbors

print_solution

def print_solution(solution):
"""Prints the sequence of steps from the initial to the goal state.
size = int(len(solution[0]) ** 0.5)
for step, state in enumerate(solution):
print(f"Step {step}:")
for i in range(size):
row = statel[ixsize: (i+1)x*size]
print(' '.join(str(n) if n != @ else
print()

' for n in row))

Breadth-first search

from collections import deque

Breadth-first search (BFS) employs a queue to manage the frontier nodes, which are
also known as the open list.

Breadth-first search

def bfs(initial_state, goal_state):

frontier = deque() # Initialize the queue for BFS
frontier.append((initial_state, [])) # Each element is a tuple: (state,

explored = set()
explored.add(tuple(initial_state))

iterations = @ # simply used to compare algorithms

while not is_empty(frontier):
current_state, path = frontier.popleft()

if is_goal(current_state, goal_state):
print(f"Number of iterations: {iterations}")
return path + [current_statel # Return the successful path
iterations = iterations + 1
for neighbor in expand(current_state):
neighbor_tuple = tuple(neighbor)
if neighbor_tuple not in explored:
explored.add(neighbor_tuple)
frontier.append((neighbor, path + [current_statel))

return None # No solution found

Using tuple makes states immutable and hashable, enabling storage in a set.

Depth-First Search

def dfs(initial_state, goal_state):
frontier = [(initial_state, [1)] # Each element is a tuple: (state, pat

explored = set()
explored.add(tuple(initial_state))

iterations = 0

while not is_empty(frontier):
current_state, path = frontier.pop()

if is_goal(current_state, goal_state):
print(f"Number of iterations: {iterations}")
return path + [current_state]l # Return the successful path

iterations = iterations + 1
for neighbor in expand(current_state):
neighbor_tuple = tuple(neighbor)
if neighbor_tuple not in explored:
explored.add(neighbor_tuple)
frontier.append((neighbor, path + [current_state]))

return None # No solution found

Remarks

e Breadth-first search (BFS) identifies the optimal solution, 25 moves, in 145,605
iterations.

e Depth-first search (DFS) discovers a solution involving 1,157 moves in 1,187
iterations.

How can solutions be discovered more efficiently?
Will Depth-First Search (DFS) invariably yield sub-optimal solutions?

No, if the optimal solution lies along the path traversed by depth-first search (DFS)
within the search tree, then DFS will indeed identify the optimal solution.

Is it possible for DFS to discover solutions superior to the optimal solution?

Certainly not; such solutions would either be invalid (involving impossible moves) or
indicate an error in your estimation.

Does this imply that depth-first search (DFS) has no practical applications?
When is it appropriate to use DFS?

Breadth-first search (BFS) expands its frontier systematically in all directions, leading to
rapid growth in memory requirements.

In contrast, the memory usage of DFS is constrained by the number of moves needed to
reach its backtracking points or the path length of the first solution found. In all
scenarios, DFS continues expanding the frontier in one direction.

In certain applications where all possible solutions must be explored, the entire search
space must be traversed. Using BFS in these cases would be prohibitively expensive in
terms of memory. However, DFS can explore the entire space with minimal memory
usage.

The programming language Prolog includes a built-in backtracking algorithm that
enumerates all possible solutions. Backtracking is a memory-efficient variant of DFS.

Depth-limited and iterative deepening search would be alternative uninformed search
algorithms.

Finding solutions more efficiently requires domain knowledge.

Informed Search

Heuristic Search

Informed search algorithms utilize domain-specific knowledge regarding the goal
state’s location.

Heuristic Search

Let f(n) be a heuristic function that estimates the cost of the cheapest path from the
current state or node n to the goal.

This approach is termed best-first search.

Heuristic Search

In route-finding problems, one might employ the straight-line distance from the
current location to the destination as a heuristic.

Although an actual path may not exist along that straight line, the algorithm will
prioritize expanding the node closest to the destination (goal) based on this straight-line
measurement.

Book Example

Arad

Sibiu 99 Fagaras

118 Vaslui

Rimnicu Vilcea

Pitesti

Lugoj

Hirsova

Mehadia

Urziceni

75 86

Drobeta

Bucharest

90

Giurgiu

Craiova Eforie

Source: (Russell and Norvig 2020, fig. 3.1)

Problem: Determine the shortest route between Arad (initial state) and Bucharest (goal
state).

Book Example

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

Source: (Russell and Norvig 2020, fig. 3.16)

We have data on the direct (straight-line, as-the-crow-flies) Euclidean distances
between each city and Bucharest.

