
Adversarial Search

CSI 4106 Introduction to Artificial Intelligence

Marcel Turcotte

Version: Nov 26, 2025 10:46

Preamble

Message of the Day

https://www.youtube.com/watch?v=T-26Zv7pVW8

Could the AI bubble pop?, The Economist, 2025-11-05, 7m 50s

Adversarial Search

This lecture examines competitive environments where multiple agents have

conflicting objectives, resulting in adversarial search problems.

Learning objectives

Explain zero-sum game concepts

Formulate never-lose strategies in Tic-Tac-Toe regardless of opponent moves

Utilize the minimax algorithm to determine optimal moves in adversarial settings

Articulate how alpha-beta pruning reduces the number of nodes evaluated

without affecting outcomes

Search

https://www.youtube.com/watch?v=T-26Zv7pVW8
https://www.youtube.com/watch?v=T-26Zv7pVW8

Our examination of search algorithms has progressed through several stages, beginning

with uninformed search techniques, advancing to informed search methods, and

subsequently exploring metaheuristic approaches. We now turn our attention to the

study of adversarial search algorithms.

Monte Carlo Tree Search (MCTS), while not intrinsically designed as an adversarial

search algorithm, constructs a partial search tree by iteratively simulating actions from a

given state. Nevertheless, when applied to two-player or multi-player games, MCTS can

effectively address adversarial search problems.

Core Game Framework

Motivation

This lecture and the next will utilize tic-tac-toe to explore concepts in adversarial

search and reinforcement learning.

We will implement and compare a range of solution strategies, including a random policy,

three minimax variants, three alpha-beta pruning variants, and two Monte Carlo Tree

Search algorithms.

All solvers will be developed within a general-purpose game framework designed to

support a broad class of two-player games, such as Connect 4.

A broad category of classical board and combinatorial games precisely conforms to the

Game interface, characterized by deterministic dynamics, alternating turns, two-player

interaction, zero-sum outcomes, and perfect information. Such games are amenable to

algorithmic approaches including Minimax, Alpha-Beta pruning, and Monte Carlo Tree

Search (MCTS).

Connect Four

Gomoku

Othello / Reversi

Nim

Take-the-Last-Coin

Hex

Chess

Shogi

Go

Chess, Shogi, and Go exhibit high branching factors, resulting in substantial

computational demands. Consequently, their complexity renders them less appropriate

as instructional examples within the scope of this course.

Game

class Game:

 """
 Abstract interface for a deterministic, 2-player, zero-sum,
 turn-taking game.

 Conventions (used by Tic-Tac-Toe and the solvers below):
 - Players are identified by strings "X" and "O".
 - evaluate(state) returns:
 > 0 if the position is good for "X"
 < 0 if the position is good for "O"
 == 0 for a draw or non-terminal equal position
 """

 def initial_state(self):

 """Return an object representing the starting position of the game."

 raise NotImplementedError

 def get_valid_moves(self, state):

 """
 Given a state, return an iterable of legal moves.
 The type of 'move' is game-dependent (e.g., (row, col) for Tic-Tac-T
 """

 raise NotImplementedError

 def make_move(self, state, move, player):

 """
 Return the successor state obtained by applying 'move' for 'player'
 to 'state'. The original state should not be modified in-place.
 """

 raise NotImplementedError

In [2]:

 def get_opponent(self, player):

 """Return the opponent of 'player'."""

 raise NotImplementedError

 def is_terminal(self, state):

 """
 Return True if 'state' is a terminal position (win, loss, or draw),
 False otherwise.
 """

 raise NotImplementedError

 def evaluate(self, state):

 """
 Return a scalar evaluation of 'state':
 +1 for X win, -1 for O win, 0 otherwise (for Tic-Tac-Toe).
 For other games this may be generalized, but here we keep it simple.
 """

 raise NotImplementedError

 def display(self, state):

 """Print a human-readable representation of 'state' (for debugging).

 raise NotImplementedError

Game

class Game:

 def initial_state(self):
 raise NotImplementedError

 def get_valid_moves(self, state):
 raise NotImplementedError

 def make_move(self, state, move, player):
 raise NotImplementedError

 def get_opponent(self, player):
 raise NotImplementedError

 def is_terminal(self, state):
 raise NotImplementedError

 def evaluate(self, state):
 raise NotImplementedError

In [3]:

 def display(self, state):
 raise NotImplementedError

Required Libraries

import math
import random
import numpy as np
import matplotlib.pyplot as plt

TicTacToe

class TicTacToe(Game):

 """
 Classic 3x3 Tic-Tac-Toe implementation using a NumPy array of strings.
 Empty squares are represented by " ".
 Player "X" is assumed to be the maximizing player.
 """

 def __init__(self):
 self.size = 3

 def initial_state(self):

 """Return an empty 3x3 board."""

 return np.full((self.size, self.size), " ")

 def get_valid_moves(self, state):

 """All (i, j) pairs where the board cell is empty."""

 return [
 (i, j)
 for i in range(self.size)
 for j in range(self.size)
 if state[i, j] == " "
]

 def make_move(self, state, move, player):

 """
 Return a new board with 'player' placed at 'move' (row, col).
 The original state is not modified.
 """

 new_state = state.copy()
 new_state[move] = player
 return new_state

 def get_opponent(self, player):

In [4]:

In [5]:

 """Swap player labels between 'X' and 'O'."""

 return "O" if player == "X" else "X"

 def is_terminal(self, state):

 """
 A state is terminal if:
 - Either player has a 3-in-a-row (evaluate != 0), or
 - There are no empty squares left (draw).
 """

 if self.evaluate(state) != 0:
 return True
 return " " not in state

 def evaluate(self, state):

 """
 Return +1 if X has three in a row, -1 if O has three in a row,
 and 0 otherwise (including non-terminal states and draws).

 This is a "game-theoretic" evaluation at terminal states; for
 non-terminal positions we simply return 0.
 """

 lines = []

 # Rows and columns
 for i in range(self.size):
 lines.append(state[i, :]) # row i
 lines.append(state[:, i]) # column i

 # Main diagonals
 lines.append(np.diag(state))
 lines.append(np.diag(np.fliplr(state)))

 # Check each line for a win
 for line in lines:
 if np.all(line == "X"):
 return 1
 if np.all(line == "O"):
 return -1
 return 0

 def display(self, state):

 """
 Visualize a Tic-Tac-Toe board using matplotlib.

