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Preamble

Quote of the Day (1/2)

AlphaEvolve: A Gemini-powered coding agent for designing advanced algorithms, 2025-
05-14.

In the media, artificial intelligence is often synonymous with deep learning, particularly
concerning large language models. However, Al encompasses much more than just
these technologies. Today, we are addressing the topic of genetic algorithms, which
continue to be relevant in current research.

AlphaEvolve is an agent capable of evolving complete codebases and developing
complex algorithms. As illustrated in the following publication, AlphaEvolve is also able
to discover innovative mathematical structures.

e Mathematical exploration and discovery at scale, Georgiev et al. (2025).


https://deepmind.google/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://arxiv.org/abs/2511.02864

e |t discovered a way to multiply two 4 X 4 complex matrices using only 48 scalar
multiplications, the first recorded improvement on this problem in 56 years.

e By devising more efficient decompositions of large matrix-multiplication
subproblems, it accelerated a key Gemini training kernel by 23%, yielding a roughly

1% reduction in overall training time.

e |t improved the FlashAttention kernel used in Transformer models, achieving
speedups of up to 32.5%.

The algorithms presented today aim to find good solutions to optimization problems,
where each solution is typically represented as a vector. However, these approaches can
also be applied to learning tasks, for example to induce regular expressions or even full
programs. In such cases, the solutions are no longer vectors, but rather semantic parse
trees Belmadani and Turcotte (2016).

Quote of the Day (2/2)
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Dlscovery effective treatments.

NuvoBio: designing peptides and accelerating the development of new therapeutic

treatments.

NuvoBio, an Ottawa-based company, uses Al, specifically a genetic algorithm named
Darwin, to design peptides and accelerate the development of new therapeutic

treatments.

The development of the Darwin tool was carried out by Francois Charih as part of his
doctoral thesis at Carleton University, which he defended on September 12. Frangois
also holds a B.Sc. (Honours) in Biochemistry and a B.Sc.A. in Chemical Engineering with
a specialization in Biotechnology, both from the University of Ottawa.

Learning Objectives


https://www.nuvobio.com/
https://www.nuvobio.com/
https://charih.ca/

¢ Understand the definition and purpose of metaheuristics in optimization problems.

e Learn the principles and components of genetic algorithms (GAs).

e Comprehend the implementation details of GAs, including encoding, selection,
crossover, mutation, and fitness evaluation.

o Apply GAs to solve the 0/1 knapsack problem with practical Python examples.

¢ Recognize different encoding schemes and selection methods in GAs.

See also: companion Jupyter Notebook.

Genetic algorithms, similar to other topics covered in this course, are a broad and in-
depth field of study. They have been explored in numerous specialized works and are the
professional focus of some researchers. In this context, we will develop an
implementation that is both simple and efficient by utilizing the Numpy library. This
approach will be applied to the 0/1 knapsack problem.

Genetic algorithms, although effective in various contexts, have sparked some
controversy. Their implementation requires considerable expertise and careful tuning of
numerous parameters, which can be time-consuming. Furthermore, some critics argue
that the biological metaphor underlying these algorithms complicates their
implementation without providing significant added value.
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Simulated annealing draws inspiration from principles in physics. In contrast, we now
explore a biologically inspired strategy.


file:///var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/T/knapsack

Simulated Annealing and Hill Climbing are single-trajectory optimization methods: they
maintain and update a single candidate solution. In contrast, the algorithm introduced
today will operate on a population of solutions.

Definition
** (Gil-Rios et al. 2021)**

Metaheuristics are higher-level procedures or heuristics designed to
guide the search for solutions in optimization problems with large
solution spaces, aiming to find good solutions more efficiently than
traditional methods.

Meta heuristics balance exploitation and exploration to avoid local optima, often
incorporating randomness, memory, or adaptive mechanisms.

They are adaptable to diverse optimization problems.

Definition

A genetic algorithm is an evolutionary optimization technique that uses a population of
candidate solutions, evolving them through selection, crossover, and mutation to
iteratively improve towards an “optimal” solution.

Genetic Algorithms

Computer programs that “evolve” in ways that resemble
natural selection can solve complex problems
even their creators do not fully understand

by John H. Holland

Holland (1992), Holland (1973)

In 1950, Alan Turing introduced the concept of a machine capable of learning by drawing
on principles derived from biological evolution. This idea gained prominence in the early
1970s through the seminal contributions of John Holland.

Trends in Al



Applications

e Optimization: Solving complex engineering, logistics, and scheduling problems.
¢ Machine Learning: Feature selection, hyperparameter tuning, and evolving neural
network architectures.

¢ Robotics: Path planning, sensor optimization, control strategy development, and
robot designs|[1].

Applications (continued)



Studies in Computational Intelligence 967

Diego Oliva
Essam H. Houssein
Salvador Hinojosa Editors

Metaheuristics
in Machine

Learning: Theory
and Applications

@ Springer



https://link.springer.com/book/10.1007/978-3-030-70542-8

Computational Intelligence Methods and Applications

Mansour Eddaly
Bassem Jarboui
Patrick Siarry Editors

Metaheuristics
for Machine

Learning

New Advances and Tools

@ Springer

Eddaly, Jarboui, and Siarry (2023)




Springer Link
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using a device connected to a uOttawa IP address and visiting Springer Link, you have
the ability to download books in either PDF or EPUB format.

From Biology to Genetic Algorithms
** (Mayr 1982, 481)**

There is probably no more original, more complex, and bolder concept in
the history of ideas than Darwin’s mechanistic explanation of adaptation.

** (Dennett 1995)**

If | were to give an award for the single best idea anyone has ever had,
I'd give it to Darwin, ahead of Newton & Einstein and everyone else.

Definition
** (Gregory 2009)**

Natural selection is a non-random difference in reproductive output
among replicating entities, often due indirectly to differences in survival
in a particular environment, leading to an increase in the proportion of
beneficial, heritable characteristics within a population from one
generation to the next.

Evolution is an adaptive optimization process.

Discussion

e What are the essential components?
e What is the structure of the algorithm?


https://link.springer.com/book/10.1007/978-981-19-3888-7
https://link.springer.com/

Image generated with OpenAl's DALL-E (2025-11-16).

Take a moment to reflect. We have explored various search algorithms, among which the
simulated annealing algorithm, a metaheuristic, could be an excellent starting point. If
you were to implement a genetic algorithm, what would be its main features? How would
the main loop be structured? What auxiliary methods would be necessary? What data
structures would be fundamental? What would be its parameters?

Prompt: “Create a humanoid robot with a vintage-futuristic aesthetic, inspired by the
style of Atom: The Beginning. The robot has a smooth helmet-like head with a glossy
black visor and two large glowing lenses, a golden-bronze mechanical body with
exposed joints and wiring, and red circular accents on the torso. Depict the robot as an
intelligent engineer engaged in a genetic algorithm workflow. In front of it, show a
floating array of candidate solutions—abstract geometric ‘chromosomes' or vector-like
shapes—forming an initial population. The robot is actively performing selection,
combining two candidate structures with glowing lines to represent cross-over, while

subtle distortions or sparks on another candidate indicate mutation.