Book Example

(a) The initial state D> Arad >

366=0+366

Source: (Russell and Norvig 2020, fig. 3.18)

The initial state is Arad, with a heuristic value of 366. Since no path has been traversed
yet, the total estimated cost for this state is the sum of the traveled cost, which is 0, and
the direct Euclidean distance to Bucharest, which is 366.

Book Example

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

Source: (Russell and Norvig 2020, fig. 3.18)

From Arad, three cities can be reached directly: Sibiu, Timisoara, and Zerind. For each of
these destinations, we evaluate the heuristic value by adding the distance traveled so far
and the direct Euclidean distance to the final destination.

Sibiu has the lowest heuristic value and will thus be removed from the frontier.

Book Example

(c) After expanding Sibiu

449=75+374
646=280+366 415=239+176 671=291+380 413=220+193

Source: (Russell and Norvig 2020, fig. 3.18)

From Sibiu, four cities can be reached directly: Arad, Fagaras, Oradea, and Rimnicu
Vilcea. For each of these destinations, we evaluate the heuristic value by adding the
distance traveled so far and the direct Euclidean distance to the final destination.

In this example, the authors chose not to detect cycles, so Arad is added to the frontier.
Which city will be removed from the frontier next?

Rimnicu Vilcea has the lowest heuristic value and will thus be removed from the frontier.

Book Example

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253

Source: (Russell and Norvig 2020, fig. 3.18)

From Rimnicu Vilcea, three cities are directly accessible: Craiova, Pitesti, and Sibiu. To
evaluate the potential of each destination, we calculate a heuristic value by adding the
distance already traveled and the direct Euclidean distance to the final destination.

It is important to note that Sibiu is reintroduced into the frontier. Its current heuristic
value is 553, resulting from the sum of the path traveled (300) and the direct Euclidean
distance to Bucharest (253). When first introduced to the frontier, the path traveled was
140, yielding a heuristic value of 393. Although Sibiu presents a better potential than

alternative routes like Arad to Sibiu then to Arad, or Arad to Sibiu then to Oradea, it is not
a good option compared to other possibilities.

Which city will be removed from the frontier next?

The next city to be removed from the frontier will be Fagaras, as it has the lowest
heuristic value.

Book Example

(e) After expanding Fagaras

449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Source: (Russell and Norvig 2020, fig. 3.18)

From Fagaras, two cities can be reached directly: Sibiu and Bucharest. For each of these
destinations, we evaluate the heuristic value by adding the distance traveled so far and
the direct Euclidean distance to the final destination.

Although Bucharest is the final goal, the algorithm does not stop immediately. After
calculating the heuristic values, this path may not be the most promising. The heuristic
value associated with Bucharest is 450, which corresponds only to the distance already
traveled, since it is also the final destination. The direct Euclidean distance from the last
node of the current path to the destination serves as an estimate. Although this estimate

is initially imprecise, it becomes more accurate as we approach the destination.

A crucial aspect of the algorithm is that it does not terminate upon reaching the
goal state; instead, it continues until the goal state is removed from the frontier.
This indicates that no alternative path remains that appears more promising.

The nodes Pitesti, Timisoara, and Zerind, in this order, present more favorable options
than Bucharest. Pitesti, having the lowest heuristic value, will therefore be selected to be
removed from the frontier.

Book Example

(f) After expanding Pitesti Arad D

CSibiu > Gimisoard ~— CZerind D

447=118+329 449=75+374

Carad > (Fagaras> COradea> i Vi

646=280+366 671=291+380
CSibiu > QucharesD CCraiova> Pitesti > Sibiu D
591=338+253 450=450+0 526=366+160 553=300+253

P> QBucharesD Craiova)

418=418+0 615=455+160 607=414+193

Source: (Russell and Norvig 2020, fig. 3.18)

From Pitesti, three cities can be reached directly: Bucharest, Craiova, and Rimnicu
Vilcea. For each of these destinations, we evaluate the heuristic value by adding the
distance traveled so far and the direct Euclidean distance to the final destination.

The next city to be removed from the frontier will be Bucharest, as it has the lowest
heuristic value. It is also the goal state, thus stopping the process. Arad, Sibiu, Rimnicu
Vilcea, Pitesti, Bucharest is the returned solution.

Is this solution optimal in cost?

Implementation

e How can the existing breadth-first and depth-first search algorithms be modified
to implement best-first search?