 Parameters

 state : np.ndarray of shape (size, size)
 Board containing ' ', 'X', or 'O'.
 """

 size = self.size

 fig, ax = plt.subplots()
 ax.set_aspect('equal')
 ax.set_xlim(0, size)
 ax.set_ylim(0, size)

 # Draw grid lines
 for i in range(1, size):
 ax.axhline(i, color='black')
 ax.axvline(i, color='black')

 # Hide axes completely
 ax.axis('off')

 # Draw X and O symbols
 for i in range(size):
 for j in range(size):
 cx = j + 0.5
 cy = size - i - 0.5 # invert y-axis for correct row orie

 symbol = state[i, j]

 if symbol == "X":
 ax.plot(cx, cy, marker='x',
 markersize=40 * (3/size),
 color='blue',
 markeredgewidth=3)
 elif symbol == "O":
 circle = plt.Circle((cx, cy),
 radius=0.30 * (3/size),
 fill=False,
 color='red',
 linewidth=3)
 ax.add_patch(circle)

 plt.show()

TicTacToe

class TicTacToe(Game):

 """
 Classic 3x3 Tic-Tac-Toe implementation using a NumPy array of strings.
 Empty squares are represented by " ".
 Player "X" is assumed to be the maximizing player.
 """

 def __init__(self):
 self.size = 3

TicTacToe is_a Game

In [6]:

initial_state

 def initial_state(self):

 """Return an empty 3x3 board."""

 return np.full((self.size, self.size), " ")

get_valid_moves

 def get_valid_moves(self, state):

 """All (i, j) pairs where the board cell is empty."""

 return [
 (i, j)
 for i in range(self.size)
 for j in range(self.size)
 if state[i, j] == " "
]

make_move

 def make_move(self, state, move, player):

 """
 Return a new board with 'player' placed at 'move' (row, col).
 The original state is not modified.
 """

 new_state = state.copy()
 new_state[move] = player

 return new_state

get_opponent

 def get_opponent(self, player):

 """Swap player labels between 'X' and 'O'."""

 return "O" if player == "X" else "X"

evaluate

In [7]:

In [8]:

In [9]:

In [10]:

 def evaluate(self, state):

 lines = []

 # Rows and columns
 for i in range(self.size):
 lines.append(state[i, :]) # row i
 lines.append(state[:, i]) # column i

 # Main diagonals
 lines.append(np.diag(state))
 lines.append(np.diag(np.fliplr(state)))

 # Check each line for a win
 for line in lines:
 if np.all(line == "X"):
 return 1
 if np.all(line == "O"):
 return -1
 return 0

is_terminal

 def is_terminal(self, state):

 """
 A state is terminal if:
 - Either player has a 3-in-a-row (evaluate != 0), or
 - There are no empty squares left (draw).
 """

 if self.evaluate(state) != 0:
 return True
 return " " not in state

display

 def display(self, state):

 """
 Visualize a Tic-Tac-Toe board using matplotlib.

 Parameters

 state : np.ndarray of shape (size, size)
 Board containing ' ', 'X', or 'O'.
 """

 size = self.size

 fig, ax = plt.subplots()

In [11]:

In [12]:

In [13]:

 ax.set_aspect('equal')
 ax.set_xlim(0, size)
 ax.set_ylim(0, size)

 # Draw grid lines
 for i in range(1, size):
 ax.axhline(i, color='black')
 ax.axvline(i, color='black')

 # Hide axes completely
 ax.axis('off')

 # Draw X and O symbols
 for i in range(size):
 for j in range(size):
 cx = j + 0.5
 cy = size - i - 0.5 # invert y-axis for correct row orie

 symbol = state[i, j]

 if symbol == "X":
 ax.plot(cx, cy, marker='x',
 markersize=40 * (3/size),
 color='blue',
 markeredgewidth=3)
 elif symbol == "O":
 circle = plt.Circle((cx, cy),
 radius=0.30 * (3/size),
 fill=False,
 color='red',
 linewidth=3)
 ax.add_patch(circle)

 plt.show()

Solver

class Solver:

 """
 Base class for all solvers (Random, Minimax, AlphaBeta, MCTS, etc.).

 Solvers must implement:
 - select_move(game, state, player)

 Solvers may optionally implement:
 - reset() : called at the start of each game
 - opponent_played() : used by persistent solvers (e.g., MCTS)

 Notes

 • Solvers may keep internal state that persists across moves.
 • GameRunner may call reset() automatically before every match.
 """

In [14]:

 def select_move(self, game, state, player):

 """
 Must be implemented by subclasses.
 Returns a legal move for the given player.
 """

 raise NotImplementedError

 def get_name(self):

 """
 Return the solver's name for reporting, logging, or tournament resul

 The default returns the class name, but solvers may override
 to include parameters (e.g., "MCTS(num_simulations=500)"").
 """

 return self.__class__.__name__

 def opponent_played(self, move):
 """
 Optional. Called after the opponent moves.
 Useful for stateful solvers like MCTS.
 Stateless solvers can ignore it.
 """
 pass

 def reset(self):

 """
 Optional. Called once at the beginning of each game.
 Override only if the solver maintains internal state
 (e.g., MCTS tree, cached analysis, heuristic tables).
 """

 pass

Solver

class Solver:

 def select_move(self, game, state, player):
 raise NotImplementedError

 def opponent_played(self, move):
 pass

 def reset(self):
 pass

 def get_name(self):
 return self.__class__.__name__

RandomSolver

class RandomSolver(Solver):

 """
 A simple baseline solver:
 - At each move, chooses uniformly at random among all legal moves.
 - Does not maintain any internal state (no learning).
 """

 def __init__(self, seed=None):
 self.rng = random.Random(seed)

 def select_move(self, game, state, player):

 """Return a random legal move for the current player."""

 moves = game.get_valid_moves(state)

 return self.rng.choice(moves)

 def opponent_played(self, move):

 """Random solver has no internal state to update."""

 pass

class RandomSolver(Solver):

 def __init__(self, seed=None):
 self.rng = random.Random(seed)

 def select_move(self, game, state, player):
 moves = game.get_valid_moves(state)
 return self.rng.choice(moves)

Executes randomized gameplay with reproducible outcomes.

In [15]:

In [16]:

In [17]:

General and applicable to a broad class of games beyond tic-tac-toe.

GameRunner

class GameRunner:

 """
 Utility to run a single game between two solvers on a given Game.

 This class is deliberately simple: it alternates moves between "X" and "
 until a terminal state is reached.
 """

 def __init__(self, game, verbose=False):
 self.game = game
 self.verbose = verbose

 def play_game(self, solver_X, solver_O):

 """
 Play one full game:
 - solver_X controls player "X"
 - solver_O controls player "O"

 Returns

 result : int
 +1 if X wins, -1 if O wins, 0 for a draw.
 """

 state = self.game.initial_state()
 player = "X"
 solvers = {"X": solver_X, "O": solver_O}

 # Play until terminal position
 while not self.game.is_terminal(state):
 # Current player selects a move
 move = solvers[player].select_move(self.game, state, player)

 # Apply the move
 state = self.game.make_move(state, move, player)

 if self.verbose:
 self.game.display(state)

 # Notify the opponent (for persistent solvers like MCTS)
 opp = self.game.get_opponent(player)
 solvers[opp].opponent_played(move)

 # Switch active player
 player = opp

 if self.verbose:
 print(self.game.evaluate(state), "\n")

In [18]:

 # Final evaluation from X's perspective
 return self.game.evaluate(state)

GameRunner

class GameRunner:

 def __init__(self, game):
 self.game = game

 def play_game(self, solver_X, solver_O):

 state = self.game.initial_state()
 player = "X"
 solvers = {"X": solver_X, "O": solver_O}

 while not self.game.is_terminal(state):
 move = solvers[player].select_move(self.game, state, player)
 state = self.game.make_move(state, move, player)
 opp = self.game.get_opponent(player)
 solvers[opp].opponent_played(move)
 player = opp

 return self.game.evaluate(state)

Example

game = TicTacToe()

runner = GameRunner(game, verbose=True)

a = RandomSolver(123)
b = RandomSolver(456)

outcome = runner.play_game(a, b)

In [19]:

In [20]:

-1

evaluate_solvers

def evaluate_solvers(game, solver_X, solver_O, num_games, verbose=False):

 """
 Evaluate two solvers head-to-head on a given game.

