
Local Search

CSI 4106 Introduction to Artificial Intelligence

Marcel Turcotte

Version: Nov 10, 2025 08:56

Preamble

Message of the Day

Universities are embracing AI: will students get smarter or stop thinking?, Nature News,

2025-10-21.

Learning Objectives

Understand the concept and application of local search algorithms in optimization

problems.

https://www.nature.com/articles/d41586-025-03340-w

Implement and analyze the hill-climbing algorithm, recognizing its limitations such

as local maxima and plateaus.

Apply effective state representation strategies in problems like the 8-Queens to

enhance search efficiency.

Explain how simulated annealing overcomes local optima by allowing probabilistic

acceptance of worse states.

Analyze the influence of temperature and energy difference on the acceptance

probability in simulated annealing.

Recognize the application of simulated annealing in solving complex optimization

problems like the Travelling Salesman Problem (TSP).

In this presentation, we will analyze two local search algorithms: hill climbing and

simulated annealing. Our goal is to explain the concept of local search and examine

methods for avoiding local optima. We will briefly discuss hill climbing, given its

simplicity, and spend more time on simulated annealing, a very useful algorithm.

Introduction

Context

Focus has been on finding paths in state space.

Some problems prioritize the goal state over the path.

Integrated-circuit design

Job shop scheduling

Automatic programming

The importance of the path versus the goal state hinges on the problem’s nature. For

instance, in a routing problem, the path is the critical piece of information sought.

8-Queens Problem

import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import numpy as np

def display_n_queens(board, width):
 n = len(board)

 # Create a checkerboard pattern
 board_matrix = np.zeros((n, n))
 for row in range(n):
 for col in range(n):
 if (row + col) % 2 == 0:

In [1]:

 board_matrix[row, col] = 1 # White tiles
 else:
 board_matrix[row, col] = 0.5

 # Create custom colormap: gray for 0.5 and white for 1
 cmap = ListedColormap(['lightgray', 'white'])

 # Create the plot
 fig, ax = plt.subplots(figsize=(width, width))
 ax.imshow(board_matrix, cmap=cmap, extent=(0, n, 0, n))

 # Add the queen markers
 for col in range(n):
 row = board[col]
 ax.text(col + 0.5, n - row - 0.5, '♛', fontsize=32, ha='center', va=

 # Add grid lines
 ax.set_xticks(np.arange(n+1), minor=True)
 ax.set_yticks(np.arange(n+1), minor=True)
 ax.grid(which='minor', color='black', linestyle='-', linewidth=2)

 # Remove axis labels and ticks
 ax.set_xticks([])
 ax.set_yticks([])
 ax.tick_params(axis='both', which='both', length=0) # Ensure ticks are

 plt.title(f"{n}-Queens Problem")
 plt.show()

8-Queens Problem

Example board for the 8-queens problem
Represents one valid solution
board = [0, 4, 7, 5, 2, 6, 1, 3]

display_n_queens(board, 5)

In [2]:

The 8-Queens problem involves placing eight queens on an chessboard such

that no two queens threaten each other, meaning no two queens share the same row,

column, or diagonal.

For an chessboard, there exist precisely 92 distinct solutions. Eliminating

symmetry, one finds 12 fondamental solutions. In the more general scenario of an

chessboard, the exact number of solutions has been determined for all values up to

and including 27.

Definition

** (Russell and Norvig 2020, 110)**

Local search algorithms operate by searching from a start state to

neighboring states, without keeping track of the paths, nor the set of

states that have been reached.

Optimizes memory utilization while effectively solving problems in extensive or

infinite state spaces.

This algorithm lacks a systematic approach and does not ensure the discovery of an

optimal solution.

Problem Definition

8 × 8

8 × 8

n × n

n

https://en.wikipedia.org/wiki/Eight_queens_puzzle

Find the “best” state according to an objective function, thereby locating the global

maximum.

This optimization problem is commonly referred to as hill climbing.

Hill-Climbing

Hill-Climbing

Hill-Climbing

Given as in input a problem

current is the initial state of problem

while not done do

nighbour is the highest-valued successor state of current

if value(neighbour) value(current) the return current

set current to neighbour

Hill climbing neither records previously visited states nor anticipates beyond its

immediate neighbors. It keeps track of one current state moves in the direction of the

steepest ascent.

Notably, by inverting the sign of the objective function, the algorithm can be adapted to

seek a local minimum instead.

≤

8-Queens

How would you represent the current state?

. . .

Why is using a grid to represent the current state suboptimal?

. . .

A grid representation permits the illegal placement of two queens in the same column.

. . .

Instead, we can represent the state as a list (), where each element corresponds to

the row position of the queen in its respective column.

In other words, is the row of the queen is column .

State Representation

Example board for the 8-queens problem
board = [0, 4, 7, 5, 2, 6, 1, 3] # Represents one valid solution for 8-quee

display_n_queens(board, 5)

state = [0, 4, 7, 5, 2, 6, 1, 3]

state

state[i] i

In [3]:

create_initial_state

import random
random.seed(7)

def create_initial_state(n):

 """Generates a random initial state with one queen per column."""

 return [random.randint(0, n - 1) for _ in range(n)]

What do you think?

create_initial_state

state = create_initial_state(8)
display_n_queens(state, 5)

state

[5, 2, 6, 0, 1, 1, 5, 0]

Permits two queens in the same row? How can this be resolved?

Representation of 8-Queens

In [5]:

In [6]:

In [7]:

 chessboard.

Unconstrained Placement: possible configurations,

representing the selection of 8 squares from 64.

Column Constraint: Use a list of length 8, with each entry indicating the row of a

queen in its respective column, resulting in configurations.

Row and Column Constraints: Model board states as permutations of the 8 row

indices, reducing configurations to .

This underscores the significance of selecting a good representation.

create_initial_state

import random
random.seed(7)

def create_initial_state(n):

 """Generates a permutation of numbers from 0 to n-1 as the initial state

 state = list(range(n))
 random.shuffle(state)

 return state

create_initial_state

state = create_initial_state(8)
display_n_queens(state, 5)

8 × 8

() = 4, 426, 165, 36864
8

88 = 16, 777, 216

8! = 40, 320

In [8]:

In [9]:

state

[6, 7, 2, 4, 0, 3, 1, 5]

calculate_conflicts

def calculate_conflicts(state):

 n = len(state)
 conflicts = 0

 for col_i in range(n):
 for col_j in range(col_i + 1, n):
 row_i = state[col_i]
 row_j = state[col_j]
 if row_i == row_j: # same row
 conflicts += 1
 if col_i - row_i == col_j - row_j: # same diagonal
 conflicts += 1
 if col_i + row_i == col_j + row_j: # same anti-diagonal
 conflicts += 1

 return conflicts

calculate_conflicts

display_n_queens(state, 5)

In [10]:

In [11]:

In [12]:

5

get_neighbors_rn

def get_neighbors_rn(state):