= This can be achieved by employing a priority queue, which is sorted according
to the values of the heuristic function h(n).

import heapq

Remark

Breadth-first search can be interpreted as a form of best-first search, where the
heuristic function f(n) is defined as the depth of the node within the search tree,
corresponding to the path length.

Is this solution viable? The answer is nuanced. It is useful for examining the properties of
the algorithm, but using a queue will likely provide a more efficient implementation.

Can you think of a way to implement depth-first-search as a best-first-search?

A-star

A* (a-star) is the most common informed search.
f(n) = g(n) + h(n)
where

e g(n) is the path cost from the initial state to n.
e h(n) is an estimate of the cost of the shortest path from n to the goal state.

Hart, Nilsson, and Raphael (1968)

It is clear that g(n) is a known value and not an estimate. Consequently, the accuracy of
f(n) improves as the execution progresses.

Admissibility

A heuristic is admissible if it never overestimates the true cost to reach the goal from
any node in the search space.

This ensures that the A* algorithm finds an optimal solution, as it guarantees that the
estimated cost is always a lower bound on the actual cost.

What would happen if a heuristic were to overestimate the cost of the shortest path
from n to the goal?

If a heuristic were to overestimate the cost of the shortest path from n to the goal, then
A* might ignore or delay expanding nodes that actually lie on the optimal path, because
their f values look artificially expensive. The algorithm may still find a solution, but not
necessarily the shortest one!

Admissibility
Formally, a heuristic h(n) is admissible if:

h(n) < h*(n)
where:

* h(n) is the heuristic estimate of the cost from node 7 to the goal.
e h*(n) is the actual cost of the optimal path from node 7 to the goal.

Cost Optimality

Cost optimality refers to an algorithm's ability to find the least-cost solution among all
possible solutions.

In the context of search algorithms like A*, cost optimality means that the algorithm will
identify the path with the lowest total cost from the start to the goal, assuming an
admissible heuristic is used.

Theorem

Let h be admissible, i.e., 0 < h(n) < h*(n) for all nodes n, where h*(n) is the true
cost from n to a goal.

Assume non-negative action costs and that A* terminates when a goal is selected for
expansion (i.e., removed from the frontier).

Then A* returns an optimal solution.

See also: Berkeley, CS 188, Fall 2022 — Lecture Note 02: “Informed Search”,
September 2, 2022.

Proof

1. Assume for contradiction

Suppose A* returns a suboptimal goal G with cost C > C*, where C* is the optimal
solution cost.

When A* halts, G has just been selected from the frontier with f(G) = g(G) = C.

Proof
1. Lower bound along any optimal path
Consider any node n on an optimal path to an optimal goal G* (cost C™).
By admissibility,
f(n) = g(n) + h(n) < g(n)+h*(n) =C~

Thus every node on an optimal path has f(n) < C*.

https://inst.eecs.berkeley.edu/~cs188/fa22/assets/notes/cs188-fa22-note02.pdf
https://inst.eecs.berkeley.edu/~cs188/fa22/assets/notes/cs188-fa22-note02.pdf

Proof

1. The first-unexpanded node is in frontier

When G is chosen, walk from the start along an optimal path to G* until you reach the
first node n that has not yet been expanded.

Its parent on that path has been expanded (by definition of “first”), so n has been
generated and is therefore in frontier.

From Step 2, f(n) < C*. Since C* < C = f(G), A*'s best-first rule should choose n
(or another node with f < C*) before G, a contradiction.

Proof

1. Conclude optimality

The contradiction shows A* cannot return a goal with cost > C™; hence the returned
solution is optimal.

Q.E.D.

8-Puzzle

Can you think of a heuristic function, h(n), for the 8-Puzzle?

Number of Inversions Distance

Can the number of inversions be used as a heuristic function, h(n), for the 8-Puzzle?

Define the initial state
initial_board = [

[1, 2, 31,

(4, 5, o],

[7, 8, 6]
]

Define goal state
goal_board = [
[1, 2, 31,

[41 5! 6]l
[7, 8, @]
]

Plot both boards

plt.figure(figsize=(6, 3))
plot_board(initial_board, "Initial Board", 2, 1)
plot_board(goal_board, "Goal State", 2, 2)
plt.tight_layout()

plt.show()

Initial Board Goal State

e Calculate h(s) and h*(s).
e What do you conclude?

Intuitively, counting the number of inversions in the 8-Puzzle seems like it could serve as
a heuristic — configurations with many inversions appear farther from the goal, which
has none. However, since each move changes the inversion count by 0 or 2, it fails to
provide a consistent or admissible measure of progress toward the goal.