The composition should look like an upper-body portrait: the robot slightly angled, one
hand raised as if manipulating holographic data. The background is light and minimal,
reminiscent of a manga cover. Emphasize clarity and soft lighting to highlight metallic
textures, glowing eyes, and the dynamic visual metaphor of evolutionary optimization.”

Components
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In this context, the term population refers to a collection of candidate solutions or
states.

Choices

e How to encode a candidate solution or state?
e How to select candidate solutions?

o How to define the crossover operator?

e How to define the mutation operator?

e How to calculate the fitness?

Problem

0/1 knapsack problem: Given items with defined weights and values, the objective is
to maximize total value by selecting items for a knapsack without surpassing a fixed
capacity. Each item must be either fully included (1) or excluded (0).



Attribution: Generated by DALL-E, via ChatGPT (GPT-4), OpenAl, November 10, 2024.

This problem is NP-complete and often solved using dynamic programming for optimal
solutions in feasible time.

The image displayed above was generated based on the following prompt: “lllustrate a
cartoon girl scout wearing glasses, dressed in a scout uniform featuring brown shorts
and hiking boots. She holds a ledger in one hand and a pencil in the other, with a large
backpack secured to her back. In front of her, display a variety of items she might
choose to pack into her backpack. These items should include a stack of books, a
stuffed toy, a cup, assorted snacks, and a pair of binoculars. The scene should evoke a
sense of decision-making and exploration.”

Problem (continued)
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where v; and w; represent the value and the weight of item ¢, respectively, W
represents the fixed maximum weight, x; is a binary variable indicating if item 7 is
included (1) or excluded (0), and there are n items.

Applications

1. Finance and Investment: In portfolio optimization, where each asset has a risk
(analogous to weight) and expected return (value), the knapsack framework helps
select a set of assets that maximizes return without exceeding a risk threshold.

2. Resource Allocation: Common in project management, where resources (budget,
personnel, time) need to be allocated across projects or tasks to maximize overall

value, taking into account limited availability.

3. Supply Chain and Logistics: Used to maximize the value of goods transported
within vehicle weight or volume constraints. It can also be applied in warehouse
storage, where space is limited, and high-value items are prioritized.

4. Ad Placement and Marketing: Used in digital advertising to select the most
profitable combination of ads to display within limited space (e.g., website or app
banner space), maximizing revenue under size or display constraints.

Greedy Algorithms

** (Skiena 2008, 192)**

Greedy algorithms make the decision of what to do next by selecting the
best local option from all available choices without regard to the global
structure.

Data

[1] This approach has led to the development of unique, sometimes unexpected robot
forms and control strategies that are well-suited to specific tasks or environments,
often outperforming traditional, human-engineered designs in adaptability and
robustness.



import numpy as np
# Sample data

values = np.array([
360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147,
78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28,
87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276,
312])

weights = np.array([
7, o, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, o, 36, 3, 8, 15, 42, 9, 0,
42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71,
3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13])

capacity = 850

Data from Google OR-Tools.

Ascending order of weight

def greedy_knapsack_weight(weights, values, capacity):
num_items = len(weights)

# Create a list of items with their values and original indices
items = list(zip(weights, values, range(num_items)))

# Sort items by weight in increasing order
items.sort()

total_weight, total_value = 0,0
solution = np.zeros(num_items, dtype=int)

# Select items based on the sorted order
for w, v, idx in items:
if total_weight + w <= capacity:
solution[idx] = 1
total_weight += w
total_value += v
else:
break # Skip items that would exceed the capacity

return solution, total_value, total_weight
Is this strategy relevant?

e What is the time complexity of this method?
» O(nlogn) due to sorting.
e |s this strategy relevant?
= |t overlooks value, the critical factor for optimization.


https://developers.google.com/optimization/pack/knapsack

greedy_knapsack_weight

solution, total_value, total_weight = greedy_knapsack_weight(weights, values

print(f"Solution: {solution}")
print(f"vValue: {total_value}")
print(f'"Weight: {total_weight}")

Solution: [111100100001111111111111111110111
1110
101001010101 1]
Value: 5891
Weight: 817

Descending value order

def greedy_knapsack_value(weights, values, capacity):
num_items = len(weights)

# Create a list of items with their values and original indices
items = list(zip(values, weights, range(num_items)))

# Sort items by value in decreasing order
items.sort(reverse=True)

total_weight = 0
total_value = 0
solution = np.zeros(num_items, dtype=int)

# Select items based on the sorted order
for v, w, idx in items:
if total_weight + w <= capacity:
solution[idx] = 1
total_weight += w
total_value += v

return solution, total_value, total_weight

e What is the time complexity of this method?
» O(nlogn) due to sorting.
e |s this strategy relevant?
» Emphasizes maximizing value but does not guarantee an optimal solution.

greedy_knapsack_value

solution, total_value, total_weight = greedy_knapsack_value(weights, values,

print(f"Solution: {solution}")



print(f"Value: {total_value}")
print(f"Weight: {total_weight}")

Solution: [110110100111101101011110000001100
0100
011011010011 1]
Value: 7339
Weight: 849

GA Implementation

Overview
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Encoding

The most straightforward representation for each chromosome (state) is an array of
size n, where n represents the number of items. Each element ¢ in the array indicates
whether item 7 is included (1) or excluded (0).

Population

def initialize_population(pop_size, num_items):

Initialize the population with random binary strings.

Args:
pop_size (int): Number of individuals in the population.
num_items (int): Number of items in the knapsack problem.

Returns:
np.ndarray: Initialized population.



return np.random.randint(2, size=(pop_size, num_items))
How to choose the population size (number of individuals/chromosomes)?

Problem specificity: Adjust the population size based on the complexity of the problem.
More complex problems may require a larger population to effectively explore the
solution space.

Available resources: Consider the available computing resources, as a larger population
size increases memory and computational time requirements.

Balance between diversity and convergence: A larger population can maintain higher
genetic diversity, which helps avoid local optima, but may also slow convergence. Find a
balance suitable for your problem.

Guidelines: For many problems, an empirical rule is to start with a population size
between 50 and 100, then adjust based on observed performance.

Adaptive approaches: Consider using adaptive methods that dynamically adjust the
population size based on the algorithm'’s progress.

Data

pop_size_small = 12

num_items_small = 10

values_small = values[:num_items_smalll]
weights_small = weights[:num_items_smalll]
capacity_small = 125

Let's define a small problem to illustrate the algorithm.

Population

population = initialize_population(pop_size_small, num_items_small)
population

array([[1, o0, 1, 0, 0, 1, 1, 0, 1, 0],
(1, 1, o, 1, 1, 1, 0, 0, 1, 1],
[1, 1, 1, o, o0, 0, @0, 0, 1, @],
[1' 0’ 0' 0’ 1' 0' 1' 1' 1' 1]'
[1' 1' @' 1' 1' @, 0’ @' 1' 1]'
[1' 1' 0' 0' 1' 1' 1’ 0' @, 1]'
[1' 0' @' 0’ 0' 1' 0’ 0' 0' 0]'
(1, 1, 1, 1, 1, 1, 1, o, 0, 1],
[0, 1, 0, 0, 1, 1, 1, 1, o, 1],
[0, 1, 0, 1, 1, o, 1, o, 1, 1],
[0, 0, 0, 0, 0, 1, @0, 0, 0, O],
[0, 1, 1, o0, 1, 0, 1, 1, 0, 1]1])



Population

The proposed method for initializing the population presents a problem.
Can you identify what it is?
The initial population is generated entirely at random without considering feasibility.