In [21]:

 Parameters

 game : Game
 An instance of a Game (e.g., TicTacToe).
 solver_X : Solver
 Solver controlling player "X" (the maximizing player).
 solver_O : Solver
 Solver controlling player "O" (the minimizing player).
 num_games : int
 Number of games to play with these fixed roles.

 Notes

 - The same solver instances are reused across games.
 This allows *persistent* solvers (e.g., MCTS) to accumulate
 experience across games.
 - Outcomes are interpreted from X's perspective:
 +1 -> X wins
 -1 -> O wins
 0 -> draw
 """

 runner = GameRunner(game)

 # Aggregate statistics over all games
 results = {
 "X_wins": 0,
 "O_wins": 0,
 "draws": 0,
 }

 for i in range(num_games):
 # Play one game with solver_X as "X" and solver_O as "O"
 outcome = runner.play_game(solver_X, solver_O)

 # Update counters based on outcome (+1, -1, or 0)
 if outcome == 1:
 results["X_wins"] += 1
 if verbose:
 print(f"Game {i + 1}: X wins")
 elif outcome == -1:
 results["O_wins"] += 1
 if verbose:
 print(f"Game {i + 1}: O wins")
 else:
 results["draws"] += 1
 if verbose:
 print(f"Game {i + 1}: Draw")

 # Print final summary
 if verbose:
 print(f"\nAfter {num_games} games:")
 print(f" X ({solver_X.get_name()}) wins: {results['X_wins']}")
 print(f" O ({solver_O.get_name()}) wins: {results['O_wins']}")
 print(f" Draws: {results['draws']}")

 return results

The method conducts a specified number of complete game runs, utilizing the

designated solving algorithms for each run. It systematically records the results of these

games and reports the aggregated performance metrics.

Can You Guess the Outcome?

game = TicTacToe()

a = RandomSolver(7)
b = RandomSolver(42)

results = evaluate_solvers(game, a, b, num_games=1000)

results

{'X_wins': 581, 'O_wins': 290, 'draws': 129}

X_wins: , O_wins: , draws: or X_wins: , O_wins: , draws: or something else?

Is this outcome consistent with your expectations? Please provide a rationale. We will

revisit this result in detail shortly.

Introduction

Types of Games

Deterministic or stochastic

One, two, or more players

Zero-sum or not

Perfect information or not

Definition

Zero-sum games are competitive scenarios where one player’s gain is exactly balanced

by another player’s loss, resulting in a net change of zero in total wealth or benefit.

Tic-tac-toe is a zero-sum game.

Have you previously studied zero-sum games? If so, please specify the context (e.g.,

coursework, research, or applied work) and the level of treatment (introductory,

advanced, or applied).

In [22]:

1

3

1

3

1

3

2

5

2

5

1

5

Deterministic Games

States: (to)

Players:

Actions: (depends on and)

Transition function:

A final state:

Reward or utility:

Develop a policy .

Unlike the earlier state-space search formulations, we introduce an explicit player

parameter. Consequently, the transition function is conditioned on both the current state

and the player identity (rather than on state alone).

What is a policy? How does it differ from the transition function?

The transition function describes the game’s mechanics.

It is part of the game definition.

It tells you what happens when you take action in state :

It is fixed by the rules of the game.

It does not depend on how a particular player wants to play.

Example (Tic-Tac-Toe): placing an X in an empty cell updates the board accordingly.

The policy describes the player’s behaviour.

It is part of the solution.

It tells the player which action to choose in each state they may encounter.

It depends on strategy, preferences, optimality.

It uses the transition function, but it is not defined by it.

Example: “If the centre is free, play there; otherwise play a corner.”

Concept What it describes Fixed or chosen? Example

Transition
function

How states evolve when
an action is taken

Fixed by game
rules

Applying a move
updates the board

Policy
Which action the player
selects in each state

Chosen (e.g.,
optimal strategy)

Always take center if
possible

What do you think?

S S0 Sk

P = 1, N

A P S

S × A → S

Sfinal

Sfinal, p

S0 → Sfinal

T : S × A → S

a s

π : S → A

T

π

Consider playing tic-tac-toe.

Can you ensure a never-lose strategy, irrespective of your opponent’s moves?

Does it matter if you play first or second?

Anyone who has played tic-tac-toe understands that a player can adopt a strategy that

ensures they never lose.

In itself this statement is rather surprising. Why?

How many board configurations are there?

Each square can be occupied by X or O or be empty. This leads to

board configurations.

Are all these configurations possible in a valid game?

Game progression.

Not all of these configurations are valid game states because they may contain

impossible numbers of Xs and Os or may not follow the rules of the game.

A tic-tac-toe game can end in a win for either player or a draw. The longest game

without a winner involves 9 moves (a full board).

Valid games account for the rules that players alternate turns, starting with X.

How many valid sequences of moves are there?

Are there more valid sequences of moves than board configurations?

count_valid_sequences

def count_valid_sequences(game, state, player):

 if game.is_terminal(state):
 return 1

 valid_moves = game.get_valid_moves(state)

 total = 0
 for move in valid_moves:
 new_state = game.make_move(state, move, player)
 total += count_valid_sequences(game, new_state, game.get_opponent(pl

 return total

game = TicTacToe()
state = game.initial_state()
player = "X"

39 = 19, 683

In [23]:

In [24]:

total = count_valid_sequences(game, state, player)
print(f"The total number of valid sequences is: {total:,}")

The total number of valid sequences is: 255,168

Considering the number of valid sequences, it is unsurprising that the first player can

adopt a strategy to avoid losing?

Symmetry (Digression)

. . .

Tic-tac-toe has 8 symmetrical transformations (4 rotations and 4 reflections).

By considering these, many game sequences that are different in raw move order

become equivalent.

The number of unique sequences of moves is 26,830, whereas the number of unique

board positions is 765.

Exercise: write a Python program the confirm the above.

Search Tree

The search tree size for the tic-tac-toe game is relatively small, making it suitable for

use as a running example in later discussions.

How does this compare to the search trees for chess and Go?

Search Tree

Chess:

Go:

The estimated number of atoms in the observable universe is around to .

Chess:

Chess has a relatively small board () but a variety of pieces with different

movement capabilities.

On average, each position has about 35 legal moves.

Considering an average game length of 80 ply (a ply is a half-move, so 40 moves per

player), the total games are estimated using the formula: , adjusted down

to account for illegal and redundant positions.

3580 ∼ 10123

361! ∼ 10768

1078 1082

8 × 8

3580 ∼ 10123

Go:

Go is played on a board, providing 361 points where stones can be placed.

Accordingly, the total number of games is .

Definition

Optimal play involves executing the best possible move at each step to maximize

winning chances, assuming the opponent also plays optimally.

In perfect information games like tic-tac-toe or chess, it requires anticipating the

opponent’s moves and choosing actions that enhance one’s position or minimize losses.

When both players employ optimal strategies, the outcome—win, loss, or draw—is

dictated by the game’s inherent mechanics and initial conditions.

Perfect information refers to a feature of certain games or decision-making scenarios

where all players have complete and accurate knowledge of the entire game state at all

times. This includes full visibility of all actions taken previously and no hidden elements

or randomness affecting the game’s progression. In games with perfect information,

such as chess or tic-tac-toe, players can make fully informed decisions based on the

entire history and current status of the game, allowing for strategies that can be planned

several moves ahead.

Make sure to fully understand how optimality is defined here. It might not correspond to

your intuition. The algorithms to be developed next are based on this definition.