For the initial board configuration, the heuristic function h(s) has a value of 2, while the
optimal cost, denoted h*(s), is 1. Hence, h(s) = 2 > h*(s) = 1. As the inversion count
can overestimate the true cost, it cannot be considered an admissible heuristic. This is
because a single move can alter the relative order of the moved tile with respect to
multiple other tiles, potentially decreasing the inversion count by more than 1 per move.
Consequently, the inversion count fails to provide a valid lower bound on the number of

actions required.

Be careful when constructing examples to reason about the problem. For instance, it
may seem that the permutation "1, 2, 3, 4, 5, 6, O, 8, 7" is only one move away from the
goal, since it contains just one inversion. However, recall that the parity of the inversion
count is invariant — each move changes it by 0 or 2. Because this configuration has an
odd number of inversions, no sequence of actions can transform it into the goal state
(the identity permutation).

Misplaced Tiles Distance

def misplaced_tiles_distance(state, goal_state):
Count the number of misplaced tiles
misplaced_tiles = sum(1l for s, g in zip(state, goal_state) if s != g anc
return misplaced_tiles

Is this heuristic admissible?

Consider any single legal move. It slides exactly one tile into the blank. That move can fix
at most one tile that was previously misplaced; all other tiles keep their “misplaced
vs. placed” status.

Therefore, along any solution path that uses k moves, the number of misplaced tiles can
drop by at most k. If the start has h(m) misplaced tiles, any solution must have length at

least h(s) steps.

Hence h(s) < h*(s), i.e. the heuristic is admissible.

8-Puzzle

plt.figure(figsize=(8, 2))

initial_state_8a = [1, 2, 3,
4’ 0' ’
7, 5, 8]
initial_state_8b = [6, 4, 5,
8, 2, 7,
1, 0, 31
goal_state_8 = [1, 2, 3,
4' 5' 6'
7, 8, 0]

distance_a = misplaced_tiles_distance(initial_state_8a, goal_state_8)

distance_b misplaced_tiles_distance(initial_state_8b, goal_state_8)
plot_board(initial_state_8a, f"h(n) = {distance_al}", 3, 1)
plot_board(goal_state_8, "Goal State", 3, 2)
plot_board(initial_state_8b, f"h(n) = {distance_b}", 3, 3)

plt.tight_layout()
plt.show()

h{n) =2 Goal State h(n) =8

[

8

Best-First Search

def best_first_search(initial_state, goal_state):

frontier = [] # Initialize the priority queue

initial_h = misplaced_tiles_distance(initial_state, goal_state)
Push the initial state with its heuristic value onto the queue
(f(n), g(n), state, path)

heapq.heappush(frontier, (initial_h, @, initial_state, []))

explored = set()
explored.add(tuple(initial_state))

iterations = 0

while not is_empty(frontier):
f, g, current_state, path = heapq.heappop(frontier)

if is_goal(current_state, goal_state):
print(f"Number of iterations: {iterations}")
return path + [current_state] # Return the successful path

iterations = iterations + 1

for neighbor in expand(current_state):
if tuple(neighbor) not in explored:

new. g =g + 1 # Increment the path cost
h = misplaced_tiles_distance(neighbor, goal_state)
new_f = new_g + h # Calculate the new total cost
Push the neighbor state onto the priority queue
heapg.heappush(frontier, (new_f, new_g, neighbor, path + [cL
explored.add(tuple(neighbor)) # Mark neighbor as explored

return None # No solution found

Simple Case

plt.figure(figsize=(8, 2))

initial_state_8 = [

~ N~ ~ =
(e]
—

1, 2
4, 0
7, 5
goal_state_8 = [1, 2, 3

4! 5' 6!
7, 8, 0]
solutions = best_first_search(initial_state_8, goal_state_8)

for i, solution in enumerate(solutions):
plot_board(solution, f"Step: {i}", 3, i+1)

plt.tight_layout()
plt.show()

Number of iterations: 2
Step: 0 Step: 1 Step: 2

initial_state 8 = [

4,
7,

—_. N N w0~

S o wuoeo N

1,
4,
7,
goal_state_8 = [1, 2,
5,
8,

best_first_search(initial_state_8, goal_state_8)

Number of iterations: 2

({1, 2, 3, 4, 0, 6, 7, 5, 81,
[1, 2, 3, 4, 5, 6, 7, 0, 81,
(1, 2, 3, 4, 5, 6, 7, 8, 0l]

Challenging Case

initial_state_8 = [6, 4, 5,
8' 2’ 7'
1, 0, 3]
goal_state_8 = [1, 2, 3,
4, 5, 6,
7, 8, 0]
print("Solving 8-puzzle with best_first_search...")

solution_8_bfs = best_first_search(initial_state_8, goal_state_8)

if solution_8_bfs:
print(f"Best_first_search Solution found in {len(solution_8_bfs) - 1} mc
print_solution(solution_8_bfs)

else:
print("No solution found for 8-puzzle using best_first_search.")