This can result in most individuals being infeasible (exceeding capacity), especially for

larger problems, slowing down convergence.

Suggestion: Introduce a feasibility check during initialization or generate initial solutions
that are more likely to be feasible.

Fithess

def evaluate_fitness(population, weights, values, capacity, penalty_factor=l
total_weights = np.dot(population, weights)
total_values = np.dot(population, values)
penalties = penalty_factor * np.maximum(@, total_weights - capacity)
fitness = total_values - penalties

return fitness
Can you identify a possible issue with this fitness function?

First, notice the extensive use of numpy. The total weight for each chromosome of our
population is calculated with a single expression. Likewise for total values.

The fitness function employs a smoother penalization strategy by deducting a penalty
proportional to the excess weight, thereby distinguishing between solutions that exceed
the weight limit.

Alternatively, one could assign a fitness value of zero to any solution that exceeds the
knapsack’s capacity. However, this stringent penalization could result in a significant
portion, or even all, of the population having zero fitness, particularly in the initial
generations. This scenario poses challenges for selection mechanisms, such as roulette
wheel selection, which rely on non-zero fitness values to calculate selection
probabilities, potentially leading to division by zero errors.

The proposed strategy, which applies penalties to overweight solutions, may lead the
genetic algorithm to generate infeasible solutions. Such instances require external



handling by restarting the genetic algorithm whenever an infeasible solution is
encountered.

Fithess

In [10]: fitness = evaluate_fitness(population, weights_small, values_small, capacity
fitness

array([ 765.5, 1183. , 595. , 1197. , 1163. , 1230.5, 427. , 1393.5,
885.5, 1031. , 67. , 909.5])

Roulette Wheel Selection

Roulette wheel selection is a stochastic selection method where the probability of
selecting an individual is proportional to its fitness relative to the rest of the population.

Individual Fitness
1 1.0
2 2.0
3 3.0
4 4.0
5 5.0

Fig. 2. Roulette wheel selection example

Attribution: Santos Amorim et al. (2012)

What is the fundamental objective of this selection method? Why not simply choose the
individuals with the highest fitness?

The fundamental objective is to maintain a diverse population.



Advantages

1. Fitness Proportionality

¢ Simple Implementation: The method is straightforward to implement, requiring
the calculation of cumulative probabilities based on fithess values.
¢ All Individuals Have a Chance: Even individuals with lower fitness have a non-
zero probability of being selected, maintaining genetic diversity.
2. Selection Pressure Adjusted by Fitness

e Dynamic Pressure: Selection pressure naturally adjusts based on the fitness
distribution of the population.

e Encourages High-Fitness Individuals: Individuals with higher fitness are more
likely to be selected, promoting the propagation of advantageous traits.

Disadvantages
1. Sensitivity to Fitness Scaling

¢ Negative Fitness Values: If fithess values are negative or zero (which can
happen when penalties are applied), the method becomes problematic as
probabilities cannot be negative or zero.
¢ Scaling Issues: When fitness values are very close together or have a small
range, the selection probabilities become nearly uniform, reducing selection
pressure.
2. Premature Convergence Risk

¢ Dominance of High-Fitness Individuals: If a few individuals have significantly
higher fitness, they may dominate the selection process, leading to reduced
diversity and premature convergence to suboptimal solutions.
3. Computational Overhead

¢ Normalization Required: Fitness values need to be normalized to probabilities,
which adds computational steps, especially if adjustments are needed for
negative fitness values.

roulette_selection

def roulette_selection(population, fitness):

# Adjust fitness to be non-negative
min_fitness = np.min(fitness)
adjusted_fitness = fitness - min_fitness + le-6 # small epsilon to avoi

total_fitness
probabilities

np.sum(adjusted_fitness)
adjusted_fitness / total_fitness



pop_size = population.shapel[0]
selected_indices = np.random.choice(pop_size, size=pop_size, p=probabili

return population[selected_indices]
In your own words, what does roulette_selection do?

A small value is added to the adjusted fitness values to avoid dividing by 0.

Returns a population of the same size. The fittest individuals should now be more
represented.

roulette_selection

offspring = roulette_selection(population, fitness)

offspring

array([[o, 1, 0, 0, 1, 1, 1, 1, 0, 1],
[01 1' 0! 1' 1' @, 1! 0! 1' 1]l
(¢, 1, 1, o0, 1, 0, 1, 1, 0, 1],
(1, 1, o, 1, 1, 0, 0, 0, 1, 1],
(1, 1, o, o, 1, 1, 1, 0, 0, 1],
(¢, 1, 0, 1, 1, o, 1, o0, 1, 1],
[1l 1’ @l 1’ 1' 0! 0' 0' 1' 1]l
(1, 1, 1, 1, 1, 1, 1, o, o, 11,
[1l 1' 0! 1' 1' 1' 0’ 0! 1' 1]l
[1l 1' 0! 0' 1' 1' 1! 0! 0! 1]l
(., 1, 1,1, 1, 1, 1, o, 0, 1],
(1, 1, o, 1, 1, 1, 0, 0, 1, 111)

Crossover



4

In the single crossover method, a crossover point is randomly selected. The resulting
child 1is formed by combining the prefix of parent 1 with the suffix of parent 2, while
child 2 is created by joining the suffix of parent 1 with the prefix of parent 2.

Crossover

Parents



Offspring

Two parent individuals produce two offspring.

Crossover

def single_point_crossover(parents, crossover_rate):
num_parents, num_genes = parents.shape
np.random.shuffle(parents)
offspring = []

for i in range(@, num_parents, 2):

parentl = parents[i]

parent2 = parents[i+1l if i+1 < num_parents else 0]
childl = parentl.copy()

child2 = parent2.copy()

if np.random.rand() < crossover_rate:
point = np.random.randint(1l, num_genes) # Crossover point
childl[:point], child2[:point] = parent2[:point], parentl[:point

offspring.append(childl)
offspring.append(child2)

return np.array(offspring)

Controlled by a user-specified parameter, crossover_rate , typical value 0.8.

Mutation



In this basic scenario, a mutation involves “flipping” a bit.

Mutate

def mutation(offspring, mutation_rate):
num_offspring, num_genes = offspring.shape
mutation_matrix = np.random.rand(num_offspring, num_genes) < mutation_re
offspring[mutation_matrix] = 1 - offspring[mutation_matrix]
return offspring

A user-defined mutation rate determines whether a position undergoes “mutation.”