 """Generates neighboring states by moving on queen at a time to a new ro

 neighbors = []
 n = len(state)

 for col in range(n):
 for row in range(n):
 if (state[col] != row):
 new_state = state[:] # create a copy of the state
 new_state[col] = row
 neighbors.append(new_state)

 return neighbors

Russell and Norvig (2020), neighbours

get_neighbors_rn

In [14]:

8 × 7 = 56

etat = create_initial_state(8)
display_n_queens(etat, 5)

get_neighbors_rn

initial_state_8 = create_initial_state(8)
print(initial_state_8)
for s in get_neighbors_rn(initial_state_8):
 print(f"{s} -> # of conflicts = {calculate_conflicts(s)}")

In [15]:

In [16]:

[7, 4, 2, 5, 1, 0, 3, 6]
[0, 4, 2, 5, 1, 0, 3, 6] -> # of conflicts = 6
[1, 4, 2, 5, 1, 0, 3, 6] -> # of conflicts = 5
[2, 4, 2, 5, 1, 0, 3, 6] -> # of conflicts = 6
[3, 4, 2, 5, 1, 0, 3, 6] -> # of conflicts = 6
[4, 4, 2, 5, 1, 0, 3, 6] -> # of conflicts = 6
[5, 4, 2, 5, 1, 0, 3, 6] -> # of conflicts = 8
[6, 4, 2, 5, 1, 0, 3, 6] -> # of conflicts = 5
[7, 0, 2, 5, 1, 0, 3, 6] -> # of conflicts = 4
[7, 1, 2, 5, 1, 0, 3, 6] -> # of conflicts = 4
[7, 2, 2, 5, 1, 0, 3, 6] -> # of conflicts = 3
[7, 3, 2, 5, 1, 0, 3, 6] -> # of conflicts = 5
[7, 5, 2, 5, 1, 0, 3, 6] -> # of conflicts = 3
[7, 6, 2, 5, 1, 0, 3, 6] -> # of conflicts = 4
[7, 7, 2, 5, 1, 0, 3, 6] -> # of conflicts = 4
[7, 4, 0, 5, 1, 0, 3, 6] -> # of conflicts = 5
[7, 4, 1, 5, 1, 0, 3, 6] -> # of conflicts = 6
[7, 4, 3, 5, 1, 0, 3, 6] -> # of conflicts = 8
[7, 4, 4, 5, 1, 0, 3, 6] -> # of conflicts = 6
[7, 4, 5, 5, 1, 0, 3, 6] -> # of conflicts = 7
[7, 4, 6, 5, 1, 0, 3, 6] -> # of conflicts = 6
[7, 4, 7, 5, 1, 0, 3, 6] -> # of conflicts = 6
[7, 4, 2, 0, 1, 0, 3, 6] -> # of conflicts = 7
[7, 4, 2, 1, 1, 0, 3, 6] -> # of conflicts = 6
[7, 4, 2, 2, 1, 0, 3, 6] -> # of conflicts = 9
[7, 4, 2, 3, 1, 0, 3, 6] -> # of conflicts = 6
[7, 4, 2, 4, 1, 0, 3, 6] -> # of conflicts = 6
[7, 4, 2, 6, 1, 0, 3, 6] -> # of conflicts = 7
[7, 4, 2, 7, 1, 0, 3, 6] -> # of conflicts = 5
[7, 4, 2, 5, 0, 0, 3, 6] -> # of conflicts = 3
[7, 4, 2, 5, 2, 0, 3, 6] -> # of conflicts = 2
[7, 4, 2, 5, 3, 0, 3, 6] -> # of conflicts = 4
[7, 4, 2, 5, 4, 0, 3, 6] -> # of conflicts = 4
[7, 4, 2, 5, 5, 0, 3, 6] -> # of conflicts = 3
[7, 4, 2, 5, 6, 0, 3, 6] -> # of conflicts = 3
[7, 4, 2, 5, 7, 0, 3, 6] -> # of conflicts = 3
[7, 4, 2, 5, 1, 1, 3, 6] -> # of conflicts = 3
[7, 4, 2, 5, 1, 2, 3, 6] -> # of conflicts = 6
[7, 4, 2, 5, 1, 3, 3, 6] -> # of conflicts = 4
[7, 4, 2, 5, 1, 4, 3, 6] -> # of conflicts = 5
[7, 4, 2, 5, 1, 5, 3, 6] -> # of conflicts = 4
[7, 4, 2, 5, 1, 6, 3, 6] -> # of conflicts = 3
[7, 4, 2, 5, 1, 7, 3, 6] -> # of conflicts = 4
[7, 4, 2, 5, 1, 0, 0, 6] -> # of conflicts = 4
[7, 4, 2, 5, 1, 0, 1, 6] -> # of conflicts = 6
[7, 4, 2, 5, 1, 0, 2, 6] -> # of conflicts = 5
[7, 4, 2, 5, 1, 0, 4, 6] -> # of conflicts = 4
[7, 4, 2, 5, 1, 0, 5, 6] -> # of conflicts = 5
[7, 4, 2, 5, 1, 0, 6, 6] -> # of conflicts = 5
[7, 4, 2, 5, 1, 0, 7, 6] -> # of conflicts = 5
[7, 4, 2, 5, 1, 0, 3, 0] -> # of conflicts = 6
[7, 4, 2, 5, 1, 0, 3, 1] -> # of conflicts = 6
[7, 4, 2, 5, 1, 0, 3, 2] -> # of conflicts = 7
[7, 4, 2, 5, 1, 0, 3, 3] -> # of conflicts = 5
[7, 4, 2, 5, 1, 0, 3, 4] -> # of conflicts = 7

[7, 4, 2, 5, 1, 0, 3, 5] -> # of conflicts = 5
[7, 4, 2, 5, 1, 0, 3, 7] -> # of conflicts = 6

get_neighbors

def get_neighbors(state):

 """Generates neighboring states by swapping two rows."""

 neighbors = []
 n = len(state)

 for i in range(n):
 for j in range(i + 1, n):
 new_state = state[:]
 new_state[i], new_state[j] = new_state[j], new_state[i]
 neighbors.append(new_state)

 return neighbors

 neighbours

get_neighbors

etat = create_initial_state(8)
display_n_queens(etat, 5)

In [17]:

= 288×7

2

In [18]:

get_neighbors

print(initial_state_8)
for s in get_neighbors(initial_state_8):
 print(f"{s} -> # of conflicts = {calculate_conflicts(s)}")

