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Preamble

Message of the Day

Universities are embracing Al: will students get smarter or stop thinking?, Nature News,
2025-10-21.

Learning Objectives

e Understand the concept and application of local search algorithms in optimization
problems.


https://www.nature.com/articles/d41586-025-03340-w

¢ Implement and analyze the hill-climbing algorithm, recognizing its limitations such
as local maxima and plateaus.

o Apply effective state representation strategies in problems like the 8-Queens to
enhance search efficiency.

e Explain how simulated annealing overcomes local optima by allowing probabilistic
acceptance of worse states.

¢ Analyze the influence of temperature and energy difference on the acceptance
probability in simulated annealing.

¢ Recognize the application of simulated annealing in solving complex optimization
problems like the Travelling Salesman Problem (TSP).

In this presentation, we will analyze two local search algorithms: hill climbing and
simulated annealing. Our goal is to explain the concept of local search and examine
methods for avoiding local optima. We will briefly discuss hill climbing, given its
simplicity, and spend more time on simulated annealing, a very useful algorithm.

Introduction

Context

e Focus has been on finding paths in state space.
e Some problems prioritize the goal state over the path.

m Integrated-circuit design
= Job shop scheduling
= Automatic programming

The importance of the path versus the goal state hinges on the problem’s nature. For
instance, in a routing problem, the path is the critical piece of information sought.

8-Queens Problem

import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import numpy as np

def display_n_queens(board, width):
n = len(board)

# Create a checkerboard pattern
board_matrix = np.zeros((n, n))
for row in range(n):
for col in range(n):
if (row + col) % 2 == 0:



board_matrix[row, coll
else:
board_matrix[row, col]

# Create custom colormap: gray for
cmap = ListedColormap(['lightgray",

# Create the plot

9

1 # White tiles
0.5

.5 and white for 1
'white'])

fig, ax = plt.subplots(figsize=(width, width))
ax.imshow(board_matrix, cmap=cmap, extent=(0, n, 0, n))

# Add the queen markers
for col in range(n):
row = board[col]

ax.text(col + 0.5, n = row - 0.5, 'w', fontsize=32, ha='center', vas

# Add grid lines

ax.set_xticks(np.arange(n+1l), minor=True)
ax.set_yticks(np.arange(n+l), minor=True)
ax.grid(which="minor', color='black', linestyle='-', linewidth=2)

# Remove axis labels and ticks
ax.set_xticks([1)
ax.set_yticks([])

ax.tick_params(axis='both', which='both', length=0) # Ensure ticks are

plt.title(f"{n}-Queens Problem")
plt.show()

8-Queens Problem

# Example board for the 8-queens problem

# Represents one valid solution
board = [0, 4, 7, 5, 2, 6, 1, 3]

display_n_queens(board, 5)



8-Queens Problem
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The 8-Queens problem involves placing eight queens on an 8 X 8 chessboard such
that no two queens threaten each other, meaning no two queens share the same row,

column, or diagonal.

For an 8 x 8 chessboard, there exist precisely 92 distinct solutions. Eliminating
symmetry, one finds 12 fondamental solutions. In the more general scenarioof ann X n
chessboard, the exact number of solutions has been determined for all n values up to
and including 27.

Definition
** (Russell and Norvig 2020, 110)**

Local search algorithms operate by searching from a start state to
neighboring states, without keeping track of the paths, nor the set of
states that have been reached.

Optimizes memory utilization while effectively solving problems in extensive or
infinite state spaces.

This algorithm lacks a systematic approach and does not ensure the discovery of an
optimal solution.

Problem Definition


https://en.wikipedia.org/wiki/Eight_queens_puzzle

Find the "best” state according to an objective function, thereby locating the global
maximum.

This optimization problem is commonly referred to as hill climbing.

Hill-Climbing

Hill-Climbing

objective function

global maximum

local maximum

» state space
current state

Hill-Climbing

Given as in input a problem
e current is the initial state of problem
¢ while not done do

= nighbour is the highest-valued successor state of current
» if value(neighbour) < value(current) the return current
m set current to neighbour

Hill climbing neither records previously visited states nor anticipates beyond its
immediate neighbors. It keeps track of one current state moves in the direction of the
steepest ascent.

Notably, by inverting the sign of the objective function, the algorithm can be adapted to
seek a local minimum instead.



8-Queens

How would you represent the current state?

Why is using a grid to represent the current state suboptimal?

A grid representation permits the illegal placement of two queens in the same column.

Instead, we can represent the state as a list (state), where each element corresponds to
the row position of the queen in its respective column.

In other words, state[i] is the row of the queen is column z.
State Representation

# Example board for the 8-queens problem
board = [0, 4, 7, 5, 2, 6, 1, 3] # Represents one valid solution for 8-que¢

display_n_queens(board, 5)

8-Queens Problem
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state = [0, 4, 7, 5, 2, 6, 1, 3]



create_initial state

import random
random.seed(7)

def create_initial state(n):

""“"Generates a random initial state with one queen per column.

return [random.randint(@, n - 1) for _ in range(n)]

What do you think?

create_initial _state

state = create_initial_state(8)
display_n_queens(state, 5)

8-Queens Problem

W W
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W

state
[5, 2, 6, 0, 1, 1, 5, 0]

Permits two queens in the same row? How can this be resolved?

Representation of 8-Queens



8 x 8 chessboard.

* Unconstrained Placement: (%) = 4,426, 165, 368 possible configurations,
representing the selection of 8 squares from 64.

e Column Constraint: Use a list of length 8, with each entry indicating the row of a
gueen in its respective column, resulting in 8% = 16,777,216 configurations.

¢ Row and Column Constraints: Model board states as permutations of the 8 row
indices, reducing configurations to 8! = 40, 320.