Clarification

np.random.seed(42)
offspring = initialize_population(4, 10)
num_offspring, num_genes = offspring.shape

print("0ffspring:")
print(offspring)



mutation_rate = 0.05
mutation_matrix = np.random.rand(num_offspring, num_genes) < mutation_rate

print("Mutation matrix:")
print(mutation_matrix)

Mutation matrix:

[[False False False False False False False False False Truel
[False False False False False False False False False Falsel
[False False True False False False False False False Falsel
[False False False False False False False False True Falsell

print("offspring[mutation_matrix]:")
print(offspring[mutation_matrix])

offspring[mutation_matrix]:
[11 0]

print("1l - offspring[mutation_matrix]:")
print(1l - offspring[mutation_matrix])

1 - offspring[mutation_matrix]:
[0 0 1]

offspring[mutation_matrix] = 1 - offspring[mutation_matrix]

print("Mutated offstring:")

print(offspring)
Mutated offstring:
[[01 0001000 0]
(000010111 0]
[loo1111111]
[0011101010]l]

This implementation makes extensive use of Numpy.

Elitism

Elitism in genetic algorithms is a strategy where a subset of the fittest individuals from
the current generation is directly carried over to the next generation.

This approach ensures that the best solutions are preserved throughout the evolutionary
process, enhancing convergence speed and maintaining high-quality solutions within the
population.

Elitism



def elitism(population, fitness, elite_size):
elite_indices = np.argsort(fitness)[-elite_size:] # Get indices of top
elites = population[elite_indices]

return elites

Overview
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The figure above presents several noteworthy elements that can fuel discussion. The
initial population, fitness values, and the population resulting from roulette wheel
selection were generated using the code we previously introduced. It is notable that
individuals with fitness values of 91.5, 289.0, and 474.0 do not appear in the population
obtained after roulette wheel selection. While the absence of the individual with a value
of 91.5 might seem expected, the absence of the individual with a value of 474.0 could
be surprising. However, this can be explained by the probabilistic nature of the
algorithm. Additionally, it is worth noting that the population size is limited, which
influences the results. Furthermore, the individual with the highest fitness value was
selected multiple times.

The numbers in parentheses indicate the probabilities used by the roulette wheel
selection algorithm.

Genetic Algorithm (Version 1)

def genetic_algorithm(weights, values, capacity, pop_size=100,
num_generations=100, crossover_rate=0.8,
mutation_rate=0.05, elite_percent=0.02):

num_items = len(weights)

elite_size = max(1l, int(pop_size * elite_percent))
population = initialize_population(pop_size, num_items)

for generation in range(num_generations):
fitness = evaluate_fitness(population, weights, values, capacity)

# Elitism



elites = elitism(population, fitness, elite_size)

# Selection
parents = roulette_selection(population, fitness)

# Crossover
offspring = single_point_crossover(parents, crossover_rate)

# Mutation
offspring = mutation(offspring, mutation_rate)

# Create new population
population = np.vstack((elites, offspring))

# Ensure population size

if population.shape[0@] > pop_size:
population = population|[:pop_sizel

elif population.shapel[0] < pop_size:
# Add random individuals to fill population
num_new_individuals = pop_size - population.shape[0]
new_individuals = initialize_population(num_new_individuals, nun
population = np.vstack((population, new_individuals))

# After all generations, return the best solution

fitness = evaluate_fitness(population, weights, values, capacity)
best_index = np.argmax(fitness)

best_solution = population[best_index]

best_value = np.dot(best_solution, values)

best_weight = np.dot(best_solution, weights)

return best_solution, best_value, best_weight

Run

np.random.seed(13)
solution, total_value, total_weight = genetic_algorithm(weights, values, cag

print(f"Solution: {solution}")
print(f"Value: {total_value}")
print(f"Weight: {total_weight}")

Solution: [110110100011101111101110010101111
1100
101001010011 1]
Value: 7357
Weight: 848

Genetic Algorithm (Version 1.1)

def genetic_algorithm(weights, values, capacity, pop_size=100,
num_generations=100, crossover_rate=0.8,
mutation_rate=0.05, elite_percent=0.02):



num_items = len(weights)
elite_size = max(1l, int(pop_size * elite_percent))
population = initialize_population(pop_size, num_items)

average_fitness_history = []
best_fitness_history = []

for generation in range(num_generations):
fitness = evaluate_fitness(population, weights, values, capacity)

# Track average and best fitness
average_fitness = np.mean(fitness)

best_fitness = np.max(fitness)
average_fitness_history.append(average_fitness)
best_fitness_history.append(best_fitness)

# Elitism
elites = elitism(population, fitness, elite_size)

# Selection
parents = roulette_selection(population, fitness)

# Crossover
offspring = single_point_crossover(parents, crossover_rate)

# Mutation
offspring = mutation(offspring, mutation_rate)

# Create new population
population = np.vstack((elites, offspring))

# Ensure population size

if population.shapel[@] > pop_size:
population = population[:pop_size]

elif population.shape[0] < pop_size:
# Add random individuals to fill population
num_new_individuals = pop_size - population.shape[0]
new_individuals = initialize_population(num_new_individuals, nun
population = np.vstack((population, new_individuals))

# After all generations, return the best solution

fitness = evaluate_fitness(population, weights, values, capacity)
best_index = np.argmax(fitness)

best_solution = population[best_index]

best_value = np.dot(best_solution, values)

best_weight = np.dot(best_solution, weights)

return best_solution, best_value, best_weight, average_fitness_history,

Plot



import matplotlib.pyplot as plt

def plot_fitness_over_generations(avg_fitness_history, best_fitness_history)

generations = range(1l, len(avg_fitness_history) + 1)

plt.

plt

plt
plt
plt

Run

figure(figsize=(6, 6))

.plot(generations, avg_fitness_history, label='Average Fitness')
plt.
plt.
.ylabel('Fitness"')

.title('Fitness over Generations')
.legend()

plot(generations, best_fitness_history, label='Best Fitness')
xlabel('Generation')

np.random.seed(13)

solution, total_value, total_weight, avg_fitness_history, best_fitness_histc

print(f"Solution: {solution}")
print(f"value: {total_value}")
print(f"weight: {total_weight}")

plot_fitness_over_generations(avg_fitness_history, best_fitness_history)

Solution: [110110100011101111101110010101111

1100

101
Value:

Weight:

0010100111]
7357
848
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Run

np.random.seed(42)

best_value = -1
best_weight = -1
best_solution, best_averages, best_bests = None, None, None

for i in range(100):
solution, total_value, total_weight, avg_fitness_history, best_fitness_his

if total_value > best_value and total_weight <= capacity:
best _value = total _value
best_weight = total_weight
best_solution = solution
best_averages = avg_fitness_history
best_bests = best_fitness_history

print(f"Solution: {best_solution}")
print(f"value: {best_valuel}")
print(f"Weight: {best_weight}")



plot_fitness_over_generations(best_averages, best_bests)

Solution: [110110100011101111110110100111101

0100
011011010011 1]

Value: 7506
Weight: 846
Fithess over Generations
—— Average Fitness
—— Best Fitness
FJ000
6000
i
¥
5
= 5000 -
4000
3000
I I 1 I I I
0] 20 40 a0 80 100
Generation
Using Google OR Tools

# https://developers.google.com/optimization/pack/knapsack
from ortools.algorithms.python import knapsack_solver
def solve_using_ortools(values, weights, capacity):
weights = [weights]
# Create the solver
solver = knapsack_solver.KnapsackSolver(

knapsack_solver.SolverType.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SC
"KnapsackExample",