Two-Move Game

19 × 19

361! ∼ 10768

Two-Move is a hypothetical game involving two players, designed to facilitate

discussions on the minimax algorithm.

Game Setup

The game starts with a single decision point for Player 1, who has two possible

moves: and .

Each of these moves leads to a decision point for Player 2, who also has two

possible responses: and .

The game ends after Player 2’s move, resulting in a terminal state with predefined

scores.

Search Tree

Root Node: Represents the initial state before Player 1’s move.

Ply 1: Player 1 chooses between moves and .

Ply 2: For each of Player 1’s moves, Player 2 chooses between moves and .

Leaf Nodes: Each branch’s endpoint is a terminal state with an associated score.

A B

C D

A B

C D

Scores

 results in a score of 3.

 results in a score of 5.

 results in a score of 2.

 results in a score of 1.

Player 1 wants to maximize its score.

Strategy

What should be player 2’s strategy and why?

Strategy

(A, C)

(A, D)

(B, C)

(B, D)

For move :

Player 2 can choose (score = 3) or (score = 5); they choose (minimizing

to 3).

For move :

Player 2 can choose (score = 2) or (score = 1); they choose (minimizing

to 1).

Strategy

A

C D C

B

C D D

What should now be the strategy for Player 1?

Strategy

Player 1, being the maximizer, will choose move , as it leads to the higher score of 3

after Player 2 minimizes.

Minimax

Minimax

Player 1 is the maximizing player, seeking the highest score.

Player 2 is the minimizing player, seeking the lowest score.

Evaluation:

Player 2 evaluates the potential outcomes for each of their moves and chooses the

least favorable outcome for Player 1.

Player 1 then evaluates these outcomes, choosing the move that maximizes their

minimum guaranteed score.

A

Minimax Search

Minimax Search

The minimax algorithm operates by exploring all possible moves in a game tree,

evaluating the outcomes to minimize the possible loss for a worst-case scenario. At

each node:

Maximizing Player’s Turn: Choose the move with the highest possible value.

Minimizing Player’s Turn: Choose the move with the lowest possible value.

By backtracking from the terminal nodes to the root, the algorithm selects the move that

maximizes the player’s minimum gain, effectively anticipating and countering the

opponent’s best strategies.

Minimax Search

Attribution: (Russell and Norvig 2020, fig. 5.3)

Walkthrough (first 4 minutes)

https://youtu.be/l-hh51ncgDI

Attribution: Sebastian Lague

Watch the first 5m 20s of the video.

The video introduces a variant of the minimax algorithm that includes a maximum

depth parameter, enabling the algorithm to terminate at a user-specified depth. This

approach is essential for games with extensive search spaces, such as chess and Go.

However, it necessitates a reliable method for evaluating the current state, referred to as

static evaluation in the video.

MinimaxSolverV1

class MinimaxSolverV1(Solver):

 """
 A classic, exact Minimax solver for Tic-Tac-Toe.

In [25]:

https://youtu.be/l-hh51ncgDI
https://sebastian.itch.io/

 Key properties:
 - Assumes that "X" is the maximizing player.
 - Performs a full game-tree search (Tic-Tac-Toe is small enough).
 """

 # --
 # PUBLIC API — Solver interface
 # --

 def select_move(self, game, state, player):

 """
 Return the optimal move for `player` using the full minimax search.

 Notes

 - Because Tic-Tac-Toe is small, a full search is instantaneous.
 - X is always maximizing; O is always minimizing.
 """

 maximizing = (player == "X")
 _, move = self._minimax(game, state, player, maximizing)
 return move

 # --
 # CORE MINIMAX
 # --

 def _minimax(self, game, state, player, maximizing):

 """
 The core recursive minimax procedure.

 Parameters

 game : the TicTacToe instance
 state : NumPy array representing the current board
 player : the player to move ("X" or "O")
 maximizing : True if this node corresponds to the maximizing player
 (i.e., X must play optimally), False for minimizing (O)

 Returns

 (value, move)
 value : +1, 0, or -1 from the perspective of X
 move : the best move found at this node
 """

 # --
 # TERMINAL TEST
 # --

 if game.is_terminal(state):
 # game.evaluate() returns 1 for X win, -1 for O win, 0 otherwise
 return game.evaluate(state), None

 # --
 # GENERATE ALL LEGAL MOVES
 # --

 moves = game.get_valid_moves(state)

 # --
 # MAX NODE: X to play
 # --

 if maximizing:
 best_value = -math.inf
 best_move = None

 for move in moves:
 next_state = game.make_move(state, move, player)
 # After X plays, it's O's turn (minimizing)
 value, _ = self._minimax(
 game,
 next_state,
 game.get_opponent(player),
 maximizing=False
)
 if value > best_value:
 best_value = value
 best_move = move

 return best_value, best_move

 # --
 # MIN NODE: O to play
 # --

 else:
 best_value = math.inf
 best_move = None

 for move in moves:
 next_state = game.make_move(state, move, player)
 # After O plays, it's X's turn (maximizing)
 value, _ = self._minimax(
 game,
 next_state,
 game.get_opponent(player),
 maximizing=True
)
 if value < best_value:
 best_value = value
 best_move = move

 return best_value, best_move

MinimaxSolverV1

class MinimaxSolverV1(Solver):

 def select_move(self, game, state, player):

 maximizing = (player == "X")

 _, move = self._minimax(game, state, player, maximizing)

 return move

MinimaxSolverV1 is a Solver .

It executes the minimax algorithm from state to determine the optimal move for

player .

_minimax

 def _minimax(self, game, state, player, maximizing):

 if game.is_terminal(state):
 return game.evaluate(state), None

 moves = game.get_valid_moves(state)

_minimax : if maximizing

 if maximizing:
 best_value = -math.inf
 best_move = None

 for move in moves:
 next_state = game.make_move(state, move, player)
 value, _ = self._minimax(
 game,
 next_state,
 game.get_opponent(player),
 maximizing=False
)
 if value > best_value:
 best_value = value
 best_move = move

 return best_value, best_move

_minimax : if minimizing

In [26]:

In [27]:

In [28]:

 else:
 best_value = math.inf
 best_move = None

 for move in moves:
 next_state = game.make_move(state, move, player)
 value, _ = self._minimax(
 game,
 next_state,
 game.get_opponent(player),
 maximizing=True
)
 if value < best_value:
 best_value = value
 best_move = move

 return best_value, best_move

Execution (1/2)

import time

Record the start time
start_time = time.perf_counter()

a = RandomSolver(13)
b = MinimaxSolverV1()

results = evaluate_solvers(game, a, b, num_games=1)
results

{'X_wins': 0, 'O_wins': 0, 'draws': 1}

Record the end time
end_time = time.perf_counter()

Calculate the elapsed time
elapsed_time = end_time - start_time

Print the elapsed time in seconds
print(f"Elapsed time: {elapsed_time:.6f} seconds!")

Elapsed time: 2.257900 seconds!

Discussion (Digression)

Is test_tic_tac_toe faster or slower than expected?

Do you see an area for improvement?

Discussion (Digression)

In [29]:

In [30]:

In [31]:

In [32]:

Memoization (Caching)

from functools import lru_cache

def canonical(state):

 """
 Convert a NumPy array board into a hashable, immutable representation
 (tuple of tuples). This allows us to use it as a key in dicts or
 as an argument to lru_cache. MCTS can also reuse this representation.
 """

 return tuple(map(tuple, state))

MinimaxSolver

class MinimaxSolver(Solver):

 """
 A classic, exact Minimax solver for Tic-Tac-Toe.