This underscores the significance of selecting a good representation.

create_initial state

import random
random.seed(7)

def create_initial _state(n):
"""Generates a permutation of numbers from @ to n-1 as the initial state

state = list(range(n))
random.shuffle(state)

return state

create_initial state

state = create_initial_state(8)
display_n_queens(state, 5)



8-Queens Problem
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state

6, 7, 2, 4, 0, 3, 1, 5]

calculate _conflicts

def calculate_conflicts(state):

n = len(state)
conflicts = 0

for col_i in range(n):
for col_j in range(col_i + 1, n):
row_i = state[col_i]
row_j = statel[col_j]

if row_i == row_j: # same row
conflicts += 1

if col i - row_i == col_j - row_j: # same diagonal
conflicts += 1

if col_i + row_i == col_j + row_j: # same anti-diagonal

conflicts += 1

return conflicts

calculate _conflicts

display_n_queens(state, 5)



8-Queens Problem
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get_neighbors_rn

def get_neighbors_rn(state):
""""Generates neighboring states by moving on queen at a time to a new rc

neighbors = []
n = len(state)

for col in range(n):
for row in range(n):
if (statelcol] != row):
new_state = statel:] # create a copy of the state
new_statel[col]l = row
neighbors.append(new_state)

return neighbors

Russell and Norvig (2020), 8 x 7 = 56 neighbours

get_neighbors_rn



etat = create_initial state(8)
display_n_queens(etat, 5)

8-Queens Problem
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get_neighbors_rn

initial_state_8 = create_initial_state(8)
print(initial_state_8)
for s in get_neighbors_rn(initial_state_8):

print(f"{s} —> # of conflicts = {calculate_conflicts(s)}")
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1l
ul

[7, 4, 2, 5, 1, 0, 3, 5] —> # of conflicts
[7, 4, 2, 5, 1, 0, 3, 71 —> # of conflicts

1l
(®)]

get_neighbors

def get_neighbors(state):

"""Generates neighboring states by swapping two rows.

neighbors = []
n = len(state)

for i in range(n):
for j in range(i + 1, n):
new_state = statel:]
new_state[i], new_state[j] = new_statel[j], new_statel[i]
neighbors.append(new_state)
return neighbors

—— = 28 neighbours

get_neighbors

etat = create_initial_state(8)
display_n_queens(etat, 5)

8-Queens Problem
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get_neighbors

print(initial_state_8)
for s in get_neighbors(initial_state_8):
print(f"{s} —> # of conflicts = {calculate_conflicts(s)}")

[7, 4, 2, 5, 1, o0, 3, 6]

(4, 7, 2, 5, 1, 0, 3, 6] — # of conflicts = 4
[2, 4, 7, 5, 1, 0, 3, 6] — # of conflicts = 6
[5, 4, 2, 7, 1, 0, 3, 6] — # of conflicts =7
[1, 4, 2, 5, 7, 0, 3, 6] —> # of conflicts = 2
[, 4, 2, 5, 1, 7, 3, 6] —> # of conflicts = 4
[3, 4, 2, 5,1, 0, 7, 6] —> # of conflicts = 5
[6, 4, 2, 5, 1, 0, 3, 71 — # of conflicts =5
[7, 2, 4, 5, 1, 0, 3, 6] —> # of conflicts = 3
[7, 5, 2, 4, 1, 0, 3, 6] — # of conflicts = 3
[7, 1, 2, 5, 4, 0, 3, 6] — # of conflicts = 4
[7, 0, 2, 5, 1, 4, 3, 6] —> # of conflicts = 5
[7, 3, 2, 5,1, 0, 4, 6] —> # of conflicts = 3
[7, 6, 2, 5, 1, 0, 3, 4] —> # of conflicts = 5
[7, 4, 5, 2, 1, 0, 3, 6] —> # of conflicts = 10
[7, 4, 1, 5, 2, 0, 3, 6] —> # of conflicts = 2
[7, 4, 0, 5, 1, 2, 3, 6] — # of conflicts =5
[7, 4, 3, 5, 1, 0, 2, 6] —> # of conflicts = 7
[7, 4, 6, 5, 1, 0, 3, 2] —> # of conflicts = 7
[7, 4, 2, 1, 5, 0, 3, 6] — # of conflicts = 3
[7, 4, 2, 0, 1, 5, 3, 6] —> # of conflicts = 5
[7, 4, 2, 3, 1, 0, 5, 6] —> # of conflicts = 5
[7, 4, 2, 6, 1, 0, 3, 5] —> # of conflicts = 6
[7, 4, 2, 5, 0, 1, 3, 6] —> # of conflicts = 2
[7, 4, 2, 5, 3, 0, 1, 6] — # of conflicts = 6
[7, 4, 2, 5, 6, 0, 3, 1] — # of conflicts = 3
[7, 4, 2, 5, 1, 3, 0, 6] — # of conflicts = 2
[7, 4, 2, 5, 1, 6, 3, 0] — # of conflicts = 3
[7, 4, 2, 5, 1, 0, 6, 31 —> # of conflicts = 4

hill_climbing

def hill_climbing(current_state):
current_conflicts = calculate_conflicts(current_state)
while True:

if current_conflicts ==
return curent_state

neighbors

get_neighbors(current_state)

conflicts

[calculate_conflicts(neighbor) for neighbor in neighbors

if (min(conflicts)) > current_conflicts:



return None # No improvement found, stuck at local minimum
arg_best = np.argmin(conflicts)

curent_state = neighbors[arg_best]
current_conflicts = conflicts[arg_best]

The program above presents a major issue. What exactly is it?

It is important to note that, in this particular context, the problem is defined such that the
sought solution is free of any conflict. However, in some optimization problems, the
minimum value of the objective function is not predetermined.

The main issue is that the algorithm might enter an infinite loop if the condition
min(conflicts == current_conflicts) is satisfied.