[7, 4, 2, 5, 1, 0, 3, 6]
[4, 7, 2, 5, 1, 0, 3, 6] -> # of conflicts = 4
[2, 4, 7, 5, 1, 0, 3, 6] -> # of conflicts = 6
[5, 4, 2, 7, 1, 0, 3, 6] -> # of conflicts = 7
[1, 4, 2, 5, 7, 0, 3, 6] -> # of conflicts = 2
[0, 4, 2, 5, 1, 7, 3, 6] -> # of conflicts = 4
[3, 4, 2, 5, 1, 0, 7, 6] -> # of conflicts = 5
[6, 4, 2, 5, 1, 0, 3, 7] -> # of conflicts = 5
[7, 2, 4, 5, 1, 0, 3, 6] -> # of conflicts = 3
[7, 5, 2, 4, 1, 0, 3, 6] -> # of conflicts = 3
[7, 1, 2, 5, 4, 0, 3, 6] -> # of conflicts = 4
[7, 0, 2, 5, 1, 4, 3, 6] -> # of conflicts = 5
[7, 3, 2, 5, 1, 0, 4, 6] -> # of conflicts = 3
[7, 6, 2, 5, 1, 0, 3, 4] -> # of conflicts = 5
[7, 4, 5, 2, 1, 0, 3, 6] -> # of conflicts = 10
[7, 4, 1, 5, 2, 0, 3, 6] -> # of conflicts = 2
[7, 4, 0, 5, 1, 2, 3, 6] -> # of conflicts = 5
[7, 4, 3, 5, 1, 0, 2, 6] -> # of conflicts = 7
[7, 4, 6, 5, 1, 0, 3, 2] -> # of conflicts = 7
[7, 4, 2, 1, 5, 0, 3, 6] -> # of conflicts = 3
[7, 4, 2, 0, 1, 5, 3, 6] -> # of conflicts = 5
[7, 4, 2, 3, 1, 0, 5, 6] -> # of conflicts = 5
[7, 4, 2, 6, 1, 0, 3, 5] -> # of conflicts = 6
[7, 4, 2, 5, 0, 1, 3, 6] -> # of conflicts = 2
[7, 4, 2, 5, 3, 0, 1, 6] -> # of conflicts = 6
[7, 4, 2, 5, 6, 0, 3, 1] -> # of conflicts = 3
[7, 4, 2, 5, 1, 3, 0, 6] -> # of conflicts = 2
[7, 4, 2, 5, 1, 6, 3, 0] -> # of conflicts = 3
[7, 4, 2, 5, 1, 0, 6, 3] -> # of conflicts = 4

hill_climbing

def hill_climbing(current_state):

 current_conflicts = calculate_conflicts(current_state)

 while True:

 if current_conflicts == 0:
 return curent_state

 neighbors = get_neighbors(current_state)

 conflicts = [calculate_conflicts(neighbor) for neighbor in neighbors

 if (min(conflicts)) > current_conflicts:

In [19]:

In [20]:

 return None # No improvement found, stuck at local minimum

 arg_best = np.argmin(conflicts)
 curent_state = neighbors[arg_best]
 current_conflicts = conflicts[arg_best]

The program above presents a major issue. What exactly is it?

It is important to note that, in this particular context, the problem is defined such that the

sought solution is free of any conflict. However, in some optimization problems, the

minimum value of the objective function is not predetermined.

The main issue is that the algorithm might enter an infinite loop if the condition

min(conflicts == current_conflicts) is satisfied.

Two scenarios may arise: either the plateau is followed by an ascending slope, or it

represents a local maximum. In the first case, the algorithm could potentially exit the

plateau, although this is not guaranteed. To prevent infinite loops, it would be wise to

implement an appropriate mechanism.

hill_climbing (take 2)

MAX_SIDE_MOVES = 100

def hill_climbing(current_state):

 conflicts_current_state = calculate_conflicts(current_state)
 side_moves = 0

 while True:

 if conflicts_current_state == 0:
 return current_state

 neighbors = get_neighbors(current_state)

 conflicts = [calculate_conflicts(voisin) for voisin in neighbors]

 if (min(conflicts)) > conflicts_current_state:
 return None # No improvement, local maxima

 if (min(conflicts)) == conflicts_current_state:
 side_moves += 1 # Plateau

 if side_moves > MAX_SIDE_MOVES:
 return None

 arg_best = np.argmin(conflicts)
 current_state = neighbors[arg_best]
 conflicts_current_state = conflicts[arg_best]

In [21]:

Solve

random.seed(7)

solutions = 0

explored = set()
nb_duplicates = 0

for i in range(10):
 state = create_initial_state(8)

 new_state = hill_climbing(state)

 if (new_state != None):
 display_n_queens(new_state, 6)
 if tuple(new_state) in explored:
 nb_duplicates += 1
 solutions += 1

print(f"10 runs, number of solutions = {solutions}, {nb_duplicates} duplicat

In [22]:

10 runs, number of solutions = 9, 0 duplicate(s)

Solve (2)

random.seed(7)

solutions = 0

explored = set()
nb_duplicates = 0

nb_runs = 1000

for i in range(nb_runs):

 state = create_initial_state(8)

 new_state = hill_climbing(state)

 if (new_state != None):

 if tuple(new_state) in explored:
 nb_duplicates += 1
 else:
 explored.add(tuple(new_state))

In [23]:

 solutions += 1

print(f"{nb_runs} runs, number of solutions = {solutions}, {len(explored)} u

1000 runs, number of solutions = 704, 92 unique solutions

Solve 40-Queens

. . .

import time

start_time = time.time() # Record the start time

random.seed(7)

solutions = 0

explored = set()
nb_duplicates = 0

nb_runs = 10

for i in range(nb_runs):

 state = create_initial_state(40)

 new_state = hill_climbing(state)

 if (new_state != None):

 if tuple(new_state) in explored:
 nb_duplicates += 1
 else:
 explored.add(tuple(new_state))

 solutions += 1

print(f"{nb_runs} runs, number of solutions = {solutions}, {len(explored)} u

one_board = next(iter(explored))
display_n_queens(one_board, 12)

end_time = time.time() # Record the end time
elapsed_time = end_time - start_time # Calculate the elapsed time

print(f"Elapsed time: {elapsed_time:.4f} seconds")

10 runs, number of solutions = 6, 6 unique solutions

40! = 8.1591528325 × 1047

In [25]:

Elapsed time: 22.2966 seconds

Iterations and Side Moves

MAX_SIDE_MOVES = 100

def hill_climbing_counts(current_state):

 conflicts_current_state = calculate_conflicts(current_state)
 side_moves = 0
 iterations = 0

 while True:

 if conflicts_current_state == 0:
 return (iterations, side_moves, current_state)

 iterations += 1

In [26]:

 neighbors = get_neighbors(current_state)

 conflicts = [calculate_conflicts(voisin) for voisin in neighbors]

 if (min(conflicts)) > conflicts_current_state:
 return (iterations, side_moves, None) # No improvement, local max

 if (min(conflicts)) == conflicts_current_state:
 side_moves += 1 # Plateau

 if side_moves > MAX_SIDE_MOVES:
 return (iterations, side_moves, None)

 arg_best = np.argmin(conflicts)
 current_state = neighbors[arg_best]
 conflicts_current_state = conflicts[arg_best]

random.seed(7)

solutions = 0

explored = set()
nb_duplicates = 0

nb_runs = 1000

iterations = []
sides = []

iterations_none = []
sides_none = []

for i in range(nb_runs):

 state = create_initial_state(8)