Solving 8-puzzle with best_first_search...
Number of iterations: 29005
Best_first_search Solution found in 25 moves:
Step 0:

6 45

827

483

Step 11:

Step 12:
265

~

Step 15:

Step 17:

m O
N O ™~
N <

Step 19:

Step 21:

Mm O o
N N0~
— <

8-Puzzle

def manhattan_distance(state, goal_state):
distance = 0
size = int(len(state) *x 0.5)
for num in range(1, len(state)):
idx1 = state.index(num)
idx2 = goal_state.index(num)
x1, yl = idx1l % size, idx1l // size
X2, y2 = idx2 % size, idx2 // size
distance += abs(xl - x2) + abs(yl - y2)
return distance

hManathan(S) - Z (|mt - "L'ﬂ + |yt - yt*|)
te{l,...,8}

Calculates the Manhattan distance heuristic for a given state. Is this heuristic
admissible?

Consider a relaxed version of the 8-puzzle in which a tile may move to any adjacent
square (up/down/left/right) without needing the blank. In that relaxed puzzle, the exact
number of moves needed from a state is precisely the total Manhattan distance (each
move reduces one tile's distance by 1 and you can always move the needed tile directly).
The optimal cost of any relaxed problem is a lower bound on the optimal cost of the
original problem, therefore the Manathan distance is admissible for the real 8-puzzle.

8-Puzzle

plt.figure(figsize=(8, 2))

initial_state_8a = [1, 2, 3,

4’ 0' 6'
7, 5, 8]
initial_state_8b = [6, 4, 5,
8' 2’ ’
1, 0, 3]
goal_state_8 = [1, 2, 3,
4’ 5' 6’
7, 8, 0]
distance_a = manhattan_distance(initial_state_8a, goal_state_8)
distance_b = manhattan_distance(initial_state_8b, goal_state_8)

plot_board(initial_state_8a, f"h(n) = {distance_al}", 3, 1)
plot_board(goal_state_8, "Goal State", 3, 2)
plot_board(initial_state_8b, f"h(n) = {distance_b}", 3, 3)

plt.tight_layout()
plt.show()

h{n) =2 Goal State h{n) = 17

[

8

8-Puzzle

¢ Compare Manhattan vs. Misplaced Tiles heuristics.
e Which is more effective?
e Significant run time differences?

8-Puzzle

plt.figure(figsize=(8, 2))

]
=
~
N
w

initial_state_8a

||
(@]
<
o
ul

initial_state_8b

goal_state_8 = [

~

1
4
7

oo U1 N

3
6,
0]

~

misplaced_tiles_distance(initial_state_8a, goal_state_8)
misplaced_tiles_distance(initial_state_8b, goal_state_8)

distance_a_mis
distance_b_mis

manhattan_distance(initial_state_8a, goal_state_8)
manhattan_distance(initial_state_8b, goal_state_8)

distance_a_man
distance_b_man

{distance_a_man}",

plot_board(initial_state_8a, f"a = {distance_a_mis}, b
plot_board(goal_state_8, "Goal State", 3, 2)
plot_board(initial_state_8b, f"a = {distance_b_mis}, b = {distance_b_man}",

plt.tight_layout()
plt.show()

a=2,b=2 Goal State a=8 b=17

s

|

where

e a = misplaced tiles distance
e b = Manathan distance

8-Puzzle

plt.figure(figsize=(8, 2))

initial_state_8a = [3, 1, 2,
4, 5, 6,
7, 8, 0]
initial_state_8b = [8, 2, 3,
4’ 5' 6'
1, 0, 7]
goal_state_8 = [1, 2, 3,
4, 5, 6,
7, 8, 0]

distance_a_mis
distance_b_mis

’

’

misplaced_tiles_distance(initial_state_8a, goal_state_8)
misplaced_tiles_distance(initial_state_8b, goal_state_8)

distance_a_man
distance_b_man

manhattan_distance(initial_state_8a, goal_state_8)
manhattan_distance(initial_state_8b, goal_state_8)

plot_board(initial_state_8a, f"a = {distance_a_mis}, b = {distance_a_man}",

plot_board(goal_state_8, "Goal State", 3, 2)
plot_board(initial_state_8b, f"a = {distance_b_mis}, b = {distance_b_man}",

plt.tight_layout()
plt.show()

a=3,b=4 Goal State a=3,b=7

where

e a = misplaced tiles distance
¢ b = Manathan distance

misplaced_tiles_distance does not take into account how far a tile is from its
expected final location, whereas manhattan_distance does.