)
solver.init(values, weights, [capacityl])
computed_value = solver.solve()

packed_items = []
packed_weights = []
total_weight = 0
print("Total value =", computed_value)
for i in range(len(values)):
if solver.best_solution_contains(i):
packed_items.append(i)
packed_weights.append(int(weights[0] [i]))
total_weight += int(weights[0][i])
print("Total weight:", total_weight)
print("Packed items:", packed_items)
print("Packed_weights:", packed_weights)

solve_using_ortools

solve_using_ortools(values, weights, capacity)

Total value = 7534

Total weight: 850

Packed items: [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 2
4, 27, 28, 29, 30, 31, 32, 34, 38, 39, 41, 42, 44, 47, 48, 49]
Packed_weights: [7, 0, 22, 80, 11, 59, 18, o, 3, 8, 15, 42, 9, 0, 47, 52, 2
6, 6, 29, 84, 2, 4, 18, 7, 71, 3, 66, 31, 0, 65, 52, 13]

Aspect Branch & Bound Genetic Algorithm
Solution quality Optimal High-quality, but typically approximate

Fast for moderate (n), but

Runtime Usually stable; can handle large (n)

can blow up
Scalability Poor for large (n) Good; parallel-friendly
Deterministic Yes No (stochastic)
Hyperparameters None Many
Use case When optimality is required e approxmate_ Selliizne ere
acceptable, or (n) is large
Discussion

Encoding Schemes

¢ Binary encoding is commonly used.



e Permutation encoding. Typically used with problems such as “Travelling Salesman
Problem (TSP)" and N-Queens.

¢ Values encoding. In this encoding, integer, real, or character values are used.
Example: learning the parameters of a polynomical in a regression problem.

In the context of binary encoding, it specifically refers to the numerical representation in
base two. For instance, to determine the optimal value of the function
f(z) = = + || sin(32z)|| in the interval 0 < z < 7, we use a population of numbers

represented in binary form.

Selection

Tournament selection involves randomly selecting a subset of individuals (a
tournament) from the population and then selecting the best individual from this subset
to be a parent. The process is repeated until the required number of parents is selected.

This method balances between exploration and exploitation. It allows for controlling
selection pressure by varying the tournament size. Larger tournaments increase
selection pressure, favoring the fittest individuals more strongly.

Advantages
1. Robustness to Fitness Scaling

¢ Handles Negative Fitness Values: The method relies on relative ranking within
the tournament rather than absolute fitness values, making it robust to negative
or zero fitness values.

e Less Sensitive to Fitness Distribution: Since selection is based on comparison
rather than proportion, it performs well even when fitness values are close
together.

2. Adjustable Selection Pressure

e Control via Tournament Size: The selection pressure can be easily adjusted by
changing the tournament size:
= Larger Tournaments: Higher selection pressure, as there is a greater
chance of selecting the best individuals.
= Smaller Tournaments: Lower selection pressure, promoting diversity.
e Simplicity: Easy to implement without the need for fitness normalization.
3. Maintains Diversity

¢ Avoids Premature Convergence: By not solely focusing on high-fitness
individuals, it maintains genetic diversity within the population.

Disadvantages



1. Stochastic Nature

¢ Randomness in Selection: The selection process is more stochastic, and the
best individual in the population might not be selected if not included in a
tournament.
¢ Possible Slow Convergence: If the tournament size is too small, the algorithm
may converge slowly due to low selection pressure.
2. Parameter Dependence

¢ Requires Tuning: The performance is sensitive to the choice of tournament
size, which may require experimentation to optimize.
3. Computational Considerations

e Multiple Comparisons: Requires random sampling and comparisons, which
might be computationally more intensive for very large populations, though
generally negligible.

tournament_selection

def tournament_selection(population, fitness, tournament_size):
pop_size = population.shape(0]
selected_indices = []
for _ in range(pop_size):
participants = np.random.choice(pop_size, tournament_size, replace=F
best = participants[np.argmax(fitness[participants])]
selected_indices.append(best)

return population[selected_indices]

Typical values for tournament_size are 2, 3, 4, or 5.

Discussion

np.random.seed(27)

pop_size, num_items = 100, 50

population = initialize_population(pop_size, num_items)

fitness = evaluate_fitness(population, weights, values, capacity)

plt.figure(figsize=(4, 4))



plt.hist(fitness, bins=10, edgecolor='black')
plt.xlabel('Fitness Values')
plt.ylabel('Frequency"')

plt.title('Histogram of Fitness Values')
plt.show()

for tournament_size in [2, 4, 8, pop_sizel:
participants = np.random.choice(pop_size, tournament_size, replace=False)

print(f"tournament_size: {tournament_size}, fitness: {max(fitness[particif

Histogram of Fitness Values

Frequency

1000 2000 3000 4000 5000
Fitness Values

tournament_size: 2, fitness: 1985
tournament_size: 4, fitness: 2933
tournament_size: 8, fitness: 3966
tournament_size: 100, fitness: 5478

e Smaller k (e.g., k = 2): Low selection pressure promotes diversity and exploration,
useful in early generations.

e Larger k (e.g., k = 5): High selection pressure accelerates convergence,
emphasizing exploitation, ideal in later generations.

Genetic Algorithm (Version 2)

def genetic_algorithm(weights, values, capacity, pop_size=100,
num_generations=100, crossover_rate=0.8,
mutation_rate=0.05, elite_percent=0.02,
selection_type='tournament', tournament_size=3):

num_items = len(weights)
elite_size = max(1l, int(pop_size * elite_percent))
population = initialize_population(pop_size, num_items)



average_fitness_history = []
best_fitness_history = []

for generation in range(num_generations):
fitness = evaluate_fitness(population, weights, values, capacity)

# Track average and best fitness
average_fitness = np.mean(fitness)

best_fitness = np.max(fitness)
average_fitness_history.append(average_fitness)
best_fitness_history.append(best_fitness)

# Elitism
elites = elitism(population, fitness, elite_size)

# Selection
if selection_type == 'tournament':
parents = tournament_selection(population, fitness, tournament_s
elif selection_type == 'roulette':
parents = roulette_selection(population, fitness)
else:
raise ValueError("Invalid selection type")

# Crossover
offspring = single_point_crossover(parents, crossover_rate)

# Mutation
offspring = mutation(offspring, mutation_rate)

# Create new population
population = np.vstack((elites, offspring))

# Ensure population size

if population.shapel[@] > pop_size:
population = population[:pop_size]

elif population.shape[0] < pop_size:
# Add random individuals to fill population
num_new_individuals = pop_size - population.shape[0]
new_individuals = initialize_population(num_new_individuals, nun
population = np.vstack((population, new_individuals))