 (i, s, new_state) = hill_climbing_counts(state)

 if new_state != None:
 iterations.append(i)
 sides.append(s)
 else:
 iterations_none.append(i)
 sides_none.append(s)

 if new_state != None:

 if tuple(new_state) in explored:
 nb_duplicates += 1
 else:
 explored.add(tuple(new_state))

 solutions += 1

In [27]:

print(f"{nb_runs} runs, number of solutions = {solutions}, {len(explored)} u

1000 runs, number of solutions = 704, 92 unique solutions

Iterations and Side Moves

import seaborn as sns
import matplotlib.pyplot as plt

Configurer la structure des sous-graphiques
fig, axes = plt.subplots(1, 2, figsize=(14, 6), sharey=True)

Tracer l'histogramme pour `iterations`
sns.histplot(iterations, kde=True, color='green', ax=axes[0], edgecolor='bla
axes[0].set_title("Histogram of Iterations")
axes[0].set_xlabel("Iterations")
axes[0].set_ylabel("Frequency")

Tracer l'histogramme pour `sides`
sns.histplot(sides, kde=True, color='blue', ax=axes[1], edgecolor='black')

axes[1].set_title("Histogram of Side Moves")
axes[1].set_xlabel("# Side Moves")

Afficher le graphique
plt.legend()
plt.tight_layout()
plt.show()

/var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/T/ipykernel_63020/2749126315.
py:20: UserWarning:

No artists with labels found to put in legend. Note that artists whose labe
l start with an underscore are ignored when legend() is called with no argum
ent.

20-Queens

In [28]:

random.seed(7)

solutions = 0

explored = set()
nb_duplicates = 0

nb_runs = 1000

iterations = []
sides = []

iterations_none = []
sides_none = []

for i in range(nb_runs):

 state = create_initial_state(20)

 (i, s, new_state) = hill_climbing_counts(state)

 if new_state != None:
 iterations.append(i)
 sides.append(s)
 else:
 iterations_none.append(i)
 sides_none.append(s)

 if new_state != None:

 if tuple(new_state) in explored:
 nb_duplicates += 1
 else:
 explored.add(tuple(new_state))

 solutions += 1

print(f"{nb_runs} runs, number of solutions = {solutions}, {len(explored)} u

1000 runs, number of solutions = 566, 566 unique solutions

import seaborn as sns
import matplotlib.pyplot as plt

Configurer la structure des sous-graphiques
fig, axes = plt.subplots(1, 2, figsize=(14, 6), sharey=True)

Tracer l'histogramme pour `iterations`
sns.histplot(iterations, kde=True, color='green', ax=axes[0], edgecolor='bla
axes[0].set_title("Histogram of Iterations")
axes[0].set_xlabel("Iterations")
axes[0].set_ylabel("Frequency")

Tracer l'histogramme pour `sides`
sns.histplot(sides, kde=True, color='blue', ax=axes[1], edgecolor='black')

In [29]:

In [30]:

axes[1].set_title("Histogram of Side Moves")
axes[1].set_xlabel("# Side Moves")

Afficher le graphique
plt.legend()
plt.tight_layout()
plt.show()

/var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/T/ipykernel_63020/2749126315.
py:20: UserWarning:

No artists with labels found to put in legend. Note that artists whose labe
l start with an underscore are ignored when legend() is called with no argum
ent.

Russell & Norvig

Hill climbing gets stuck 86% of the time.

Successful attempts average 4 steps to a solution.

Permitting 100 lateral moves boosts success rate from 14% to 94%.

The problem space comprises states.

Implementation from Russell & Norvig

Has many variants, including random-restart hill climbing.

In the implementation I proposed, there do not appear to be any local minima. However,

this requires further verification.

Escaping a Local Optimum

What mechanisms would enable the hill climbing algorithm to escape from a local

optimum, whether it be a local minimum or maximum?

It needs to accept going downhill.

88 = 16, 777, 216

A random walk approach, which disregards the value of the objective function, could

theoretically locate the global maximum. However, this method is highly impractical due

to its extreme inefficiency.

Remark

Assume the optimization problem is a minimization task, where the goal is to find a

solution with the minimum cost.

Downhill, gradient descent.

Simulated Annealing

Definition

Simulated annealing is an optimization algorithm inspired by the annealing process in

metallurgy. It probabilistically explores the solution space by allowing occasional uphill

moves, which helps escape local optima. The algorithm gradually reduces the

probability of accepting worse solutions by lowering a “temperature” parameter,

ultimately converging towards an optimal or near-optimal solution.

Annealing

** (Russell and Norvig 2020, 114)**

In metallurgy, annealing is the process used to temper or harden metals

and glass by heating them to a high temperature and then gradually

cooling them, thus allowing the material to reach a low-energy

crystalline state.

The solid is heated to its melting point, causing the particles to become randomly

distributed.

Subsequently, the material is gradually cooled, allowing the particles to reorganize into a

low-energy state.

Algorithm

Attribution: (Russell and Norvig 2020, 115)

1. This algorithm resembles hill climbing but differs by randomly selecting the next

state rather than choosing the optimal move.

2. If the move results in a lower objective function value, it is accepted unconditionally.

3. Otherwise, acceptance is probabilistic, contingent on both and .

Varying

import numpy as np
import matplotlib.pyplot as plt

Define a fixed temperature, T
T = 1.0 # You can adjust this value as needed

Define a range of energy changes, ΔE
delta_E = np.linspace(0, 5, 500)

Compute the function e^(-ΔE/T)
y = np.exp(-delta_E / T)

Plot the function
plt.figure(figsize=(8, 5))
plt.plot(delta_E, y, label=r'$e^{-\frac{\Delta E}{T}}$', color='blue')
plt.title(r'Plot of $e^{-\Delta E / T}$')
plt.xlabel(r'Energy Change (ΔE)')
plt.ylabel(r'$e^{-\Delta E / T}$')
plt.ylim(0, 1.1)
plt.xlim(0, 5)
plt.grid(True)
plt.legend()
plt.show()

ΔE T

ΔE

In [31]:

Moves resulting in significant negative changes (worse) to the objective function are

less likely to be accepted.

Varying the temperature,

import numpy as np
import matplotlib.pyplot as plt

Define the energy change, ΔE
delta_E = 0.1 # You can adjust this value as needed

Define a range of temperatures, T
T = np.linspace(0.1, 5, 500) # Avoid T=0 to prevent division by zero

Compute the function e^(-ΔE/T)
y = np.exp(-delta_E / T)

Plot the function
plt.figure(figsize=(8, 5))
plt.plot(T, y, label=r'$e^{-\frac{\Delta E}{T}}$', color='blue')
plt.title(r'Plot of $e^{-\Delta E / T}$')
plt.xlabel('Temperature (T)')
plt.ylabel(r'$e^{-\Delta E / T}$')
plt.ylim(0, 1.1)
plt.xlim(0, 5)
plt.grid(True)
plt.legend()
plt.show()

T

In [32]:

For a fixed (here), changes are more likely to be accepted whe is high, at the

start of the algorithm.