Two scenarios may arise: either the plateau is followed by an ascending slope, or it
represents a local maximum. In the first case, the algorithm could potentially exit the
plateau, although this is not guaranteed. To prevent infinite loops, it would be wise to
implement an appropriate mechanism.

hill_climbing (take 2)

MAX_SIDE_MOVES = 100
def hill_climbing(current_state):

conflicts_current_state = calculate_conflicts(current_state)
side_moves = 0

while True:

if conflicts_current_state ==
return current_state

neighbors = get_neighbors(current_state)

conflicts = [calculate_conflicts(voisin) for voisin in neighbors]

if (min(conflicts)) > conflicts_current_state:
return None # No improvement, local maxima

if (min(conflicts)) == conflicts_current_state:
side_moves += 1 # Plateau

if side_moves > MAX_SIDE_MOVES:
return None

arg_best = np.argmin(conflicts)
current_state = neighbors[arg_best]
conflicts_current_state = conflicts[arg_best]



Solve

random.seed(7)
solutions = 0

explored = set()
nb_duplicates = 0

for i in range(10):
state = create_initial_state(8)

new_state = hill_climbing(state)
if (new_state != None):
display_n_queens(new_state, 6)
if tuple(new_state) in explored:
nb_duplicates += 1
solutions += 1

print(f"1@ runs, number of solutions = {solutions}, {nb_duplicates} duplicat

8-Queens Problem
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8-Queens Problem
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10 runs, number of solutions = 9, @ duplicate(s)

Solve (2)

random.seed(7)
solutions = 0

explored = set()
nb_duplicates = 0

nb_runs = 1000
for i in range(nb_runs):
state = create_initial _state(8)
new_state = hill_climbing(state)
if (new_state != None):
if tuple(new_state) in explored:
nb_duplicates += 1

else:
explored.add(tuple(new_state))



solutions += 1

print(f"{nb_runs} runs, number of solutions = {solutions}, {len(explored)}

1000 runs, number of solutions = 704, 92 unique solutions

Solve 40-Queens

40! = 8.1591528325 x 10%"

import time

start_time = time.time() # Record the start time
random.seed(7)

solutions = 0

explored = set()
nb_duplicates = 0

nb_runs = 10
for i in range(nb_runs):
state = create_initial_state(40)
new_state = hill_climbing(state)
if (new_state != None):
if tuple(new_state) in explored:
nb_duplicates += 1
else:
explored.add(tuple(new_state))
solutions += 1

print(f"{nb_runs} runs, number of solutions = {solutions}, {len(explored)} L

one_board = next(iter(explored))
display_n_queens(one_board, 12)

end_time = time.time() # Record the end time
elapsed_time = end_time - start_time # Calculate the elapsed time

print(f"Elapsed time: {elapsed_time:.4f} seconds")

10 runs, number of solutions = 6, 6 unique solutions



40-Queens Pro blem' .
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Elapsed time: 22.2966 seconds

Iterations and Side Moves

MAX_SIDE_MOVES = 100
def hill_climbing_counts(current_state):
conflicts _current_state = calculate_conflicts(current_state)

side_moves 0
iterations 0

while True:

if conflicts_current_state ==
return (iterations, side_moves, current_state)

iterations += 1



neighbors = get_neighbors(current_state)

conflicts

if (min(conflicts)) > conflicts_current_state:
return (iterations, side_moves, None) # No improvement,

if (min(conflicts)) == conflicts_current_state:
side_moves += 1 # Plateau

if side_moves > MAX_SIDE_MOVES:
return (iterations, side_moves, None)

arg_best = np.argmin(conflicts)

current_state = neighbors[arg_best]
conflicts_current_state = conflicts[arg_best]

random.seed(7)
solutions = 0

explored = set()
nb_duplicates = 0

nb_runs = 1000

iterations = []
sides = []

iterations_none = []
sides_none = []

for i in range(nb_runs):
state = create_initial_state(8)
(i, s, new_state) = hill_climbing_counts(state)

if new_state !'= None:
iterations.append(i)
sides.append(s)

else:
iterations_none.append(i)
sides_none.append(s)

if new_state != None:
if tuple(new_state) in explored:
nb_duplicates += 1
else:

explored.add(tuple(new_state))

solutions += 1

[calculate_conflicts(voisin) for voisin in neighbors]

local max



print(f"{nb_runs} runs, number of solutions = {solutions}, {len(explored)} U

1000 runs, number of solutions = 704, 92 unique solutions

Iterations and Side Moves

import seaborn as sns
import matplotlib.pyplot as plt

# Configurer la structure des sous—graphiques
fig, axes = plt.subplots(1l, 2, figsize=(14, 6), sharey=True)

# Tracer l'histogramme pour “iterations’

sns.histplot(iterations, kde=True, color="'green', ax=axes[0], edgecolor='ble
axes[0].set_title("Histogram of Iterations")

axes[0] .set_xlabel("Iterations")

axes[0].set_ylabel("Frequency")

# Tracer l'histogramme pour ‘sides’
sns.histplot(sides, kde=True, color='blue', ax=axes[1l], edgecolor='black")

axes[1].set_title("Histogram of Side Moves")
axes[1].set_xlabel("# Side Moves")

# Afficher le graphique
plt.legend()
plt.tight_layout()
plt.show()

/var/folders/gh/zd7z03rs5dj7q_df59z5j lmh0000gp/T/ipykernel_63020/2749126315.
py:20: UserWarning:

No artists with labels found to put in legend. Note that artists whose labe
1 start with an underscore are ignored when legend() is called with no argum
ent.

Histogram of lterations Histogram of Side Moves

Frequency

- T T T T Y
0 1 2 3 4 5 6 7 0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Iterations # Side Moves

20-Queens



random.seed(7)
solutions = 0

explored = set()
nb_duplicates = 0

nb_runs = 1000

iterations = []
sides = []

iterations_none = []
sides_none = []

for i in range(nb_runs):
state = create_initial_state(20)
(i, s, new_state) = hill_climbing_counts(state)

if new_state !'= None:
iterations.append(i)
sides.append(s)

else:
iterations_none.append(i)
sides_none.append(s)

if new_state !'= None:

if tuple(new_state) in explored:
nb_duplicates += 1

else:
explored.add(tuple(new_state))

solutions += 1

print(f"{nb_runs} runs, number of solutions = {solutions}, {len(explored)}

1000 runs, number of solutions = 566, 566 unique solutions

import seaborn as sns
import matplotlib.pyplot as plt

# Configurer la structure des sous—-graphiques
fig, axes = plt.subplots(1l, 2, figsize=(14, 6), sharey=True)

# Tracer l'histogramme pour “iterations’

sns.histplot(iterations, kde=True, color='green', ax=axes[0], edgecolor='blc
axes[0] .set_title("Histogram of Iterations")
axes[0].set_xlabel("Iterations")

axes[0].set_ylabel("Frequency")

# Tracer l'histogramme pour ‘sides’
sns.histplot(sides, kde=True, color='blue', ax=axes[1l], edgecolor='black')



axes[1].set_title("Histogram of Side Moves")
axes[1].set_xlabel("# Side Moves")

# Afficher le graphique
plt.legend()
plt.tight_layout()
plt.show()

/var/folders/gh/zd7z03rs5dj7q_df5g9z5j lmh0000gp/T/ipykernel_63020/2749126315.
py:20: UserWarning:

No artists with labels found to put in legend. Note that artists whose labe
1 start with an underscore are ignored when legend() is called with no argum

ent.