# After all generations, return the best solution

fitness = evaluate_fitness(population, weights, values, capacity)
best_index = np.argmax(fitness)

best_solution = population[best_index]

best_value = np.dot(best_solution, values)

best_weight = np.dot(best_solution, weights)

return best_solution, best_value, best_weight, average_fitness_history,

Run



np.random.seed(42)

best_value, best_weight = -1, -1
best_solution, best_averages, best_bests = None, None, None

for i in range(100):
solution, total_value, total_weight, avg_fitness_history, best_fitness_his

if total_value > best_value and total_weight <= capacity:
best _value = total _value
best_weight = total_weight
best_solution = solution
best_averages = avg_fitness_history
best_bests = best_fitness_history

print(f"Solution: {best_solution}")
print(f"value: {best_valuel}")
print(f"Weight: {best_weight}")

plot_fitness_over_generations(best_averages, best_bests)

Solution: [110110100011101111110110100111111
0100
011011010011 1]
Value: 7534
Weight: 850
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tournament_size=2, 4, 8

np.random.seed(42)
for tournament_size in (2, 4, 8):

best_value, best_weight = -1, -1
best_solution, best_averages, best_bests = None, None, None

for i in range(100):

solution, total_value, total_weight, avg_fitness_history, best_fitness
weights, values, capacity, tournament_size=tournament_size

)

if total_value > best_value and total_weight <= capacity:
best_value = total_value
best_weight = total_weight
best_solution = solution
best_averages = avg_fitness_history
best_bests = best_fitness_history



print(f"Solution: {best_solution}")
print(f"value: {best_valuel}")
print(f"Weight: {best_weight}")

plot_fitness_over_generations(best_averages, best_bests)

Solution: [1 1

21101180
Value: 7534
Weight: 850
Solution: [1 1
0100

21101180
Value: 7534
Weight: 850
Solution: [1 1
0100

0110110
Value: 7534
Weight: 850
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As one increases the tournament size increases, average and best fitness get closer.
Faster convergence.

Crossover

¢ Single or k-point cross-over.

K-point crossover is a genetic algorithm technique used for combining two parent
solutions to generate offspring. It involves selecting k crossover points and swapping
segments of the parents between these points. Here are some scenarios where k-point
crossover might be particularly useful:

1. Complex Solution Spaces: When the problem domain involves complex
interdependencies between variables, k-point crossover can help explore the
solution space more thoroughly by allowing multiple segments to be exchanged
between parents.

2. Diverse Genetic Material: By increasing k, more genetic material from both parents
is mixed, which can introduce greater diversity into the offspring. This can be



beneficial in avoiding premature convergence on suboptimal solutions.

3. Balancing Exploration and Exploitation: K-point crossover provides a balance
between exploration (by introducing new combinations of genetic material) and
exploitation (by maintaining some continuity with the parent solutions). This can be
advantageous in maintaining a healthy diversity in the population.

4. Tuning Genetic Algorithm Performance: Adjusting the number of crossover points
(k) allows for fine-tuning the genetic algorithm’s performance. A higher k can be
used to increase diversity, while a lower k can focus on exploiting known good
solutions.

5. Large Solution Representations: In problems with large solution representations,
such as long binary strings or large arrays, k-point crossover allows for more
nuanced mixing of genetic material, potentially leading to more effective search and

optimization.

6. Empirical Testing: Sometimes, k-point crossover is chosen based on empirical
results, where experimentation shows that it performs better for a specific problem
or dataset compared to other crossover methods.

K-point crossover is versatile and can be adapted to the needs of different problems by
adjusting the number of crossover points, making it a useful tool in the genetic algorithm
toolkit.

Uniform crossover

Uniform crossover in genetic algorithms is a recombination technigue where each
dgene in the offspring is independently chosen from one of the two parent genomes
with equal probability. This approach allows for a more varied combination of parental
traits compared to traditional crossover methods, promoting greater genetic diversity
in the resulting population.

uniform_crossover

def uniform_crossover(parents, crossover_rate):

num_parents, num_genes = parents.shape
np.random.shuffle(parents)

offspring = []

for i in range(@, num_parents, 2):

parentl
parent2

parents[i]
parents[i+l if i+1 < num_parents else 0]



childl
child2

parentl.copy()
parent2.copy()

if np.random.rand() < crossover_rate:
mask = np.random.randint(@, 2, size=num_genes).astype(bool)
childl[mask], child2[mask] = parent2[mask], parentl[mask]

offspring.append(childl)
offspring.append(child2)

return np.array(offspring)

Genetic Algorithm (Version 3)

def genetic_algorithm(weights, values, capacity, pop_size=100,
num_generations=200, crossover_rate=0.8,
mutation_rate=0.05, elite_percent=0.02,
selection_type='tournament', tournament_size=3,
crossover_type='single_point"'):

num_items = len(weights)
elite_size = max(1, int(pop_size * elite_percent))
population = initialize_population(pop_size, num_items)

average_fitness_history = []
best_fitness_history = []

for generation in range(num_generations):
fitness = evaluate_fitness(population, weights, values, capacity)

# Track average and best fitness
average_fitness = np.mean(fitness)

best_fitness = np.max(fitness)
average_fitness_history.append(average_fitness)
best_fitness_history.append(best_fitness)

# Elitism
elites = elitism(population, fitness, elite_size)

# Selection
if selection_type == 'tournament':
parents = tournament_selection(population, fitness, tournament_s
elif selection_type == 'roulette':
parents = roulette_selection(population, fitness)
else:
raise ValueError("Invalid selection type")

# Crossover
if crossover_type == 'single_point':

offspring = single_point_crossover(parents, crossover_rate)
elif crossover_type == 'uniform':



offspring = uniform_crossover(parents, crossover_rate)
else:
raise ValueError("Invalid crossover type'")

# Mutation
offspring = mutation(offspring, mutation_rate)

# Create new population
population = np.vstack((elites, offspring))

# Ensure population size

if population.shapel[@] > pop_size:
population = population[:pop_size]

elif population.shapel[0] < pop_size:
# Add random individuals to fill population
num_new_individuals = pop_size - population.shapel[0]
new_individuals = initialize_population(num_new_individuals, nun
population = np.vstack((population, new_individuals))

# After all generations, return the best solution

fitness = evaluate_fitness(population, weights, values, capacity)
best_index = np.argmax(fitness)

best_solution = population[best_index]

best_value = np.dot(best_solution, values)

best_weight = np.dot(best_solution, weights)

return best_solution, best_value, best_weight, average_fitness_history,

Run

np.random.seed(42)

best_value, best_weight = -1, -1
best_solution, best_averages, best_bests = None, None, None

for i in range(100):

solution, total_value, total_weight, avg_fitness_history, best_fitness_his
weights, values, capacity, crossover_type='uniform'

)

if total_value > best_value and total_weight <= capacity:
best_value = total_value
best_weight = total_weight
best_solution = solution
best_averages = avg_fitness_history
best_bests = best_fitness_history

print(f"Solution: {best_solution}")
print(f"value: {best_value}")
print(f"Weight: {best_weight}")

plot_fitness_over_generations(best_averages, best_bests)



Solution: [110110100011101111110110100111111

11011010011 1]
Value: 7534
Weight: 850
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Crossover

Single-Point Crossover is advantageous when building blocks (contiguous gene
sequences) are meaningful and beneficial to preserve. However, in the 0/1 Knapsack
Problem, the position of items in the chromosome is typically arbitrary, and preserving
contiguous sections may not correspond to better solutions.