 - Assumes "X" is the maximizing player.

In [33]:

In [34]:

 - Uses memoization (lru_cache) to avoid recomputing values for
 identical positions.
 """

 def select_move(self, game, state, player):

 """
 Public interface: choose the best move for 'player' using Minimax.
 For Tic-Tac-Toe we can safely search the full game tree.
 """

 # Store game on self so _minimax can use it
 self.game = game

 # From X's perspective: X is maximizing, O is minimizing
 maximizing = (player == "X")

 # For Tic-Tac-Toe, depth=9 is enough to cover all remaining moves.
 _, move = self._minimax(canonical(state), player, maximizing, 9)
 return move

 @lru_cache(maxsize=None)
 def _minimax(self, state_key, player, maximizing, depth):

 """
 Internal recursive minimax.

 Parameters

 state_key : hashable representation of the board (tuple of tuples)
 player : player to move at this node ("X" or "O")
 maximizing: True if this node is a 'max' node (X to move),
 False if this is a 'min' node (O to move)
 depth : remaining search depth (not used for cutoffs in this
 full-search Tic-Tac-Toe implementation, but kept for
 didactic purposes and easy extension).
 """

 # Recover the NumPy board from the canonical state_key
 state = np.array(state_key)

 # Terminal test: win, loss, or draw
 if self.game.is_terminal(state):
 # Evaluation is always from X's perspective: +1, -1, or 0
 return self.game.evaluate(state), None

 moves = self.game.get_valid_moves(state)
 best_move = None

 if maximizing:
 # X to move: maximize the evaluation
 best_val = -math.inf
 for move in moves:
 st2 = self.game.make_move(state, move, player)
 val, _ = self._minimax(
 canonical(st2),

 self.game.get_opponent(player),
 False,
 depth - 1
)
 if val > best_val:
 best_val = val
 best_move = move
 return best_val, best_move

 else:
 # O to move: minimize the evaluation (since evaluation is for X)
 best_val = math.inf
 for move in moves:
 st2 = self.game.make_move(state, move, player)
 val, _ = self._minimax(
 canonical(st2),
 self.game.get_opponent(player),
 True,
 depth - 1
)
 if val < best_val:
 best_val = val
 best_move = move
 return best_val, best_move

Execution (2/2)

import time

Record the start time
start_time = time.perf_counter()

a = RandomSolver(13)
b = MinimaxSolver()

results = evaluate_solvers(game, a, b, num_games=1)
results

{'X_wins': 0, 'O_wins': 0, 'draws': 1}

Record the end time
end_time = time.perf_counter()

Calculate the elapsed time
elapsed_time = end_time - start_time

Print the elapsed time in seconds
print(f"Elapsed time: {elapsed_time:.6f} seconds!")

Elapsed time: 0.110848 seconds!

Yet Another Digression

In [35]:

In [36]:

In [37]:

 def get_valid_moves(self, state):

 moves = [
 (i, j)
 for i in range(self.size)
 for j in range(self.size)
 if state[i, j] == " "
]

 return random.shuffle(moves)

Games can become monotonous if you quickly discern patterns in your opponent’s

strategy, such as consistently choosing moves in a specific sequence.

We are randomizing the order of moves prior to returning them. However, the optimal

move for a given configuration will remain fixed, if solutions are cached.

Exploration

Compare the reduction in execution time achieved through symmetry

considerations versus caching techniques. Evaluate the combined effect of both

approaches.

Develop a Connect Four game implementation employing a minimax search

algorithm.

Connect Four is symmetric across its vertical axis. Develop a new implementation

that leverages this symmetry.

See also: Connect 4: Principles and Techniques

Can You Guess the Outcome?

game = TicTacToe()

a = MinimaxSolver()
b = RandomSolver(7)

results = evaluate_solvers(game, a, b, num_games=1000)

results

{'X_wins': 998, 'O_wins': 0, 'draws': 2}

Can You Guess the Outcome?

game = TicTacToe()

In [38]:

In [39]:

In [40]:

https://en.wikipedia.org/wiki/Connect_Four
https://web.stanford.edu/class/archive/cs/cs221/cs221.1192/2018/restricted/posters/yuex/poster.pdf

a = RandomSolver(7)
b = MinimaxSolver()

results = evaluate_solvers(game, a, b, num_games=1000)

results

{'X_wins': 0, 'O_wins': 793, 'draws': 207}

Can You Guess the Outcome?

game = TicTacToe()

a = MinimaxSolver()
b = MinimaxSolver()

results = evaluate_solvers(game, a, b, num_games=1000)

results

{'X_wins': 0, 'O_wins': 0, 'draws': 1000}

Summary

What have we obtained?

. . .

We derived a policy (a decision algorithm) that recommends actions leading to the

game’s optimal solution, under the assumption that the opponent adopts the same

policy.

Remark

The number of valid sequences of actions grows factorially, with particularly large

growth observed in games like chess and Go.

Alpha-beta pruning

Pruning

To enhance the efficiency of the minimax algorithm, one could possibly prune certain

parts of the search tree, thereby avoiding the exploration of descendant nodes.

Pruning

In [41]:

How would you implement this modification? What factors would you take into account?

Pruning

Tree pruning should be performed only when it can be demonstrated that those

subtrees cannot yield better solutions.

But how?

Because alpha-beta pruning discards only subtrees that cannot improve the current

bound, it preserves the minimax value and the resulting optimal move relative to

standard minimax, while exploring fewer nodes.

Criteria for Pruning

Based on Algorithms Explained – minimax and alpha-beta pruning by Sebastian Lague.

Criteria for Pruning

https://youtu.be/l-hh51ncgDI

Criteria for Pruning

Criteria for Pruning

Criteria for Pruning

Criteria for Pruning

We know that the value of node c is at least 5, since c is a maximizing node.

Node a is minimizing node and has to choose between 3 (node b) and at least 5 (node

c). No matter what we find in node d does not matter, node a will choose 3.

Criteria for Pruning

Let us continue briefly.

Criteria for Pruning

Let us continue briefly.

Criteria for Pruning

What value should be assigned to the node indicated by the arrow?

This is a maximizing node; therefore, we will assign it the value of -4.

Criteria for Pruning

Criteria for Pruning

The node marked by an arrow presents an interesting scenario.

Can you work out its value?

Criteria for Pruning

What do we know?

Criteria for Pruning

Can I say that the maximum value for node c is -4?

Suppose the right child of node c contains the value 5. Would you assign 5 to node c?

Certainly not. As a minimizing node, node c will have a value no greater than -4.

Criteria for Pruning

Exploring the right child of node c might reveal a value lower than -4. Does this matter?

Criteria for Pruning

Node a is a maximizing node. From node b, it ascertains a minimum achievable value of

3.

Node c is a minimizing node. From node d, it determines that the maximum value it can

return is -4.

Consequently, node a will always select node b, regardless of the value stored in node c,

since the value of c will not exceed -4.

Even if node c, as a minimizing node, discovers an extremely low value (e.g., -100) by

exploring its right child, node a, being a maximizing node, will still opt for node b.

Criteria for Pruning

The decisions made by players 1 and 2 remain unchanged with or without pruning.

However, pruning reduces the number of nodes visited.