Histogram of lterations Histogram of Side Moves
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Russell & Norvig

¢ Hill climbing gets stuck 86% of the time.

m Successful attempts average 4 steps to a solution.
e Permitting 100 lateral moves boosts success rate from 14% to 94%.
e The problem space comprises 8% = 16,777,216 states.

= Implementation from Russell & Norvig

Has many variants, including random-restart hill climbing.

In the implementation | proposed, there do not appear to be any local minima. However,

this requires further verification.

Escaping a Local Optimum

What mechanisms would enable the hill climbing algorithm to escape from a local
optimum, whether it be a local minimum or maximum?

It needs to accept going downhill.



A random walk approach, which disregards the value of the objective function, could
theoretically locate the global maximum. However, this method is highly impractical due
to its extreme inefficiency.

Remark

Assume the optimization problem is a minimization task, where the goal is to find a
solution with the minimum cost.

Downhill, gradient descent.

Simulated Annealing

Definition

Simulated annealing is an optimization algorithm inspired by the annealing process in
metallurgy. It probabilistically explores the solution space by allowing occasional uphill
moves, which helps escape local optima. The algorithm gradually reduces the
probability of accepting worse solutions by lowering a “temperature” parameter,
ultimately converging towards an optimal or near-optimal solution.

Annealing

** (Russell and Norvig 2020, 114)**

In metallurgy, annealing is the process used to temper or harden metals
and glass by heating them to a high temperature and then gradually
cooling them, thus allowing the material to reach a low-energy
crystalline state.

The solid is heated to its melting point, causing the particles to become randomly
distributed.

Subsequently, the material is gradually cooled, allowing the particles to reorganize into a
low-energy state.

Algorithm



function SIMULATED- ANNEALING(problem, schedule) returns a solution state
current < problem.INITIAL
fort=1tocdo
T < schedule(t)
if T = 0 then return current
next < a randomly selected successor of current
AE < VALUE(current) — VALUE(next)
if AE > 0 then current < next
else current < next only with probability e AE/T

Figure 4.5 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. The schedule input determines the value of the “tempera-
ture” T as a function of time.

Attribution: (Russell and Norvig 2020, 115)

1. This algorithm resembles hill climbing but differs by randomly selecting the next
state rather than choosing the optimal move.

2. If the move results in a lower objective function value, it is accepted unconditionally.

3. Otherwise, acceptance is probabilistic, contingent on both AE and T'.

Varying AE

import numpy as np
import matplotlib.pyplot as plt

# Define a fixed temperature, T
T = 1.0 # You can adjust this value as needed

# Define a range of energy changes, AE
delta_E = np.linspace(0, 5, 500)

# Compute the function e”~(-AE/T)
y = np.exp(-delta_E / T)

# Plot the function
plt.figure(figsize=(8, 5))
plt.plot(delta_E, y, label=r's$e~{-\frac{\Delta E}{T}}$', color='blue')
plt.title(r'Plot of $e~{-\Delta E / T}$"')
plt.xlabel(r'Energy Change ($\Delta E$)")
plt.ylabel(r'se~{-\Delta E / T}$')
plt.ylim(@, 1.1)

plt.xlim(0, 5)

plt.grid(True)

plt.legend()

plt.show()
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Moves resulting in significant negative changes (worse) to the objective function are
less likely to be accepted.

Varying the temperature, T'

import numpy as np
import matplotlib.pyplot as plt

# Define the energy change, AE
delta_E = 0.1 # You can adjust this value as needed

# Define a range of temperatures, T
T = np.linspace(@0.1, 5, 500) # Avoid T=0 to prevent division by zero

# Compute the function e”™(-AE/T)
y = np.exp(-delta_E / T)

# Plot the function
plt.figure(figsize=(8, 5))

plt.plot(T, y, label=r'$e~{-\frac{\Delta E}{T}}$', color='blue')
plt.title(r'Plot of $e~{-\Delta E / T}$")
plt.xlabel('Temperature (T)")
plt.ylabel(r's$e~{-\Delta E / T}$')
plt.ylim(0, 1.1)

plt.xlim(0, 5)

plt.grid(True)

plt.legend()

plt.show()
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For a fixed AF (here 0.1), changes are more likely to be accepted whe T is high, at the

start of the algorithm.

Varying the temperature and AF

import numpy as np
import matplotlib.pyplot as plt

# Define a range of temperatures, T
T = np.linspace(@.1, 5, 500) # Avoid T=0 to prevent division by zero

# Define specific values for energy change, AE
delta_E _values = [0.001, 0.01, 0.1, 1.0, 2.0]

# Plot the function for each AE
plt.figure(figsize=(10, 6))
for delta_E in delta_E_values:
y = np.exp(-delta_E / T)
plt.plot(T, y, label=r's$\Delta E = {:.3f}$'.format(delta_E))

# Customize the plot

plt.title(r'Plot of $e~{-\Delta E / T}$ for Different $\Delta E$ Values')

plt.xlabel('Temperature (T)"')
plt.ylabel(r'se~{-\Delta E / T}$')
plt.ylim(@, 1.1)

plt.xlim(0, 5)

plt.grid(True)
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plt.legend()
plt.show()

Plot of e 26T for Different AE Values
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Bad moves are more likely to be accepted at the start when T is high, and less likely as
T decreases.