Uniform Crossover offers better exploration by independently mixing genes, which
aligns well with the nature of the knapsack problem where each item'’s inclusion is an
independent decision. It reduces positional bias and increases the likelihood of
discovering optimal combinations of items.

Crossover



Order preserving. For each offspring, retain the sequence of elements from one parent
while filling in the remaining positions with elements from the other parent, preserving
their order as they appear in the second parent.

See (Cattolico and Cicirello 2006) for variants.

Order 1 crossover (OX)

Parent 1 1 [2[3[4[5][6[7]8]9

Parent 2 S| F|E |13 ([5|8]|2]|4

Selected section copied to child 1

Child 1 4 | 56| 7
Starts with first gene of parent 2, which is 9. Since 9 does not exist in child 1 yet, it can be
copied.
Child 1 9 4 516 | 7

The next gene in parent 2 is 7. this already existin child 1. The next gene is checked, which is
6. Italso exists in child 1. The next gene is 1, this is not in child 1 yet and therefore inherited
in the next free position.

Child 1 9 1 4 5 | IO

The next gene is 3, which can be inherited, and so on. Finally, you get the child below.

Child 1 9|11 |3 ]|4|5|6|7 (8|2

Attribution: (Bye et al. 2021)
Citation: (Davis 2014)

OX is designed to preserve the relative order of elements from one parent while filling
gaps with elements from the other parent.

It appears there is an error in the figure: cell 7 of parent 1, located in the first row of the
table, should be shaded in gray.

Partially Mapped Crossover (PMX)



v v i ¥ & v

1517|1|3[6[4[2] [4]7[1]|3]|6|5|2] [4][6[1[3][7]|5|2]

+ 4 +
[4Te[2]7[3][1[5] [4[e[2]7[3[1[5] [4]e[2[7[3[1[5]

First offspring: [4|6|2|3|7|5|1]

15/7[1]3/6|4[2] |[5[7|1(3]|6[4|2] [5[7[1|3/6[4[2]
4 4 v

I:I6|2|7I3|1|:| (5/6]2]7[3]|1]4] [5]7]2|6|3[1]|5]

Second offspring: |5(/7/1|/6|3|2|5]

Attribution: (Bye et al. 2021)
Citation: (Goldberg and Lingle 2014)

PMX ensures positional consistency by maintaining the relative ordering of elements
between parent chromosomes.

Comparison
Feature PMX (0).¢

Preservation of Position High Low

Preservation of Order Partial High

Exploratlpn . Exploitation-focused Exploration-focused
vs. Exploitation

Implemeptatlon el Lower

Complexity

Application Suitability Problems V\{Ith positional Problems wlth order

dependencies dependencies

Mutation

¢ Bit Flip Mutation: This involves flipping the value of a bit at a selected position
within the chromosome.

= Mutation Rate: A typical mutation rate is 1/n, where n represents the length of
the chromosome.



Mutation

¢ Replacement or Random Resetting: For integer and real-valued chromosomes,
employ a random selection from the uniform distribution U(a, b) to choose a new
value within the interval [a, b]. Similar to the bit flip operator, determine for each

position whether a mutation should occur, then apply the replacement if necessary.

Mutation

e Swap Mutation: This operator randomly selects two genes within a permutation
and exchanges their positions. Such mutations facilitate the exploration of various
permutations, potentially yielding improved solutions.

Mutation operators should be crafted to preserve valid permutations while introducing
population diversity, thereby mitigating premature convergence to suboptimal solutions.

Remarks

When designing operators, it is critical to ensure they can explore the entire state space
exhaustively.

Mutation operators should remain unbiased to maintain the integrity of the exploration
process.

Comprehensive Example (1)
A Jupyter Notebook containing all lecture code has been created.
It includes tests on 25 problem instances.

In this context, the genetic algorithm consistently outperformed the greedy
algorithms, matching the best greedy results in 8 cases and surpassing them in 17
cases, with improvements up to 6%.

Comprehensive Example (2)

Fredj Kharroubi conducted an empirical study on the knapsack problem, comparing the
performance of several algorithms: generate-and-test, greedy search, simulated
annealing, and a genetic algorithm.

Jupyter Notebook

Discussions on Hyperparameters


file:///var/folders/gh/zd7z03rs5dj7q_df5gz5jlmh0000gp/T/knapsack
https://github.com/fredjkhar/knapsack-greedy-stochastic-genetic-algos/blob/main/knapsack.ipynb

Population Size

¢ A larger size improves genetic diversity but increases computational cost.

e A smaller size speeds up execution but risks premature convergence.

Discussions on Hyperparameters

Mutation and Crossover Rates
¢ High rates promote exploration but risk disrupting viable solutions.

e Low rates favor exploitation but risk getting stuck in local optima.

Discussions on Hyperparameters

Selection and Tournament Size

o Tournament selection is robust against uneven fitness distributions.

¢ A medium tournament size (3-5) balances exploration and exploitation well.

Parameters

Genetic algorithms, like many machine learning and search algorithms, require
hyperparameter tuning to optimize their performance.

Key hyperparameters in genetic algorithms include population size, mutation rate,
crossover rate, selection method, and the number of generations.

Discussion

Like other metaheuristic approaches, genetic algorithms can become trapped in local
optima. A common solution, akin to the random restart technique used in hill climbing,
is to periodically reinitialize the algorithm to explore different regions of the solution
space.

Doubling the population size with each restart enhances the likelihood of exploring
diverse regions of the state space.

Skepticism toward GA

** (Skiena 2008, 267)**



[1]t is quite unnatural to model applications in terms of genetic operators
like mutation and crossover on bit strings. The pseudobiology adds
another level of complexity between you and your problem. Second,
genetic algorithms take a very long time on nontrivial problems. [. . .]
[TIhe analogy with evolution — where significant progress require [sic]
millions of years — can be quite appropriate. [...]

I have never encountered any problem where genetic algorithms
seemed to me the right way to attack it. Further, | have never seen any
computational results reported using genetic algorithms that have
favorably impressed me. Stick to simulated annealing for your heuristic
search voodoo needs.

The bold formatting has been applied by me.

It seems that individuals tend to either appreciate or dislike genetic algorithms.

Greedy: value-to-weight ratio

def greedy_knapsack_ratio(weights, values, capacity):
num_items = len(weights)

# Calculate value-to-weight ratio for each item
ratio = values / (weights + le-6)

# Create a list of items with their ratios and original indices
items = list(zip(ratio, values, weights, range(num_items)))

# Sort items by ratio in decreasing order
items.sort(reverse=True)

total_weight = 0
total_value = 0
solution = np.zeros(num_items, dtype=int)

# Select items based on the sorted order
for r, v, w, idx in items:
if total_weight + w <= capacity:
solution[idx] = 1
total_weight += w
total_value += v

return solution, total_value, total_weight

Why adding 1e-6) to the denominator ratio = values / (weights + 1le-6) ?

greedy_knapsack_ratio



solution, total_value, total_weight = greedy_knapsack_ratio(weights, values,

print(f"Solution: {solution}")
print(f"value: {total_value}")
print(f"weight: {total_weight}")

Solution: [110110100011101111110110100111111
0100
011011010011 1]
Value: 7534
Weight: 850

For this particular instance, greedy_knapsack_ratio finds the optimal solution!