Thus, one can expect the algorithm using the Manhattan distance to select the next

node to explore more wisely.

Best-First Search

def best_first_search_revised(initial_state, goal_state):

frontier = [1 # Initialize the priority queue

initial_h = manhattan_distance(initial_state, goal_state)

Push the initial state with its heuristic value onto the queue
heapq.heappush(frontier, (initial_h, 0, initial_state, [1)) # (f(n), g(

explored = set()
iterations = 0

while not is_empty(frontier):
f, g, current_state, path = heapq.heappop(frontier)

if is_goal(current_state, goal_state):
print(f"Number of iterations: {iterations}")
return path + [current_state]l # Return the successful path

iterations = iterations + 1
explored.add(tuple(current_state))

for neighbor in expand(current_state):
if tuple(neighbor) not in explored:

new g =g + 1 # Increment the path cost
h = manhattan_distance(neighbor, goal_state)
new_f = new_g + h # Calculate the new total cost
Push the neighbor state onto the priority queue
heapg.heappush(frontier, (new_f, new_g, neighbor, path + [cL
explored.add(tuple(neighbor)) # Mark neighbor as explored

return None # No solution found

When expanding a node in the search tree, it is crucial to note that we do not
immediately evaluate its descendant nodes to determine if they are goal nodes. Instead,
these descendants are added to the frontier, which is a priority queue. This allows their
f(n) values to be compared with those of other nodes in the frontier, ensuring that the
most promising nodes are considered first based on their estimated total cost.

Consequently, it is possible for the frontier to include nodes that are goal nodes.
However, their f(n) values may be higher than those of other nodes deemed more
promising, as these other nodes might lead to a shorter path to the goal.

Simple Case

plt.figure(figsize=(8, 2))

initial_state_8 = [1, 2, 3,
4, 0, o,
7, 5, 8]
goal_state_8 = [1, 2, 3,
4’ 5' 6’
7, 8, 0]

solutions = best_first_search_revised(initial_state_8, goal_state_8)

for i, solution in enumerate(solutions):
plot_board(solution, f"Step: {i}", 3, i+1)

plt.tight_layout()
plt.show()

Number of iterations: 2

Step: 0 Step: 1 Step: 2

[

;
initial_state_8 = [1, 2, 3,
4' 0’ 6'
7, 5, 8]
goal_state_8 = [1, 2, 3,
4, 5, 6,
7, 8, 0]

best_first_search_revised(initial_state_8, goal_state_8)

Number of iterations: 2

({1, 2, 3, 4, 0, 6, 7, 5, 81,
[1, 2, 3, 4, 5, 6, 7, 0, 8],
(1, 2, 3, 4, 5, 6, 7, 8, 0]]

Challenging Case

initial_state_8 = [6, 4, 5,
8, 2, 7,
1, 0, 3]
goal_state_8 = [1, 2, 3,
4, 5, 6,
7, 8, 0]
print("Solving 8-puzzle with best_first_search...")

solution_8_bfs = best_first_search_revised(initial_state_8, goal_state_8)

if solution_8_bfs:
print(f"Best_first_search Solution found in {len(solution_8_bfs) - 1} mc
print_solution(solution_8_bfs)

else:
print("No solution found for 8-puzzle using best_first_search.")