Varying the temperature and AF

import { Inputs, Plot } from "@observablehq/plot"
viewof deltaE = Inputs.range([0.01, 1001, {step: 0.01, value: 0.1, label: "/
T_values = Array.from({length: 1000}, (_, i) => (i + 1) * 0.1)

function computeData(deltaE) {
return T_values.map(T => ({

T8 Ty
value: Math.exp(-deltakE / T)
1)

by

data = computeData(deltaE)

Plot.plot({

marks: [
Plot.line(data, {
X: IITII’

y: "value",
stroke: '"steelblue",
strokeWidth: 2



})’
Plot.ruleXx([0], {stroke: "black"}), // X-axis line
Plot.ruleY([0], {stroke: "black"}) // Y-axis line
]
1)

Using Observable JS.

Theory

** (Russell and Norvig 2020, 114)**

If the schedule lowers T' to 0 slowly enough, then a property of the

AFE
Boltzmann (aka Gibbs) distribution, e T , is that all the probability is
concentrated on the global maxima, which the algorithm will find with
probability approaching 1.

See also: Laarhoven and Aarts (1987), Aarts and Korst (1989)

Definition

The Travelling Salesman Problem (TSP) is a classic optimization problem that seeks
the shortest possible route for a salesman to visit a set of cities, returning to the origin
city, while visiting each city exactly once.

The challenge lies in determining the most efficient path, especially as the number of
cities increases, due to the combinatorial explosion of possible routes.

Traveling Salesman

# Ensure we always generate the same coordinates
np.random.seed(42)
# Generate random coordinates for the cities

num_cities = 20
coordinates = np.random.rand(num_cities, 2) * 100

# Calculate the distance matrix

distance_matrix = np.sqrt(((coordinates[:, np.newaxis] - coordinates[np.news

import matplotlib.pyplot as plt

def plot_cities(coordinates, title="Cities of the Traveling Salesman Problen


https://observablehq.com/plot/

Plot the given coordinates representing the cities.

Parameters:
- coordinates: A 2D NumPy array of shape (n, 2) representing the (x, y)
— title: Title of the plot.

# Extract x and y coordinates
X = coordinates[:, 0]
y = coordinates[:, 1]

plt.figure(figsize=(6, 6))

# Plot the cities as red points
plt.scatter(x, y, c='red', zorder=2)

# Annotate the cities with their indices
for i, (xi, yi) in enumerate(zip(x, y)):
plt.annotate(str(i + 1), (xi, yi), textcoords="offset points", xytex

# Set the title and labels

plt.title(title)

plt.xlabel('X Coordinate")

plt.ylabel('Y Coordinate')

plt.grid(True)

plt.axis('equal') # Equal scaling for x and y axes
plt.show()

plot_cities(distance_matrix)
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How to Represent a Solution?

We will use a list where each element represents the index of a city, and the order of

elements indicates the sequence of city visits.

Random Solution

def plot_tsp_path(coordinates, path=None, title="Travelling Salesman Problen

Plots the given coordinates and optionally a path for the TSP.

Parameters:

- coordinates: A 2D NumPy array of shape (n, 2) representing the (x, y)
— path: A list or array of indices representing the order of cities to \
— title: Title of the plot.



# Extract x and y coordinates
X = coordinates[:, 0]
y = coordinates[:, 1]

plt.figure(figsize=(6, 6))

# If a path is given, rearrange the coordinates
if path is not None:

x = x[path]

y = ylpath]

# Plot the nodes
plt.scatter(x, y, c='red', zorder=2)

# Annotate the nodes with their indices
for i, (xi, yi) in enumerate(zip(x, y)):
plt.annotate(str(i + 1), (xi, yi), textcoords="offset points", xytex

# Plot the path
plt.plot(x, y, 'b-', zorder=1)

# If a path is provided, connect the last point to the first to complete
if path is not None:
plt.plot([x[-1], x[e]l]l, [y[-1], yl[e]ll, 'b-', zorder=1)

# Set the title and labels

plt.title(title)

plt.xlabel('X Coordinate')

plt.ylabel('Y Coordinate')

plt.grid(True)

plt.axis('equal') # Equal scale for x and y axes
plt.show()

num_cities = len(distance_matrix)
current_route = np.arange(num_cities)
np.random.shuffle(current_route)
plot_tsp_path(distance_matrix, current_route)
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Calculate the Total Distance

# Function to calculate the total distance of a given route
def calculate_total distance(route, distance_matrix):
total_distance = 0

for i in range(len(route) - 1):
total_distance += distance_matrix[route[i], routel[i + 1]]

total_distance += distance_matrix[route[-1], routel[@]] # Back to start

return total_distance

Neighborhood

plot_tsp_path(distance_matrix,current_route)



Travelling Salesman Problem
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How to generate a neighboring solution?

Generating a Neighboring Solution

How to generate a neighboring solution?

Swap Two Cities

e Description: Select two cities at random and swap their positions.
e Pros: Simple and effective for exploring nearby solutions.
e Cons: Change may be too small, potentially slowing down convergence.

Reverse Segment

e Description: Select two indices and reverse the segment between them.
e Pros: More effective at finding shorter paths compared to simple swaps.
e Cons: Can still be computationally expensive as the number of cities increases.



Remove & Reconnect

¢ Description: Removes three edges from the route and reconnects the segments in
the best possible way. This can generate up to 7 different routes.

e Pros: Provides more extensive changes and can escape local optima more
effectively than 2-opt.

e Cons: More complex and computationally expensive to implement.

Insertion Move

e Description: Select a city and move it to a different position in the route.

e Pros: Offers a balance between small and large changes, making it useful for fine-
tuning solutions.

e Cons: May require more iterations to converge to an optimal solution.

Shuffle Subset

o Description: Select a subset of cities in the route and randomly shuffle their order.
e Pros: Introduces larger changes and can help escape local minima.
e Cons: Can lead to less efficient routes if not handled carefully.