Frameworks

e DEAP,
= DEAP is an evolutionary computation framework designed for rapid
prototyping and testing of ideas. It aims to make algorithms explicit and data
structures transparent. The framework seamlessly integrates with
parallelization mechanisms, including multiprocessing and SCOOP.
» |t has been developed at Université Laval since 2012.
e PyGAD, 5 PyGAD applications

Genetic Programming

Definition

Genetic programming is an evolutionary algorithm-based methodology that evolves
computer programs to solve problems by mimicking natural selection processes.

It automatically discovers optimal or near-optimal solutions by iteratively modifying a
population of candidate programs, guided by a fitness function.

Can be seen as a form of machine learning or automatic programming.

Genetic Programming


https://github.com/DEAP/deap
https://pygad.readthedocs.io/en/latest/
https://www.digitalocean.com/community/tutorials/genetic-algorithm-applications-using-pygad

Attribution: U-ichi, CC BY-SA 3.0, via Wikimedia Commons

Genetic Programming

Machine Learning Control: Genetic Programming

Prologue

Conclusion

e Rather than exploring a single solution at a time, GA explore several solutions in
parallel.

Comparison of SA and GA

Aspect Simulated Annealing (SA) Genetic Algorithms (GA)

Solution Single solution iteratively Population of solutions
Representation improved evolved over generations


http://creativecommons.org/licenses/by-sa/3.0/
https://youtu.be/K2Hl7m2Ty_4

Aspect

Exploration
Mechanism

Exploitation
Mechanism

Control Parameters

Search Strategy

Balance of Exploration
and Exploitation

Escape from Local
Optima

Convergence

Summary

Simulated Annealing (SA)

Random moves to neighboring
solutions; acceptance based on
temperature

Gradual reduction in temperature
focuses search around current
best solution

Temperature, cooling schedule

Explores by accepting worse
solutions at higher temperatures

Controlled by temperature
schedule

Possible due to probabilistic
acceptance of worse solutions

Depends on cooling schedule;
may be slow for large problems

e Metaheuristics Overview

e Genetic Algorithms (GAs)

e Applications of GAs

e Components of GAs:

Genetic Algorithms (GA)

Crossover and mutation
generate new solutions from
existing ones

Selection and elitism favor
fitter individuals in the
population

Population size, crossover
rate, mutation rate, selection
method

Explores by combining and
mutating existing solutions

Controlled by genetic
operator rates and selection
pressure

Possible due to diversity in
population and genetic
variations

Can converge prematurely
without sufficient diversity

= Encoding: Representation of candidate solutions (e.g., binary strings for the

knapsack problem).

= Population: A set of candidate solutions initialized randomly or by some

heuristic.

Selection: Methods like roulette wheel and tournament selection choose fitter
individuals for reproduction.

Crossover: Combines parts of two parents to create offspring (e.g., single-
point crossover).

Mutation: Randomly alters genes in a chromosome to maintain genetic
diversity.

Fitness Function: Evaluates how close a candidate solution is to the optimum.

e Knapsack Problem Example:

Demonstrated how to apply GAs to the 0/1 knapsack problem.



= Provided Python code snippets implementing GA components for the problem.
= Showed how to generate an initial population, perform crossover and mutation,
and select the next generation.
m Compared GA solutions with optimal solutions obtained using Google's OR-
Tools.
e Metaheuristics Overview:

m  Metaheuristics are high-level strategies guiding other heuristics to explore large
solution spaces.
= They balance exploitation and exploration to avoid local optima.
= Genetic algorithms (GAs) are a type of metaheuristic inspired by biological
evolution.
¢ Genetic Algorithms (GAs):

= GAs use a population of candidate solutions (chromosomes) that evolve over
generations.
= Key operations in GAs include selection, crossover (recombination), and
mutation.
m The goal is to optimize a fitness function that measures the quality of solutions.
e Applications of GAs:

= Widely used in optimization, machine learning (e.g., feature selection,
hyperparameter tuning), robotics, finance, resource allocation, supply chain,
and more.

= GAs can solve complex problems that are difficult for traditional methods.

e Components of GAs:

= Encoding: Representation of candidate solutions (e.g., binary strings for the
knapsack problem).

= Population: A set of candidate solutions initialized randomly or by some
heuristic.

= Selection: Methods like roulette wheel and tournament selection choose fitter
individuals for reproduction.

= Crossover: Combines parts of two parents to create offspring (e.g., single-
point crossover).

= Mutation: Randomly alters genes in a chromosome to maintain genetic
diversity.

= Fitness Function: Evaluates how close a candidate solution is to the optimum.

e Knapsack Problem Example:

= Demonstrated how to apply GAs to the 0/1 knapsack problem.

= Provided Python code snippets implementing GA components for the problem.

» Showed how to generate an initial population, perform crossover and mutation,
and select the next generation.



= Compared GA solutions with optimal solutions obtained using Google's OR-
Tools.
e Choices in GAs:

= Encoding Schemes: Binary encoding, permutation encoding (for problems like
TSP), and value encoding.
= Selection Methods: Roulette wheel selection and tournament selection.
= Crossover Techniques: Single-point, k-point, and order-preserving crossovers.
= Mutation Rates: Balancing exploration and exploitation.
e Skepticism Toward GAs:

= Presented a critical view from Steven Skiena, emphasizing the unnatural
modeling and long computation times.
= Highlighted that some experts prefer other methods like simulated annealing.
e Genetic Programming:

= An extension of GAs where the solutions are computer programs.

= Programs evolve over time to solve problems, guided by a fitness function.

= Applications include automated programming and machine learning tasks.
e Frameworks and Resources:

= Mentioned frameworks like DEAP and PyGAD for implementing GAs.

m Provided resources for further reading and exploration.

= Encouraged accessing materials through university resources like Springer Link.
e Conclusion:

= GAs explore multiple solutions in parallel, offering a different approach from
single-solution methods.
m Recognized the importance of parameter tuning in GAs for optimal
performance.
= Acknowledged the ongoing debates about the efficacy of GAs in various
applications.
e Next Steps:

= Encouraged further exploration of metaheuristics and their applications.
= Suggested delving into genetic programming for advanced problem-solving
techniques.

Further Readings



Studies in Computational Intelligence 679

Oliver Kramer

Genetic
Algorithm

Essentials

@ Springer

Kramer (2017), access via Springer Link.



https://link.springer.com/book/10.1007/978-3-319-52156-5

Did you know that you can freely access the entire collection of books from Springer? By
using a device connected to a uOttawa IP address and visiting Springer Link, you have
the ability to download books in either PDF or EPUB format.

Resources

e Hands on genetic algorithms with Python

o See Direct Evolutionary Optimization of Variational Autoencoders With Binary

Latents for a recent application in machine learning.

e Al Improves at Improving Itself Using an Evolutionary Trick: Researchers use
evolutionary algorithms to enhance Al coding skills by Matthew Mutson, in IEEE
Spectrum, 26 june 2025 (5 minutes read)

Next lecture

o We will look at the Monte Carlo Tree Search (MCTS) algorithm
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