Solving 8-puzzle with best_first_search...
Number of iterations: 2255

Best_first_search Solution found in 25 moves:
Step 0:

6 45

827

483

Step 11:

Step 12:
265

~

Step 15:

Step 17:

m O
N O ™~
N <

Step 19:

Step 21:

Mm O o
N N0~
— <

Experiments

def best_first_search_count(initial_state, goal_state):
frontier = [] # Initialize the priority queue
initial_h = misplaced_tiles_distance(initial_state, goal_state)
Add the initial state with its heuristic value to the queue
heapq.heappush(frontier, (initial_h, @, initial_state, [1)) # (f(n), g(

explored = set()
explored.add(tuple(initial_state))

iterations = 0

while not is_empty(frontier):
f, g, current_state, path = heapq.heappop(frontier)

if is_goal(current_state, goal_state):
return len(path), iterations

iterations = iterations + 1

for neighbor in expand(current_state):
if tuple(neighbor) not in explored:

new g =g + 1 # Increment the path cost
h = misplaced_tiles_distance(neighbor, goal_state)
new f = new_g + h # Compute the new total cost
Add the neighboring state to the priority queue
heapg.heappush(frontier, (new_f, new_g, neighbor, path + [cL
explored.add(tuple(neighbor)) # Mark the neighbor as explor

return None, None # No solution found

def best_first_search_revised_count(initial_state, goal_state):
frontier = [] # Initialize the priority queue
initial_h = manhattan_distance(initial_state, goal_state)
Add the initial state with its heuristic value to the queue
heapq.heappush(frontier, (initial_h, @, initial_state, [1)) # (f(n), g(

explored = set()
explored.add(tuple(initial_state))

iterations = 0

while not is_empty(frontier):
f, g, current_state, path = heapq.heappop(frontier)

if is_goal(current_state, goal_state):
return len(path), iterations

iterations = iterations + 1

for neighbor in expand(current_state):
if tuple(neighbor) not in explored:

new_g =g + 1 # Increment the path cost
h = manhattan_distance(neighbor, goal_state)
new_f = new_g + h # Compute the new total cost
Add the neighboring state to the priority queue
heapg.heappush(frontier, (new_f, new_g, neighbor, path + [cL
explored.add(tuple(neighbor)) # Mark the neighbor as explor

return None, None # No solution found

We introduce two novel functions: each returning the length of the solution as well as the
number of iterations performed. These functions will be used in our upcoming
experimental analyses.

1000 Experiments

1}
—

goal_state_8

~-
-

N
oo U1 N
S O W

-
—_

~

moves = []
iterations_a
iterations_b

[]
[]

for i in range(1000):
initial_state_8 = generate_solvable_board()
nb_moves, nb_iterations_a best_first_search_count(initial_state_8, goc
nb_moves, nb_iterations_b best_first_search_revised_count(initial_stat
moves .append (nb_moves)
iterations_a.append(nb_iterations_a)
iterations_b.append(nb_iterations_b)

import seaborn as sns

import matplotlib.pyplot as plt

Set up the subplot structure
fig, axes = plt.subplots(1, 2, figsize=(10, 5), sharey=True)

Plot histogram for “moves’

sns.histplot(moves, bins=20, kde=True, color='green', ax=axes|[0], edgecolor=
axes[0] .set_title("Histogram moves")

axes[0].set_xlabel("Moves")

axes[0] .set_ylabel("Frequency")

Plot histogram for “iterations’
sns.histplot(iterations_a, kde=True, color='red', ax=axes[1], edgecolor='blc

Plot histogram for “iterations’

sns.histplot(iterations_b, kde=True, color='blue', ax=axes[1], edgecolor='bl
axes[1].set_title("Histogram of iterations")
axes[1].set_xlabel("Iterations")

Show the plot
plt.legend()
plt.tight_layout()

plt.show()
Histogram moves Histogram of iterations
@ Misplaced Tiles
mmm Manathan
250 R
200 1 b
z
=
@ 150 -
]
i

100 ~

T T
0 20000 40000 60000 80000 100000 120000
Moves Iterations

10

Scatter Plot (Manathan)

In [31]: # Create scatter plot

plt.figure(figsize=(8, 6))
plt.scatter(moves, iterations_b, color='blue', edgecolor='black")

Add titles and labels

plt.title("Scatter Plot: Moves vs Iterations")
plt.xlabel("Moves")

plt.ylabel("Iterations")

Display the plot
plt.show()

Scatter Plot: Moves vs lterations

17500 ~

15000 ~

12500 ~

10000 ~

terations

7500

5000

2500 ' l | I
T

0l e ----ni.."'

10 15 20 25 30
Mowves

Exploration

Breadth-first search (BFS) is guaranteed to find the shortest path, or lowest-cost
solution, assuming all actions have unit cost.

Develop a program that performs the following tasks:

1. Generate a random configuration of the 8-Puzzle.

2. Determine the shortest path using breadth-first search.

3. Identify the optimal solution using the A* algorithm.

4. Compare the costs of the solutions obtained in steps 2 and 3. There should be no
discrepancy if A* identifies cost-optimal solutions.