Generating a Neighboring Solution

# Function to generate a random neighboring solution
def get_neighbor(route):
a, b = np.random.randint(@, len(route), size=2)

if a > b:
a, b=>0b, a

new_route = route.copy()
new_routel[a:b+1] = new_routela:b+1][::-1] # Reverse the segment betweer

return new_route

simulated_annealing

def simulated_annealing(distance_matrix, initial_temp, cooling_rate, max_ite

num_cities = len(distance_matrix)

current_route = np.arange(num_cities)

np.random.shuffle(current_route)

current_cost = calculate_total_distance(current_route, distance_matrix)



best_route = current_route.copy()
best_cost = current_cost

temperature = initial_temp
for iteration in range(max_iterations):

neighbor_route = get_neighbor(current_route)
neighbor_cost = calculate_total_distance(neighbor_route, distance_me

# Accept the neighbor if it is better, or with a probability if it 1
delta_E = neighbor_cost - current_cost

if neighbor_cost < current_cost or np.random.rand() < np.exp(-(delte
current_route = neighbor_route
current_cost = neighbor_cost

if current_cost < best_cost:
best_route = current_route.copy()
best_cost = current_cost

# Cool down the temperature
temperature x= cooling_rate

return best_route, best_cost, temperatures, costs

Remarks

e Ast — 00, the algorithm exhibits behavior characteristic of a random walk. During
this phase, any neighboring state, regardless of whether it improves the objective
function, is accepted. This facilitates exploration and occurs at the start of the
algorithm’s execution.

Remarks

e Conversely, ast — 0, the algorithm behaves like hill climbing. In this phase, only
those states that enhance the objective function’s value are accepted, ensuring that
the algorithm consistently moves towards optimal solutions—specifically, towards
lower values in minimization problems. This phase emphasizes the exploitation of
promising solutions and occurs towards the algorithm’s conclusion.

See also: Properties of Simulated Annealing - Georgia Tech - Machine Learning. Udacity
video (4m 10s). Posted on 2015-02-23.

1. Exploration:
e Exploration involves searching through a broad area of the search space to
discover new possibilities, solutions, or information. The goal of exploration is to


https://youtu.be/enNgiWuIHAo

gather a diverse set of data points or solutions that could potentially lead to
finding better global optima. It prevents the search process from getting
trapped in local optima by encouraging the consideration of less-visited or
unexplored regions of the search space.

¢ In algorithms, exploration can be implemented by introducing randomness,
trying new or less-promising paths, or using strategies like simulated annealing
or genetic algorithms that encourage diversity.

2. Exploitation:

e Exploitation focuses on leveraging known information to refine and improve
existing solutions. It involves concentrating the search effort around areas
believed to contain high-quality solutions based on prior knowledge or
experience. The goal is to optimize and fine-tune these solutions to achieve the
best possible outcome in those regions.

¢ In algorithms, exploitation can be seen in strategies like hill climbing, gradient
ascent/descent, or greedy algorithms, where the search is focused on local
improvement and making incremental gains.

Example

# Ensuring reproducibility
np.random.seed(42)

# Generate random coordinates for cities
num_cities = 20
coordinates = np.random.rand(num_cities, 2) * 100

# Calculate distance matrix
distance_matrix = np.sqrt(((coordinates([:, np.newaxis] - coordinates[np.newe

# Run simulated annealing

initial_temp 15
cooling_rate = 0.995
max_iterations = 1000

Held—-Karp Algorithm

¢ Introduced: 1962 by Held, Karp, and independently by Bellman.

e Problem: Solves the Traveling Salesman Problem (TSP) using dynamic
programming.

 Time Complexity: ©(2"n?).

» Space Complexity: ©(2"n).

« Efficiency: Better than brute-force ©(n!), yet still exponential.

Held-Karp Algorithm



from itertools import combinations
import numpy as np

def held_karp(distance_matrix):
# Number of cities
n = len(distance_matrix)

# DP table: dp[subset][last_visited] = minimum cost to reach “last_visit
dp = {}

# Initialize the DP table with the distances from the starting point (ci
for i in range(1, n):
dpl(1 << i, i)] = distance_matrix[0][il]

# Iterate over all subset sizes
for subset_size in range(2, n):
for subset in combinations(range(1, n), subset_size):
# Bitmask of the subset, excluding the starting city
subset_mask = sum(1 << i for i in subset)
for last in subset:
# Update the DP table with the minimum cost for this subset
prev_subset_mask = subset_mask & ~(1 << last)
dp[(subset_mask, last)] = min(
dp[(prev_subset_mask, k)] + distance_matrix[k][last]
for k in subset if k !'= last

)

# Find the minimum cost to complete the tour back to the starting point
full_mask = (1 << n) = 2 # All cities visited except starting city
return min(dp[(full_mask, last)] + distance_matrix[last][0] for last in

# Example usage with a sample distance matrix
# distance_matrix = [

# [0, 10, 15, 20],
# [10, @, 35, 25],
# [15, 35, 0, 30],
# [20, 25, 30, 0]
# ]

min_cost = held_karp(distance_matrix)
print(f"Using Held—Karp to find the minimum cost of TSP tour: {min_cost:.2f}

Using Held—Karp to find the minimum cost of TSP tour: 386.43

Held and Karp (1962) and Bellman (1962)

Execution

# Simulated Annealing function

def simulated_annealing(distance_matrix, initial_temp, cooling_rate, max_ite
num_cities = len(distance_matrix)
current_route = np.arange(num_cities)
np.random.shuffle(current_route)



current_cost = calculate_total_distance(current_route, distance_matrix)

best_route = current_route.copy()
best_cost = current_cost

temperatures = []
costs = []

temperature = initial_temp

# Collect intermediate solutions
intermediate_solutions = []
for iteration in range(max_iterations):
neighbor_route = get_neighbor(current_route)
neighbor_cost = calculate_total_distance(neighbor_route, distance_me

# Accept neighbor if it's better, or with a probability if it's wors
if neighbor_cost < current_cost or np.random.rand() < np.exp(-(neigf
current_route = neighbor_route
current_cost = neighbor_cost

if current_cost < best_cost:
best_route = current_route.copy()
best_cost = current_cost