Alph-Beta Pruning

Alpha-beta pruning is an optimization technique for the minimax algorithm that

reduces the number of nodes evaluated in the search tree.

Alph-Beta Pruning

It achieves this by eliminating branches that cannot possibly influence the final

decision, using two parameters:

alpha, the maximum score that the maximizing player is assured, and

beta, the minimum score that the minimizing player is assured.

Maximizing Player’s Perspective

At a maximizing node:

The maximizer aims to maximize the score.

Alpha () is updated to the highest value found so far among child nodes.

Process:

Initialize .

α

α = −∞

For each child node:

Compute the evaluation score.

Update .

Minimizing Player’s Perspective

At a minimizing node:

The minimizer aims to minimize the score.

Beta () is updated to the lowest value found so far among child nodes.

Process:

Initialize .

For each child node:

Compute the evaluation score.

Update .

Alph-Beta Pruning

When a node’s evaluation proves it cannot improve on the current alpha or beta, further

exploration of that branch is halted, thereby enhancing computational efficiency

without affecting the outcome.

Role of Alpha and Beta in Pruning

Pruning Condition:

If , further exploration of the current node’s siblings is unnecessary.

Rationale:

The maximizer has a guaranteed score of at least .

The minimizer can ensure that the maximizer cannot get a better score than .

If , the maximizer won’t find a better option in this branch.

Alpha-Beta Search

α = max(α, child_score)

β

β = ∞

β = min(β, child_score)

β ≤ α

α

β

β ≤ α

Attribution: (Russell and Norvig 2020, fig. 5.7)

Walkthrough (6:21 to 8:10)

https://youtu.be/l-hh51ncgDI

Attribution: Sebastian Lague. Start watching at 6m 21s.

Node Order

The effectiveness of pruning is influenced by the order in which nodes are

evaluated.

Greater pruning is achieved if nodes are ordered from most to least promising.

Refer to: Shannon (1959) for a discussion within the context of chess.

https://youtu.be/l-hh51ncgDI
https://sebastian.itch.io/

If X already has a branch that ensures at least a draw, and an ancestor minimizing node

knows it can force X into a loss, then exploring positions where X could hypothetically do

even better is pointless. O will never allow those lines to occur.

If O already has a move that guarantees X cannot win, then evaluating further children

that would give X an even worse outcome (for X) makes no difference. X will avoid those

branches anyway.

As the branching factor increases, the potential for effective pruning correspondingly

rises.

If move ordering were perfect, search procedures would be unnecessary. In practice,

however, effective heuristics, such as killer moves, the history heuristic, and neural

network-derived policy priors, significantly enhance move ordering. These approaches

substantially improve pruning efficiency within search algorithms.

MinimaxAlphaBetaSolverV1

class MinimaxAlphaBetaSolverV1(Solver):

 """
 A classical Minimax solver enhanced with Alpha–Beta pruning.

 - Assumes "X" is the maximizing player.
 - Performs a full search of the Tic–Tac–Toe game tree.
 """

 # --
 # Solver interface
 # --

 def select_move(self, game, state, player):

 """
 Choose the best move for `player` using Minimax with
 Alpha–Beta pruning.

 For Tic–Tac–Toe, depth=9 suffices to search the entire game.
 """

 self.game = game
 maximizing = (player == "X")

 value, move = self._alphabeta(
 state=state,
 player=player,
 maximizing=maximizing,
 depth=9,
 alpha=-math.inf,
 beta=math.inf
)

In [42]:

 return move

 # --
 # CORE MINIMAX WITH ALPHA-BETA PRUNING
 # --

 def _alphabeta(self, state, player, maximizing, depth, alpha, beta):

 """
 Internal recursive minimax search with alpha–beta pruning.

 Parameters

 state : NumPy array, current board
 player : "X" or "O", the player to move
 maximizing : True if this is a maximizing node (X to move)
 depth : remaining search depth
 alpha : best value found so far for the maximizer
 beta : best value found so far for the minimizer

 Returns

 (value, move)
 value : evaluation of the state from X's perspective (+1/-1/0)
 move : the best move found at this node
 """

 # Terminal test: win/loss/draw
 if self.game.is_terminal(state) or depth == 0:
 return self.game.evaluate(state), None

 moves = self.game.get_valid_moves(state)
 best_move = None

 # --
 # Maximizing node (X)
 # --

 if maximizing:
 value = -math.inf

 for move in moves:
 next_state = self.game.make_move(state, move, player)

 child_val, _ = self._alphabeta(
 next_state,
 self.game.get_opponent(player),
 False, # next is minimizing
 depth - 1,
 alpha,
 beta
)

 if child_val > value:
 value = child_val

 best_move = move

 # Update alpha
 alpha = max(alpha, value)

 # Prune
 if beta <= alpha:
 break

 return value, best_move

 # --
 # Minimizing node (O)
 # --

 else:
 value = math.inf

 for move in moves:
 next_state = self.game.make_move(state, move, player)

 child_val, _ = self._alphabeta(
 next_state,
 self.game.get_opponent(player),
 True, # next is maximizing
 depth - 1,
 alpha,
 beta
)

 if child_val < value:
 value = child_val
 best_move = move

 # Update beta
 beta = min(beta, value)

 # Prune
 if beta <= alpha:
 break

 return value, best_move

MinimaxAlphaBetaSolverV1

class MinimaxAlphaBetaSolverV1(Solver):

 def select_move(self, game, state, player):

 self.game = game
 maximizing = (player == "X")

 value, move = self._alphabeta(
 state=state,

In [43]:

 player=player,
 maximizing=maximizing,
 depth=9,
 alpha=-math.inf,
 beta=math.inf
)

 return move

MinimaxAlphaBetaSolverV1 is_a Solver .

_alphabeta

 def _alphabeta(self, state, player, maximizing, depth, alpha, beta):

 if self.game.is_terminal(state) or depth == 0:
 return self.game.evaluate(state), None

 moves = self.game.get_valid_moves(state)
 best_move = None

_alphabeta : if maximizing

 if maximizing:
 value = -math.inf

 for move in moves:
 next_state = self.game.make_move(state, move, player)

 child_val, _ = self._alphabeta(
 next_state,
 self.game.get_opponent(player),
 False, # next is minimizing
 depth - 1,
 alpha,
 beta
)

 if child_val > value:
 value = child_val
 best_move = move

 # Update alpha
 alpha = max(alpha, value)

 # Prune
 if beta <= alpha:
 break

 return value, best_move

In [44]:

In [45]:

_alphabeta : if minimizing

 else:
 value = math.inf

 for move in moves:
 next_state = self.game.make_move(state, move, player)

 child_val, _ = self._alphabeta(
 next_state,
 self.game.get_opponent(player),
 True, # next is maximizing
 depth - 1,
 alpha,
 beta
)

 if child_val < value:
 value = child_val
 best_move = move

 # Update beta
 beta = min(beta, value)

 # Prune
 if beta <= alpha:
 break

 return value, best_move

Walkthrough

Maximizing nodes update the alpha values, while minimizing nodes update the beta

values.

In [46]:

Walkthrough

The values of and are initially set to and , respectively. The recursive calls

continue traversing the tree until the leftmost node is reached.

Walkthrough

The value of is updated to -1.

Walkthrough

α β −∞ ∞

α

Updating to 3.

Walkthrough

Updating from to 3. Passing those values to the right child.

Walkthrough

α

β ∞

Updating from to 5. We now have .