Varying the temperature and

import numpy as np
import matplotlib.pyplot as plt

Define a range of temperatures, T
T = np.linspace(0.1, 5, 500) # Avoid T=0 to prevent division by zero

Define specific values for energy change, ΔE
delta_E_values = [0.001, 0.01, 0.1, 1.0, 2.0]

Plot the function for each ΔE
plt.figure(figsize=(10, 6))
for delta_E in delta_E_values:
 y = np.exp(-delta_E / T)
 plt.plot(T, y, label=r'$\Delta E = {:.3f}$'.format(delta_E))

Customize the plot
plt.title(r'Plot of $e^{-\Delta E / T}$ for Different ΔE Values')
plt.xlabel('Temperature (T)')
plt.ylabel(r'$e^{-\Delta E / T}$')
plt.ylim(0, 1.1)
plt.xlim(0, 5)
plt.grid(True)

ΔE 0.1 T

ΔE

In [33]:

plt.legend()
plt.show()

Bad moves are more likely to be accepted at the start when is high, and less likely as

 decreases.

Varying the temperature and

import { Inputs, Plot } from "@observablehq/plot"

viewof deltaE = Inputs.range([0.01, 100], {step: 0.01, value: 0.1, label: "Δ

T_values = Array.from({length: 1000}, (_, i) => (i + 1) * 0.1)

function computeData(deltaE) {
 return T_values.map(T => ({
 T: T,
 value: Math.exp(-deltaE / T)
 }))
}

data = computeData(deltaE)

Plot.plot({
 marks: [
 Plot.line(data, {
 x: "T",
 y: "value",
 stroke: "steelblue",
 strokeWidth: 2

T

T

ΔE

In []:

 }),
 Plot.ruleX([0], {stroke: "black"}), // X-axis line
 Plot.ruleY([0], {stroke: "black"}) // Y-axis line
]
})

Using Observable JS.

Theory

** (Russell and Norvig 2020, 114)**

If the schedule lowers to 0 slowly enough, then a property of the

Boltzmann (aka Gibbs) distribution, , is that all the probability is

concentrated on the global maxima, which the algorithm will find with

probability approaching 1.

See also: Laarhoven and Aarts (1987), Aarts and Korst (1989)

Definition

The Travelling Salesman Problem (TSP) is a classic optimization problem that seeks

the shortest possible route for a salesman to visit a set of cities, returning to the origin

city, while visiting each city exactly once.

The challenge lies in determining the most efficient path, especially as the number of

cities increases, due to the combinatorial explosion of possible routes.

Traveling Salesman

Ensure we always generate the same coordinates

np.random.seed(42)

Generate random coordinates for the cities

num_cities = 20
coordinates = np.random.rand(num_cities, 2) * 100

Calculate the distance matrix

distance_matrix = np.sqrt(((coordinates[:, np.newaxis] - coordinates[np.newa

import matplotlib.pyplot as plt

def plot_cities(coordinates, title="Cities of the Traveling Salesman Problem

 """

T

e
ΔE

T

In [34]:

In [35]:

https://observablehq.com/plot/

 Plot the given coordinates representing the cities.

 Parameters:
 - coordinates: A 2D NumPy array of shape (n, 2) representing the (x, y)
 - title: Title of the plot.
 """

 # Extract x and y coordinates
 x = coordinates[:, 0]
 y = coordinates[:, 1]

 plt.figure(figsize=(6, 6))

 # Plot the cities as red points
 plt.scatter(x, y, c='red', zorder=2)

 # Annotate the cities with their indices
 for i, (xi, yi) in enumerate(zip(x, y)):
 plt.annotate(str(i + 1), (xi, yi), textcoords="offset points", xytex

 # Set the title and labels
 plt.title(title)
 plt.xlabel('X Coordinate')
 plt.ylabel('Y Coordinate')
 plt.grid(True)
 plt.axis('equal') # Equal scaling for x and y axes
 plt.show()

plot_cities(distance_matrix)

How to Represent a Solution?

. . .

We will use a list where each element represents the index of a city, and the order of

elements indicates the sequence of city visits.

Random Solution

def plot_tsp_path(coordinates, path=None, title="Travelling Salesman Problem

 """
 Plots the given coordinates and optionally a path for the TSP.

 Parameters:
 - coordinates: A 2D NumPy array of shape (n, 2) representing the (x, y)
 - path: A list or array of indices representing the order of cities to v
 - title: Title of the plot.
 """

In [36]:

 # Extract x and y coordinates
 x = coordinates[:, 0]
 y = coordinates[:, 1]

 plt.figure(figsize=(6, 6))

 # If a path is given, rearrange the coordinates
 if path is not None:
 x = x[path]
 y = y[path]

 # Plot the nodes
 plt.scatter(x, y, c='red', zorder=2)

 # Annotate the nodes with their indices
 for i, (xi, yi) in enumerate(zip(x, y)):
 plt.annotate(str(i + 1), (xi, yi), textcoords="offset points", xytex

 # Plot the path
 plt.plot(x, y, 'b-', zorder=1)

 # If a path is provided, connect the last point to the first to complete
 if path is not None:
 plt.plot([x[-1], x[0]], [y[-1], y[0]], 'b-', zorder=1)

 # Set the title and labels
 plt.title(title)
 plt.xlabel('X Coordinate')
 plt.ylabel('Y Coordinate')
 plt.grid(True)
 plt.axis('equal') # Equal scale for x and y axes
 plt.show()

num_cities = len(distance_matrix)
current_route = np.arange(num_cities)
np.random.shuffle(current_route)
plot_tsp_path(distance_matrix, current_route)

Calculate the Total Distance

Function to calculate the total distance of a given route

def calculate_total_distance(route, distance_matrix):

 total_distance = 0

 for i in range(len(route) - 1):
 total_distance += distance_matrix[route[i], route[i + 1]]

 total_distance += distance_matrix[route[-1], route[0]] # Back to start

 return total_distance

Neighborhood

plot_tsp_path(distance_matrix,current_route)

In [37]:

In [38]:

How to generate a neighboring solution?

Generating a Neighboring Solution

How to generate a neighboring solution?

Swap Two Cities

Description: Select two cities at random and swap their positions.

Pros: Simple and effective for exploring nearby solutions.

Cons: Change may be too small, potentially slowing down convergence.

Reverse Segment

Description: Select two indices and reverse the segment between them.

Pros: More effective at finding shorter paths compared to simple swaps.

Cons: Can still be computationally expensive as the number of cities increases.

Remove & Reconnect

Description: Removes three edges from the route and reconnects the segments in

the best possible way. This can generate up to 7 different routes.

Pros: Provides more extensive changes and can escape local optima more

effectively than 2-opt.

Cons: More complex and computationally expensive to implement.