# Store temperature and cost for plotting
temperatures.append(temperature)
costs.append(current_cost)

# Cool down the temperature
temperature *= cooling_rate

# Collect intermediate solutions at regular intervals
if iteration % (max_iterations // 10) ==
intermediate_solutions.append((current_route.copy(), current_cos

# Plot 10 intermediate solutions in a 4x5 grid

fig, axes = plt.subplots(2, 5, figsize=(12, 6))

axes = axes.flatten()

for idx, (route, cost) in enumerate(intermediate_solutions):
ax = axes[idx]
ax.scatter(xzip(*coordinates), c='red', marker='o')
ax.plot(xzip(*coordinates[routel), 'b-', alpha=0.6)
ax.set_title(f"Iteration: {idxx100} - Cost: {cost:.0f}")
ax.axis('off') # Turn off the axes for a cleaner look

plt.tight_layout()

plt.show()

return best_route, best_cost, temperatures, costs

best_route, best_cost, temperatures, costs = simulated_annealing(distance_me



Iteration: 0 - Cost: 1019 Iteration: 100 - Cost: 646  Iteration: 200 - Cost: 603  Iteration: 300 - Cost: 556  Iteration: 400 - Cost: 504

| g g

Iteration: 500 - Cost: 444  Iteration: 600 - Cost: 409  Iteration: 700 - Cost: 386  Iteration: 800 - Cost: 386  Iteration: 900 - Cost: 386

PPN GAPNPX

When [ initially published these slides, the selected initial temperature of 1000 was
excessively high relative to the objective function’s cost. By adjusting the initial
temperature to 15, we achieve a more effective balance between exploration and
exploitation.

Due to the snapshots being captured every 100 iterations, the increases in cost are not
visible. This is illustrated on the “Temperature and Cost" slide.

Best Route

# Plot the final best route

plt.figure(figsize=(5, 5))
plt.scatter(xzip(*coordinates), c='red', marker='o")
plt.plot(*xzip(xcoordinates[best_routel), 'b-', alpha=0.6)
plt.title(f"Best Route — Cost: {best_cost:.2f}")
plt.show()



Best Route - Cost: 386.43
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We have found an optimal tour!

Temperature and Cost

# Plot temperature and cost graphs

plt.

plt.
plt.
.title("Temperature Over Iterations")
.xlabel("Iteration")
.ylabel("Temperature")

plt
plt
plt

plt.
plt.
.title("Cost Over Iterations")
.Xlabel("Iteration")
.ylabel("Cost")

plt
plt
plt

plt

figure(figsize=(12, 5))

subplot(1, 2, 1)
plot(temperatures)

subplot(1, 2, 2)
plot(costs)

.tight_layout()
plt.

show()
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Swapping Neighbors

e Description: Select two cities at random, swap their positions.
e Pros: Simple and effective for exploring nearby solutions.
e Cons: Change may be too small, potentially slowing down convergence.

def get_neighbor_swap(route):
a, b = np.random.randint(@, len(route), size=2)
new_route = route.copy()
new_route[al, new_route[b] = new_route[b], new_routela]
return new_route

Execution

# Plot the final best route
get_neighbor = get_neighbor_swap

best_route, best_cost, temperatures, costs = simulated_annealing(distance_me
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Best Route

# Plot the final best route

plt.figure(figsize=(5, 5))
plt.scatter(xzip(*coordinates), c='red', marker='o'")
plt.plot(*zip(*coordinates[best_routel), 'b-', alpha=0.6)
plt.title(f"Best Route - Cost: {best_cost:.2f}")
plt.show()

Best Route - Cost: 430.03
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Temperature

In this specific instance and for the given problem, reverse segment (cost = 386.43)

was more effective compared to swapping neighbors (cost = 430.03).

Temperature and Cost

# Plot temperature and cost graphs
plt.figure(figsize=(12, 5))

plt.subplot(1, 2, 1)
plt.plot(temperatures)
plt.title("Temperature Over Iterations")
plt.xlabel("Iteration")
plt.ylabel("Temperature")

plt.subplot(1, 2, 2)
plt.plot(costs)

plt.title("Cost Over Iterations")
plt.xlabel("Iteration")
plt.ylabel("Cost")

plt.tight_layout()

plt.show()
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Selecting a Neighborhood Strategy

¢ Simple Moves (Swap, Insertion): Effective for initial exploration; risk of local
optima entrapment.

o Complex Moves: Enhance capability to escape local optima and accelerate
convergence; entail higher computational expense.

e Hybrid Approaches: Integrate diverse strategies for neighborhood generation.

Employ simple moves initially, transitioning to complex ones as convergence
progresses.




Initial Temperature

AFE
Influence: Since the probability of accepting a new state is given by € 7, the selection

of the initial temperature is directly influenced by AE and consequently by the
objective function value for a random state, f(s).

Initial Temperature

e Example Problems: Consider two scenarios: problem a with f(a) = 1,000 and
problem b with f(b) = 100.

¢ Energy Difference: Accepting a state that is 10% worse results in energy
differences AE = 0.1 - f(a) = 100 for problem a and AE = 0.1 - f(b) = 10 for
problem b.

AFE
e Acceptance Probability: To accept such state 60% of the time, sete” 7 = 0.6.
Solving for T yields initial temperatures of approximately T' ~ 195.8 for problem a
and T' =~ 19.58 for problem b.

Initial Temperature

A popular approach is to set the initial temperature so that a significant portion of
moves (often around 60-80%) are accepted.

This can be done by running a preliminary phase where the temperature is adjusted until
the acceptance ratio stabilizes within this range.

Ben-Ameur (2004) suggests a more rigorous mathematical methodology.

Cooling Strategies

In simulated annealing, cooling down is essential for managing algorithm convergence.
The cooling schedule dictates the rate at which the temperature decreases, affecting
the algorithm'’s capacity to escape local optima and converge towards a near-optimal
solution.