Walkthrough

The right child is not visited. The parent (a minimizer) has a better option () than .

Walkthrough

α −∞ β ≤ α

β α

Returning from the recursive calls, the root node receives a value of 3 from its left child

and updates its to 3, which exceeds its initial value of .

Walkthrough

Now traversing the right subtree from the root. Upon reaching left-most maximizing

node of the right subtree, is not updated since -6 and -4 are less than 3.

Walkthrough

α −∞

α

 is now updated to -4. We now have that .

Walkthrough

The right child is pruned.

Walkthrough

β β ≤ α

The maximizing player knows that its best move has a value of 3 (going left).

Sanity Check

game = TicTacToe()

a = MinimaxAlphaBetaSolverV1()
b = RandomSolver(7)

results = evaluate_solvers(game, a, b, num_games=100)

results

{'X_wins': 100, 'O_wins': 0, 'draws': 0}

Sanity Check

game = TicTacToe()

a = RandomSolver(7)
b = MinimaxAlphaBetaSolverV1()

results = evaluate_solvers(game, a, b, num_games=100)

results

{'X_wins': 0, 'O_wins': 82, 'draws': 18}

Sanity Check

game = TicTacToe()

a = MinimaxAlphaBetaSolverV1()
b = MinimaxAlphaBetaSolverV1()

In [47]:

In [48]:

In [49]:

results = evaluate_solvers(game, a, b, num_games=100)

results

{'X_wins': 0, 'O_wins': 0, 'draws': 100}

Summmary

Alpha Cutoff: Occurs at minimizer nodes when .

Beta Cutoff: Occurs at maximizer nodes when .

1. Pruning at Both Node Types:

Pruning can occur during both the minimization and maximization phases. This

means that both minimizer and maximizer nodes can be pruned if certain

conditions are met.

2. Updating Alpha and Beta:

At maximizer nodes, the algorithm updates the alpha value to the maximum of

its current value and the value of the child nodes evaluated so far.

At minimizer nodes, the algorithm updates the beta value to the minimum of

its current value and the value of the child nodes evaluated so far.

3. Pruning Conditions:

At Maximizer Nodes:

If alpha becomes greater than or equal to beta (), further

exploration of the current node’s descendants can be stopped. This is

because the minimizer (opponent) can force the outcome to be no better

than beta, so the maximizer cannot improve the result beyond this point.

This is often referred to as a beta cutoff because the value of beta is

causing the pruning at a maximizer node.

At Minimizer Nodes:

If beta becomes less than or equal to alpha (), the algorithm can

prune the remaining child nodes of the minimizer node. This is because the

maximizer can force a result of at least alpha, so the minimizer cannot find

a better (lower) outcome.

β ≤ α

α ≥ β

α ≥ β

β ≤ α

This is known as an alpha cutoff because the value of alpha is causing the

pruning at a minimizer node.

4. Process of Pruning:

The pruning occurs not when alpha or beta are updated, but when the

pruning condition (at maximizer nodes or at minimizer nodes) is

met.

Once these conditions are satisfied, the algorithm knows that further

exploration will not yield a better outcome, and thus it can safely prune those

branches.

Summary:

Alpha Cutoff: Occurs at minimizer nodes when .

Beta Cutoff: Occurs at maximizer nodes when .

Why Pruning Occurs:

In both cases, the pruning occurs because further exploration cannot influence

the final decision. The opponent can force the game into a situation that’s no

better than the current evaluation.

Impact on Algorithm Efficiency:

By implementing these cutoffs, the alpha-beta pruning algorithm reduces the

number of nodes that need to be evaluated compared to the standard minimax

algorithm, thus improving efficiency without affecting the outcome.

Discussion

Grasping why alpha-beta pruning boosts minimax efficiency without altering

outcomes requires careful thought.

The algorithm changes are minimal.

Is the enhancement justified?

MinimaxSolverV2 (INSTRUMENTED)

class MinimaxSolverV2(Solver):

 """
 A classic, exact Minimax solver for Tic-Tac-Toe — *instrumented version*

 Differences from V1

 - Adds a counter `self.nodes_visited` that counts each recursive call.

α ≥ β β ≤ α

β ≤ α

α ≥ β

In [50]:

 - Uses `reset()` so the GameRunner or TournamentRunner can correctly
 prepare the solver before each game.
 - Still performs a full game-tree search without memoization.

 Characteristics

 - Assumes "X" is the maximizing player.
 - Performs a complete minimax search (Tic-Tac-Toe is small enough).
 """

 def __init__(self):

 # Count how many nodes have been visited in the current run
 self.nodes_visited = 0

 # --
 # Solver interface
 # --

 def select_move(self, game, state, player):

 """
 Choose the optimal move for `player` using a full minimax search.
 """

 maximizing = (player == "X")
 value, move = self._minimax(game, state, player, maximizing)
 return move

 def reset(self):

 """
 Reset instrumentation counters at the start of a game (or tournament

 GameRunner / TournamentRunner should call solver.reset() before
 starting a new game.
 """

 self.nodes_visited = 0

 def get_name(self):

 """
 Name is inherited from Solver but solvers may override get_name()
 to display additional instrumentation info.
 """

 return f"{self.__class__.__name__} (nodes={self.nodes_visited})"

 # --
 # Core recursive minimax
 # --

 def _minimax(self, game, state, player, maximizing):

 """

 The core recursive minimax computation.

 Parameters

 game : TicTacToe instance
 state : NumPy array of current board position
 player : "X" or "O" — the player whose turn it is at this node
 maximizing : True if this node corresponds to X; False if O

 Returns

 (value, move)
 value : +1 for X win, -1 for O win, 0 otherwise
 move : best move selected at this node
 """

 # Instrumentation
 self.nodes_visited += 1

 # ------------------------
 # TERMINAL NODE?
 # ------------------------
 if game.is_terminal(state):
 return game.evaluate(state), None

 # ------------------------
 # GENERATE ALL MOVES
 # ------------------------
 moves = game.get_valid_moves(state)

 # ------------------------
 # MAX NODE (X plays)
 # ------------------------
 if maximizing:
 best_value = -math.inf
 best_move = None

 for move in moves:
 next_state = game.make_move(state, move, player)
 val, _ = self._minimax(
 game,
 next_state,
 game.get_opponent(player),
 maximizing=False
)
 if val > best_value:
 best_value = val
 best_move = move

 return best_value, best_move

 # ------------------------
 # MIN NODE (O plays)
 # ------------------------

 else:

 best_value = math.inf
 best_move = None

 for move in moves:
 next_state = game.make_move(state, move, player)
 val, _ = self._minimax(
 game,
 next_state,
 game.get_opponent(player),
 maximizing=True
)
 if val < best_value:
 best_value = val
 best_move = move

 return best_value, best_move

MinimaxAlphaBetaSolverV2 (INSTRUMENTED)

class MinimaxAlphaBetaSolverV2(Solver):

 """
 A classical Minimax solver enhanced with Alpha–Beta pruning,
 instrumented to count how many nodes are visited.

 - Assumes "X" is the maximizing player.
 - Performs a full search of the Tic–Tac–Toe game tree.
 - Alpha–Beta pruning reduces the number of explored states
 without changing the final result.