Insertion Move

Description: Select a city and move it to a different position in the route.

Pros: Offers a balance between small and large changes, making it useful for fine-

tuning solutions.

Cons: May require more iterations to converge to an optimal solution.

Shuffle Subset

Description: Select a subset of cities in the route and randomly shuffle their order.

Pros: Introduces larger changes and can help escape local minima.

Cons: Can lead to less efficient routes if not handled carefully.

Generating a Neighboring Solution

Function to generate a random neighboring solution

def get_neighbor(route):

 a, b = np.random.randint(0, len(route), size=2)

 if a > b:
 a, b = b, a

 new_route = route.copy()
 new_route[a:b+1] = new_route[a:b+1][::-1] # Reverse the segment between

 return new_route

simulated_annealing

def simulated_annealing(distance_matrix, initial_temp, cooling_rate, max_ite

 num_cities = len(distance_matrix)
 current_route = np.arange(num_cities)
 np.random.shuffle(current_route)
 current_cost = calculate_total_distance(current_route, distance_matrix)

In [39]:

In [40]:

 best_route = current_route.copy()
 best_cost = current_cost

 temperature = initial_temp

 for iteration in range(max_iterations):

 neighbor_route = get_neighbor(current_route)
 neighbor_cost = calculate_total_distance(neighbor_route, distance_ma

 # Accept the neighbor if it is better, or with a probability if it i

 delta_E = neighbor_cost - current_cost

 if neighbor_cost < current_cost or np.random.rand() < np.exp(-(delta
 current_route = neighbor_route
 current_cost = neighbor_cost

 if current_cost < best_cost:
 best_route = current_route.copy()
 best_cost = current_cost

 # Cool down the temperature
 temperature *= cooling_rate

 return best_route, best_cost, temperatures, costs

Remarks

As , the algorithm exhibits behavior characteristic of a random walk. During

this phase, any neighboring state, regardless of whether it improves the objective

function, is accepted. This facilitates exploration and occurs at the start of the

algorithm’s execution.

Remarks

Conversely, as , the algorithm behaves like hill climbing. In this phase, only

those states that enhance the objective function’s value are accepted, ensuring that

the algorithm consistently moves towards optimal solutions—specifically, towards

lower values in minimization problems. This phase emphasizes the exploitation of

promising solutions and occurs towards the algorithm’s conclusion.

See also: Properties of Simulated Annealing - Georgia Tech - Machine Learning. Udacity

video (4m 10s). Posted on 2015-02-23.

1. Exploration:

Exploration involves searching through a broad area of the search space to

discover new possibilities, solutions, or information. The goal of exploration is to

t → ∞

t → 0

https://youtu.be/enNgiWuIHAo

gather a diverse set of data points or solutions that could potentially lead to

finding better global optima. It prevents the search process from getting

trapped in local optima by encouraging the consideration of less-visited or

unexplored regions of the search space.

In algorithms, exploration can be implemented by introducing randomness,

trying new or less-promising paths, or using strategies like simulated annealing

or genetic algorithms that encourage diversity.

2. Exploitation:

Exploitation focuses on leveraging known information to refine and improve

existing solutions. It involves concentrating the search effort around areas

believed to contain high-quality solutions based on prior knowledge or

experience. The goal is to optimize and fine-tune these solutions to achieve the

best possible outcome in those regions.

In algorithms, exploitation can be seen in strategies like hill climbing, gradient

ascent/descent, or greedy algorithms, where the search is focused on local

improvement and making incremental gains.

Example

Ensuring reproducibility
np.random.seed(42)

Generate random coordinates for cities
num_cities = 20
coordinates = np.random.rand(num_cities, 2) * 100

Calculate distance matrix
distance_matrix = np.sqrt(((coordinates[:, np.newaxis] - coordinates[np.newa

Run simulated annealing

initial_temp = 15
cooling_rate = 0.995
max_iterations = 1000

Held–Karp Algorithm

Introduced: 1962 by Held, Karp, and independently by Bellman.

Problem: Solves the Traveling Salesman Problem (TSP) using dynamic

programming.

Time Complexity: .

Space Complexity: .

Efficiency: Better than brute-force , yet still exponential.

Held–Karp Algorithm

In [41]:

Θ(2nn2)

Θ(2nn)

Θ(n!)

from itertools import combinations
import numpy as np

def held_karp(distance_matrix):
 # Number of cities
 n = len(distance_matrix)

 # DP table: dp[subset][last_visited] = minimum cost to reach `last_visit
 dp = {}

 # Initialize the DP table with the distances from the starting point (ci
 for i in range(1, n):
 dp[(1 << i, i)] = distance_matrix[0][i]

 # Iterate over all subset sizes
 for subset_size in range(2, n):
 for subset in combinations(range(1, n), subset_size):
 # Bitmask of the subset, excluding the starting city
 subset_mask = sum(1 << i for i in subset)
 for last in subset:
 # Update the DP table with the minimum cost for this subset
 prev_subset_mask = subset_mask & ~(1 << last)
 dp[(subset_mask, last)] = min(
 dp[(prev_subset_mask, k)] + distance_matrix[k][last]
 for k in subset if k != last
)

 # Find the minimum cost to complete the tour back to the starting point
 full_mask = (1 << n) - 2 # All cities visited except starting city
 return min(dp[(full_mask, last)] + distance_matrix[last][0] for last in

Example usage with a sample distance matrix
distance_matrix = [
[0, 10, 15, 20],
[10, 0, 35, 25],
[15, 35, 0, 30],
[20, 25, 30, 0]
]
min_cost = held_karp(distance_matrix)
print(f"Using Held–Karp to find the minimum cost of TSP tour: {min_cost:.2f}

Using Held–Karp to find the minimum cost of TSP tour: 386.43

Held and Karp (1962) and Bellman (1962)

Execution

Simulated Annealing function

def simulated_annealing(distance_matrix, initial_temp, cooling_rate, max_ite
 num_cities = len(distance_matrix)
 current_route = np.arange(num_cities)
 np.random.shuffle(current_route)

In [42]:

In [43]:

 current_cost = calculate_total_distance(current_route, distance_matrix)

 best_route = current_route.copy()
 best_cost = current_cost

 temperatures = []
 costs = []

 temperature = initial_temp

 # Collect intermediate solutions
 intermediate_solutions = []
 for iteration in range(max_iterations):
 neighbor_route = get_neighbor(current_route)
 neighbor_cost = calculate_total_distance(neighbor_route, distance_ma

 # Accept neighbor if it's better, or with a probability if it's wors
 if neighbor_cost < current_cost or np.random.rand() < np.exp(-(neigh
 current_route = neighbor_route
 current_cost = neighbor_cost

 if current_cost < best_cost:
 best_route = current_route.copy()
 best_cost = current_cost

 # Store temperature and cost for plotting
 temperatures.append(temperature)
 costs.append(current_cost)

 # Cool down the temperature
 temperature *= cooling_rate

 # Collect intermediate solutions at regular intervals
 if iteration % (max_iterations // 10) == 0:
 intermediate_solutions.append((current_route.copy(), current_cos