5. Repeat the process.

Exploration

The heuristic h(n) = 0 is considered admissible, yet it typically results in inefficient
exploration of the search space. Develop a program to investigate this concept.
Demonstrate that when all actions are assumed to have unit cost, both A* and breadth-

first search (BFS) explore the search space similarly. Specifically, they examine all paths
of length one, followed by paths of length two, and so forth.

Remarks

¢ Breadth-first search (BFS) identifies the optimal solution, 25 moves, in 145,605
iterations.

e Depth-first search (DFS) discovers a solution involving 1,157 moves in 1,187
iterations.

o **Best-First Search ** using the Manathan distance identifies the optimal solution,
25 moves, in 2,255 iterations.

Measuring Performance

e Completeness: Does the algorithm ensure that a solution will be found if one
exists, and accurately indicate failure when no solution exists?

e Cost Optimality: Does the algorithm identify the (a) solution with the lowest path
cost among all possible solutions?

e Are all three algorithms complete? What are the necessary conditions?

e Do all three algorithms guarantee cost optimality?

Measuring Performance

e Time Complexity: How does the time required by the algorithm scale with respect
to the number of states and actions?

¢ Space Complexity: How does the space required by the algorithm scale with
respect to the number of states and actions?

Alternatively, complexity can be evaluated based on the depth (d) and branching factor
(b) of the search tree, instead of the number of states (nodes) and actions (edges) in the
state space.

e What is the time and space complexity of breadth-first-search? O(bd)

Videos by Sebastian Lague

e A* Pathfinding (EO1: algorithm explanation) posted on 2014-12-16.
e A* Pathfinding (EO2: node grid) posted on 2014-12-18.

https://www.youtube.com/watch?v=-L-WgKMFuhE
https://www.youtube.com/watch?v=nhiFx28e7JY

e A* Pathfinding (E03: algorithm implementation) posted on 2014-12-19.
e A* Pathfinding (EOQ4: heap optimization) posted on 2014-12-24.

e A* Pathfinding (E05: units) posted on 2015-01-06.

o A* Pathfinding (E06: weights) posted on 2015-01-11.

e A* Pathfinding (EO7: smooth weights) posted on 2016-12-30.

e A* Pathfinding (E08: path smoothing 1/2) posted on 2017-01-31.

e A* Pathfinding (E0Q9: path smoothing 2/2) posted on 2017-01-31.

e A* Pathfinding (E10: threading) posted on 2017-02-03.

e A* Pathfinding Tutorial (Unity) (play list)

A resource dedicated to A*

e Amit's A* Pages

Prologue

Summary

¢ |Informed Search and Heuristics

= Best-First Search
e |Implementations

¢ |Informed Search and Heuristics:

= |ntroduced the concept of heuristic functions (h(n)) to estimate costs.
= Best-First Search:
o Uses heuristics to prioritize nodes that seem closer to the goal.
o Implemented with a priority queue sorted by estimated cost.
= Manhattan Distance Heuristic:
o Calculates the sum of the distances of tiles from their goal positions.
o Used in the 8-Puzzle to guide the search more efficiently.
¢ Comparative Analysis:

= BFS: Optimal solution in 145,605 iterations (25 moves).

= DFS: Suboptimal solution in 1,187 iterations (1,157 moves).

= Best-First Search: Optimal solution in 2,255 iterations (25 moves).

= Demonstrated that informed search algorithms can find optimal solutions more
efficiently.

Next lecture

https://www.youtube.com/watch?v=mZfyt03LDH4
https://www.youtube.com/watch?v=3Dw5d7PlcTM
https://www.youtube.com/watch?v=dn1XRIaROM4
https://www.youtube.com/watch?v=T0Qv4-KkAUo
https://www.youtube.com/watch?v=Tb-rM3wGwv4
https://www.youtube.com/watch?v=NjQjl-ZBXoY
https://www.youtube.com/watch?v=bfevcsANSr4
https://www.youtube.com/watch?v=TFyEWDMQUKc
https://www.youtube.com/playlist?list=PLFt_AvWsXl0cq5Umv3pMC9SPnKjfp9eGW
http://theory.stanford.edu/~amitp/GameProgramming/

e We will examine additional search algorithms.

References

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. 1968. "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths." IEEE Transactions on Systems Science
and Cybernetics 4 (2): 100-107. https://doi.org/10.1109/tssc.1968.300136.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th
ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca
School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

https://doi.org/10.1109/tssc.1968.300136
http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