Nourani and Andresen (1998) and Alex, Simon, and Samuel (2017)

Linear Cooling

e Description: The temperature decreases linearly with each iteration.
e Formula:T =T, —a -k
= T{: Initial temperature



= : A constant decrement
= k: Current iteration
e Pros: Simple to implement and understand.
e Cons: Often leads to premature convergence because the temperature decreases
too quickly.

temperature = initial_temp - alpha * iteration

Geometric (Exponential) Cooling

¢ Description: The temperature decreases exponentially with each iteration.
e Formula:T =T - o*
= «: Cooling rate, typically between 0.8 and 0.99
= k: Current iteration
e Pros: Widely used due to its simplicity and effectiveness.
e Cons: The choice of «v is critical; if it's too small, the temperature drops too fast,
and if it's too large, convergence can be slow.

temperature = initial_temp * (cooling_rate ** iteration)

Logarithmic Cooling

e Description: The temperature decreases slowly following a logarithmic function.
CY'TO

log(1+k)

= «: A scaling constant

e Formula: T =

» k: Current iteration
e Pros: Provides a slower cooling rate, which is useful for problems that require
extensive exploration of the solution space.
e Cons: Convergence can be very slow, requiring many iterations.

temperature = alpha * initial_temp / (np.log(1l + iteration))

Inverse Cooling

e Description: The temperature decreases as an inverse function of the iteration
number.
Ty

1+a-K

®m «: A scaling constant

e Formula:T =

= k: Current iteration
e Pros: Allows for a more controlled cooling process, balancing exploration and
exploitation.



e Cons: May require careful tuning of o to be effective.

temperature = initial_temp / (1 + alpha * iteration)

Adaptive Cooling

e Description: The cooling schedule is adjusted dynamically based on the
performance of the algorithm.

e Strategy: If the algorithm is not making significant progress, the cooling rate may
be slowed down. Conversely, if progress is steady, the cooling rate can be
increased.

e Pros: More flexible and can adapt to the characteristics of the problem.

e Cons: More complex to implement and requires careful design to avoid instability.

if no_significant_change_in_cost:
temperature x= 0.99 # Slow down cooling
else:
temperature x= 0.95 # Speed up cooling

Cooling Schedule - Summary

# Constants

initial_temp = 100

alpha = 0.995

iterations = np.arange(0, 1001)

# Cooling strategies
def exponential_cooling(initial_temp, alpha, iteration):
return initial_temp * (alpha ** iteration)

def linear_cooling(initial_temp, alpha, iteration):
return max(@, initial_temp - alpha * iteration)

def logarithmic_cooling(initial_temp, alpha, iteration):
return min(initial_temp, alpha * initial_temp / (np.log(l + iteration) 4

def inverse_cooling(initial_temp, alpha, iteration):
return initial_temp / (1 + alpha * iteration)

# Calculate temperatures

linear_temps = [linear_cooling(initial_temp, alpha, i) for i in iterations]
exponential_temps = [exponential_cooling(initial_temp, alpha, i) for i in it
logarithmic_temps = [logarithmic_cooling(initial_temp, alpha, i) for i in it
inverse_temps = [inverse_cooling(initial_temp, alpha, i) for i in iterations

# Plotting

plt.figure(figsize=(8, 6))

plt.plot(iterations, exponential_temps, label='Exponential Cooling"')
plt.plot(iterations, linear_temps, label='Linear Cooling')
plt.plot(iterations, logarithmic_temps, label='Logarithmic Cooling')



plt.plot(iterations, inverse_temps, label='Inverse Cooling')
plt.xlabel('Iteration')

plt.ylabel('Temperature')

plt.title(r'Cooling Strategies ($\alpha = 0.995%)"')
plt.legend()

plt.grid(True)

plt.show()
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See also: Effective Simulated Annealing with Python by Nathan A. Rooy.

Choosing the Right Cooling Schedule

¢ Problem-Specific: The choice of cooling schedule often depends on the
characteristics of the problem being solved. Some problems benefit from a slower
cooling rate, while others may need faster convergence.

¢ Experimentation: It's common to experiment with different strategies and
parameters to find the best balance between exploration (searching broadly) and
exploitation (refining the current best solutions).

Conclusion


https://nathanrooy.github.io/posts/2020-05-14/simulated-annealing-with-python/

After applying simulated annealing, a local search method such as hill climbing can
be used to refine the solution.

Simulated annealing is effective for exploring the solution space and avoiding local
minima, while local search focuses on the exploration of neighboring solutions.

Simulated Annealing Visualization

https://youtu.be/NPE3zncXAb5s?si=Z9rk2Kt_5pN8ChIA

Attribution: ComputationalScientist, Posted on 2018-01-06.

Prologue

Summary

e Local search algorithms focus on finding goal states by moving between
neighboring states without tracking paths.

e The hill-climbing algorithm seeks the highest-valued neighbor but can get stuck in
local maxima or plateaus.

e Effective state representation, such as using permutations in the 8-Queens
problem, avoids illegal placements and improves performance.

e Simulated annealing allows occasional uphill moves to escape local optima,
controlled by a decreasing temperature parameter.

e The acceptance probability in simulated annealing decreases as temperature lowers
and energy difference increases.

e Simulated annealing effectively solves complex problems like the Travelling
Salesman Problem by probabilistically exploring the solution space.

Further Readings


https://youtu.be/NPE3zncXA5s?si=Z9rk2Kt_5pN8ChlA
https://www.youtube.com/@computationalscientist6368

International Series in
Operations Research & Management Science

Michel Gendreau - Jean-Yves Potvin
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Third Edition

@ Springer
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"The overall SA [simulated annealing] methodology is then deployed in detail on a real-
life application: a large-scale aircraft trajectory planning problem involving nearly
30,000 flights at the European continental scale.”




(Gendreau and Potvin 2019, chap. 1)
Gendreau and Potvin (2019), access via Springer Link.

Did you know that you can freely access the entire collection of books from Springer? By
using a device connected to a uOttawa IP address and visiting Springer Link, you have
the ability to download books in either PDF or EPUB format.

The book is co-edited by Jean-Yves Potvin and Michel Gendreau. Jean-Yves Potvin
serves as a professor at the Université de Montréal, while Michel Gendreau holds a
professorship at Ecole Polytechnique de Montréal.

Next lecture

e We will discuss population-based algorithms.
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