 # Plot 10 intermediate solutions in a 4x5 grid
 fig, axes = plt.subplots(2, 5, figsize=(12, 6))
 axes = axes.flatten()
 for idx, (route, cost) in enumerate(intermediate_solutions):
 ax = axes[idx]
 ax.scatter(*zip(*coordinates), c='red', marker='o')
 ax.plot(*zip(*coordinates[route]), 'b-', alpha=0.6)
 ax.set_title(f"Iteration: {idx*100} - Cost: {cost:.0f}")
 ax.axis('off') # Turn off the axes for a cleaner look
 plt.tight_layout()
 plt.show()

 return best_route, best_cost, temperatures, costs

best_route, best_cost, temperatures, costs = simulated_annealing(distance_ma

When I initially published these slides, the selected initial temperature of 1000 was

excessively high relative to the objective function’s cost. By adjusting the initial

temperature to 15, we achieve a more effective balance between exploration and

exploitation.

Due to the snapshots being captured every 100 iterations, the increases in cost are not

visible. This is illustrated on the “Temperature and Cost” slide.

Best Route

Plot the final best route
plt.figure(figsize=(5, 5))
plt.scatter(*zip(*coordinates), c='red', marker='o')
plt.plot(*zip(*coordinates[best_route]), 'b-', alpha=0.6)
plt.title(f"Best Route - Cost: {best_cost:.2f}")
plt.show()

In [44]:

We have found an optimal tour!

Temperature and Cost

Plot temperature and cost graphs
plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)
plt.plot(temperatures)
plt.title("Temperature Over Iterations")
plt.xlabel("Iteration")
plt.ylabel("Temperature")

plt.subplot(1, 2, 2)
plt.plot(costs)
plt.title("Cost Over Iterations")
plt.xlabel("Iteration")
plt.ylabel("Cost")

plt.tight_layout()
plt.show()

In [45]:

Swapping Neighbors

Description: Select two cities at random, swap their positions.

Pros: Simple and effective for exploring nearby solutions.

Cons: Change may be too small, potentially slowing down convergence.

def get_neighbor_swap(route):
 a, b = np.random.randint(0, len(route), size=2)
 new_route = route.copy()
 new_route[a], new_route[b] = new_route[b], new_route[a]
 return new_route

Execution

Plot the final best route
get_neighbor = get_neighbor_swap

best_route, best_cost, temperatures, costs = simulated_annealing(distance_ma

In [46]:

In [47]:

Best Route

Plot the final best route
plt.figure(figsize=(5, 5))
plt.scatter(*zip(*coordinates), c='red', marker='o')
plt.plot(*zip(*coordinates[best_route]), 'b-', alpha=0.6)
plt.title(f"Best Route - Cost: {best_cost:.2f}")
plt.show()

In [48]:

In this specific instance and for the given problem, reverse segment (cost = 386.43)

was more effective compared to swapping neighbors (cost = 430.03).

Temperature and Cost

Plot temperature and cost graphs
plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)
plt.plot(temperatures)
plt.title("Temperature Over Iterations")
plt.xlabel("Iteration")
plt.ylabel("Temperature")

plt.subplot(1, 2, 2)
plt.plot(costs)
plt.title("Cost Over Iterations")
plt.xlabel("Iteration")
plt.ylabel("Cost")

plt.tight_layout()
plt.show()

Selecting a Neighborhood Strategy

Simple Moves (Swap, Insertion): Effective for initial exploration; risk of local

optima entrapment.

Complex Moves: Enhance capability to escape local optima and accelerate

convergence; entail higher computational expense.

Hybrid Approaches: Integrate diverse strategies for neighborhood generation.

Employ simple moves initially, transitioning to complex ones as convergence

progresses.

In [49]:

Initial Temperature

Influence: Since the probability of accepting a new state is given by , the selection

of the initial temperature is directly influenced by and consequently by the

objective function value for a random state, .

Initial Temperature

Example Problems: Consider two scenarios: problem with and

problem with .

Energy Difference: Accepting a state that is 10% worse results in energy

differences for problem and for

problem .

Acceptance Probability: To accept such state 60% of the time, set .

Solving for yields initial temperatures of approximately for problem

and for problem .

Initial Temperature

A popular approach is to set the initial temperature so that a significant portion of

moves (often around 60-80%) are accepted.

This can be done by running a preliminary phase where the temperature is adjusted until

the acceptance ratio stabilizes within this range.

Ben-Ameur (2004) suggests a more rigorous mathematical methodology.

Cooling Strategies

In simulated annealing, cooling down is essential for managing algorithm convergence.

The cooling schedule dictates the rate at which the temperature decreases, affecting

the algorithm’s capacity to escape local optima and converge towards a near-optimal

solution.

Nourani and Andresen (1998) and Alex, Simon, and Samuel (2017)

Linear Cooling

Description: The temperature decreases linearly with each iteration.

Formula:

: Initial temperature

e− ΔE

T

ΔE

f(s)

a f(a) = 1, 000

b f(b) = 100

ΔE = 0.1 ⋅ f(a) = 100 a ΔE = 0.1 ⋅ f(b) = 10

b

e− = 0.6
ΔE

T

T T ≈ 195.8 a

T ≈ 19.58 b

T = T0 − α ⋅ k

T0

: A constant decrement

: Current iteration

Pros: Simple to implement and understand.

Cons: Often leads to premature convergence because the temperature decreases

too quickly.

temperature = initial_temp - alpha * iteration

Geometric (Exponential) Cooling

Description: The temperature decreases exponentially with each iteration.

Formula:

: Cooling rate, typically between 0.8 and 0.99

: Current iteration

Pros: Widely used due to its simplicity and effectiveness.

Cons: The choice of is critical; if it’s too small, the temperature drops too fast,

and if it’s too large, convergence can be slow.

temperature = initial_temp * (cooling_rate ** iteration)

Logarithmic Cooling

Description: The temperature decreases slowly following a logarithmic function.

Formula:

: A scaling constant

: Current iteration

Pros: Provides a slower cooling rate, which is useful for problems that require

extensive exploration of the solution space.

Cons: Convergence can be very slow, requiring many iterations.

temperature = alpha * initial_temp / (np.log(1 + iteration))

Inverse Cooling

Description: The temperature decreases as an inverse function of the iteration

number.

Formula:

: A scaling constant

: Current iteration

Pros: Allows for a more controlled cooling process, balancing exploration and

exploitation.

α

k

In [50]:

T = T0 ⋅ αk

α

k

α

In [51]:

T =
α⋅T0

log(1+k)

α

k

In [52]:

T =
T0

1+α⋅K

α

k

Cons: May require careful tuning of to be effective.

temperature = initial_temp / (1 + alpha * iteration)

Adaptive Cooling

Description: The cooling schedule is adjusted dynamically based on the

performance of the algorithm.

Strategy: If the algorithm is not making significant progress, the cooling rate may

be slowed down. Conversely, if progress is steady, the cooling rate can be

increased.

Pros: More flexible and can adapt to the characteristics of the problem.

Cons: More complex to implement and requires careful design to avoid instability.

if no_significant_change_in_cost:
 temperature *= 0.99 # Slow down cooling
else:
 temperature *= 0.95 # Speed up cooling

Cooling Schedule - Summary

Constants
initial_temp = 100
alpha = 0.995
iterations = np.arange(0, 1001)

Cooling strategies
def exponential_cooling(initial_temp, alpha, iteration):
 return initial_temp * (alpha ** iteration)

def linear_cooling(initial_temp, alpha, iteration):
 return max(0, initial_temp - alpha * iteration)

def logarithmic_cooling(initial_temp, alpha, iteration):
 return min(initial_temp, alpha * initial_temp / (np.log(1 + iteration) +

def inverse_cooling(initial_temp, alpha, iteration):
 return initial_temp / (1 + alpha * iteration)

Calculate temperatures
linear_temps = [linear_cooling(initial_temp, alpha, i) for i in iterations]
exponential_temps = [exponential_cooling(initial_temp, alpha, i) for i in it
logarithmic_temps = [logarithmic_cooling(initial_temp, alpha, i) for i in it
inverse_temps = [inverse_cooling(initial_temp, alpha, i) for i in iterations

Plotting
plt.figure(figsize=(8, 6))
plt.plot(iterations, exponential_temps, label='Exponential Cooling')
plt.plot(iterations, linear_temps, label='Linear Cooling')
plt.plot(iterations, logarithmic_temps, label='Logarithmic Cooling')

α

In [53]:

In [54]:

In [55]:

plt.plot(iterations, inverse_temps, label='Inverse Cooling')
plt.xlabel('Iteration')
plt.ylabel('Temperature')
plt.title(r'Cooling Strategies ($\alpha = 0.995$)')
plt.legend()
plt.grid(True)
plt.show()

See also: Effective Simulated Annealing with Python by Nathan A. Rooy.

Choosing the Right Cooling Schedule

Problem-Specific: The choice of cooling schedule often depends on the

characteristics of the problem being solved. Some problems benefit from a slower

cooling rate, while others may need faster convergence.

Experimentation: It’s common to experiment with different strategies and

parameters to find the best balance between exploration (searching broadly) and

exploitation (refining the current best solutions).

Conclusion

https://nathanrooy.github.io/posts/2020-05-14/simulated-annealing-with-python/

After applying simulated annealing, a local search method such as hill climbing can

be used to refine the solution.

. . .

Simulated annealing is effective for exploring the solution space and avoiding local

minima, while local search focuses on the exploration of neighboring solutions.

Simulated Annealing Visualization

https://youtu.be/NPE3zncXA5s?si=Z9rk2Kt_5pN8ChlA

Attribution: ComputationalScientist, Posted on 2018-01-06.

Prologue

Summary

Local search algorithms focus on finding goal states by moving between

neighboring states without tracking paths.

The hill-climbing algorithm seeks the highest-valued neighbor but can get stuck in

local maxima or plateaus.

Effective state representation, such as using permutations in the 8-Queens

problem, avoids illegal placements and improves performance.

Simulated annealing allows occasional uphill moves to escape local optima,

controlled by a decreasing temperature parameter.

The acceptance probability in simulated annealing decreases as temperature lowers

and energy difference increases.

Simulated annealing effectively solves complex problems like the Travelling

Salesman Problem by probabilistically exploring the solution space.

Further Readings

https://youtu.be/NPE3zncXA5s?si=Z9rk2Kt_5pN8ChlA
https://www.youtube.com/@computationalscientist6368

“The overall SA [simulated annealing] methodology is then deployed in detail on a real-

life application: a large-scale aircraft trajectory planning problem involving nearly

30,000 flights at the European continental scale.”

(Gendreau and Potvin 2019, chap. 1)

Gendreau and Potvin (2019), access via Springer Link.

Did you know that you can freely access the entire collection of books from Springer? By

using a device connected to a uOttawa IP address and visiting Springer Link, you have

the ability to download books in either PDF or EPUB format.

The book is co-edited by Jean-Yves Potvin and Michel Gendreau. Jean-Yves Potvin

serves as a professor at the Université de Montréal, while Michel Gendreau holds a

professorship at École Polytechnique de Montréal.

Next lecture

We will discuss population-based algorithms.

References

Aarts, E. H. L., and J. H. M. Korst. 1989. Simulated Annealing and Boltzmann Machines :

A Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley-

Interscience Series in Discrete Mathematics and Optimization. Wiley.

Alex, Kwaku Peprah, Kojo Appiah Simon, and Kwame Amponsah Samuel. 2017. “An

Optimal Cooling Schedule Using a Simulated Annealing Based Approach.” Applied

Mathematics 08 (08): 1195–1210. https://doi.org/10.4236/am.2017.88090.

Bellman, Richard. 1962. “Dynamic Programming Treatment of the Travelling Salesman

Problem.” Journal of the ACM (JACM) 9 (1): 61–63.

https://doi.org/10.1145/321105.321111.

Ben-Ameur, Walid. 2004. “Computing the Initial Temperature of Simulated Annealing.”

Computational Optimization and Applications 29 (3): 369–85.

https://doi.org/10.1023/b:coap.0000044187.23143.bd.

Gendreau, M., and J. Y. Potvin. 2019. Handbook of Metaheuristics. International Series in

Operations Research & Management Science. Springer International Publishing.

https://books.google.com.ag/books?id=RbfFwQEACAAJ.

Held, Michael, and Richard M. Karp. 1962. “A Dynamic Programming Approach to

Sequencing Problems.” Journal of the Society for Industrial and Applied Mathematics 10

(1): 196–210. https://doi.org/10.1137/0110015.

Laarhoven, P. J. M., and E. H. L. Aarts. 1987. Simulated Annealing: Theory and

Applications. USA: Kluwer Academic Publishers.

https://link.springer.com/book/10.1007/978-3-319-91086-4
https://link.springer.com/
https://recherche.umontreal.ca/english/our-researchers/professors-directory/researcher/is/in14464/
https://www.polymtl.ca/expertises/en/gendreau-michel
https://recherche.umontreal.ca/english/our-researchers/professors-directory/researcher/is/in14464/
https://www.polymtl.ca/expertises/en/gendreau-michel
https://doi.org/10.4236/am.2017.88090
https://doi.org/10.1145/321105.321111
https://doi.org/10.1023/b:coap.0000044187.23143.bd
https://books.google.com.ag/books?id=RbfFwQEACAAJ
https://doi.org/10.1137/0110015

Nourani, Yaghout, and Bjarne Andresen. 1998. “A Comparison of Simulated Annealing

Cooling Strategies.” Journal of Physics A: Mathematical and General 31 (41): 8373.

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