 Instrumentation

 - self.nodes_visited counts how many times _alphabeta() is called.
 """

 def __init__(self):

 # Count how many nodes have been visited in the current run
 self.nodes_visited = 0

 # --
 # Solver interface
 # --

 def select_move(self, game, state, player):

 """
 Choose the best move for `player` using Minimax with
 Alpha–Beta pruning.

 For Tic–Tac–Toe, depth=9 suffices to search the entire game.
 """

 self.game = game

In [51]:

 maximizing = (player == "X")

 value, move = self._alphabeta(
 state=state,
 player=player,
 maximizing=maximizing,
 depth=9,
 alpha=-math.inf,
 beta=math.inf
)

 return move

 def reset(self):

 """
 Reset any per-game state.

 Called by GameRunner (or similar) at the start of a new game.
 """

 self.nodes_visited = 0

 # --
 # Private
 # --

 def _alphabeta(self, state, player, maximizing, depth, alpha, beta):

 """
 Internal recursive minimax search with alpha–beta pruning.

 Parameters

 state : NumPy array, current board
 player : "X" or "O", the player to move
 maximizing : True if this is a maximizing node (X to move)
 depth : remaining search depth
 alpha : best value found so far for the maximizer
 beta : best value found so far for the minimizer

 Returns

 (value, move)
 value : evaluation of the state from X's perspective (+1/-1/0)
 move : the best move found at this node
 """

 # Instrumentation: count this node
 self.nodes_visited += 1

 # Terminal test: win/loss/draw or depth cutoff
 if self.game.is_terminal(state) or depth == 0:
 return self.game.evaluate(state), None

 moves = self.game.get_valid_moves(state)

 best_move = None

 # --
 # Maximizing node (X)
 # --
 if maximizing:
 value = -math.inf

 for move in moves:
 next_state = self.game.make_move(state, move, player)

 child_val, _ = self._alphabeta(
 next_state,
 self.game.get_opponent(player),
 False, # next is minimizing
 depth - 1,
 alpha,
 beta
)

 if child_val > value:
 value = child_val
 best_move = move

 # Update alpha
 alpha = max(alpha, value)

 # Prune
 if beta <= alpha:
 break

 return value, best_move

 # --
 # Minimizing node (O)
 # --

 else:
 value = math.inf

 for move in moves:
 next_state = self.game.make_move(state, move, player)

 child_val, _ = self._alphabeta(
 next_state,
 self.game.get_opponent(player),
 True, # next is maximizing
 depth - 1,
 alpha,
 beta
)

 if child_val < value:
 value = child_val
 best_move = move

 # Update beta
 beta = min(beta, value)

 # Prune
 if beta <= alpha:
 break

 return value, best_move

Can You Guess the Outcome?

runner = GameRunner(game)

mm = MinimaxSolverV2()
ab = MinimaxAlphaBetaSolverV2()

outcome = runner.play_game(mm, ab)

print("Nodes visited for MinimaxSolverV2:", mm.nodes_visited)
print("Nodes visited for MinimaxAlphaBetaSolverV2:", ab.nodes_visited)
print(f"Pruning efficiency: {(mm.nodes_visited - ab.nodes_visited) / mm.node

Nodes visited for MinimaxSolverV2: 557492
Nodes visited for MinimaxAlphaBetaSolverV2: 2435
Pruning efficiency: 0.996

In tic-tac-toe, the total number of valid action sequences equates to 255,168,

corresponding to the number of leaf nodes in the game tree.

Here, we present the total count of nodes visited, encompassing both internal nodes and

leaf nodes, thereby accounting for the higher aggregate number.

Memoization

class AlphaBetaSolver(Solver):

 """
 A classical Minimax solver enhanced with Alpha-Beta pruning.

 - Assumes "X" is the maximizing player.
 - Uses memoization (lru_cache) to avoid recomputing states.
 - Performs a *full* search of Tic-Tac-Toe (depth=9).
 - Returns the optimal move for the current player.
 """

 # --
 # Solver interface
 # --

 def select_move(self, game, state, player):

 """

In [52]:

In [53]:

 Public interface required by Solver.
 Runs Alpha-Beta search from the current state.
 """

 self.game = game

 maximizing = (player == "X") # X maximizes, O minimizes

 # Reset cache between games to avoid storing millions of keys
 self._alphabeta.cache_clear()

 value, move = self._alphabeta(
 canonical(state),
 player,
 maximizing,
 9, # full-depth search
 -math.inf, # alpha
 math.inf # beta
)
 return move

 # --
 # Internal alpha-beta with memoization
 # --

 @lru_cache(maxsize=None)
 def _alphabeta(self, state_key, player, maximizing, depth, alpha, beta):

 """
 Parameters

 state_key : tuple-of-tuples board
 player : player whose turn it is ('X' or 'O')
 maximizing: True if this node is a maximizing node for X
 depth : remaining depth
 alpha : best guaranteed value for maximizer so far
 beta : best guaranteed value for minimizer so far
 """

 state = np.array(state_key)

 # Terminal or horizon case
 if self.game.is_terminal(state) or depth == 0:
 return self.game.evaluate(state), None

 moves = self.game.get_valid_moves(state)
 best_move = None

 # --
 # MAX (X)
 # --

 if maximizing:
 value = -math.inf

 for move in moves:

 st2 = self.game.make_move(state, move, player)

 child_val, _ = self._alphabeta(
 canonical(st2),
 self.game.get_opponent(player),
 False, # now minimizing
 depth - 1,
 alpha,
 beta
)

 if child_val > value:
 value = child_val
 best_move = move

 alpha = max(alpha, value)
 if beta <= alpha:
 break # β-cutoff

 return value, best_move

 # --
 # MIN (O)
 # --

 else:
 value = math.inf

 for move in moves:
 st2 = self.game.make_move(state, move, player)

 child_val, _ = self._alphabeta(
 canonical(st2),
 self.game.get_opponent(player),
 True, # now maximizing
 depth - 1,
 alpha,
 beta
)

 if child_val < value:
 value = child_val
 best_move = move

 beta = min(beta, value)
 if beta <= alpha:
 break # α-cutoff

 return value, best_move

For our notes only.

Exploration

Implement a Connect Four game using the Alpha-Beta Search algorithm. Conduct a

comparative analysis between the Minimax and Alpha-Beta Search implementations.

Prologue

Further exploration

Expetimax search: handling players that are not perfect;

Expectiminimax: handling chance in games such as backgammon.

Summary

Introduction to adversarial search

Zero-sum games

Introduction to the minimax search method

Role of alpha and beta pruning in minimax search

Introduction to Adversarial Search:

Exploration of competitive environments with conflicting objectives.

Classification of Games:

Types based on determinism (deterministic vs. stochastic).

Number of players (one, two, or more).

Nature of competition (zero-sum vs. non-zero-sum).

Availability of information (perfect vs. imperfect information).

Zero-Sum Games:

Definition and characteristics.

Example: Tic-Tac-Toe as a zero-sum game.

Deterministic Games Framework:

Components: states, players, actions, transition functions, final states, rewards.

Development of policies from initial to final states.

Game Strategies and Complexity:

Analysis of never-lose strategies in Tic-Tac-Toe.

Discussion on the impact of move order (first or second player).

Exploration of game complexity in Tic-Tac-Toe, Chess, and Go.

Optimal Play and Perfect Information:

Concepts of optimal strategies and their implications.

https://en.wikipedia.org/wiki/Connect_Four

Importance of perfect information in game theory.

Minimax Algorithm:

Introduction to the minimax search method.

Application in determining optimal moves in adversarial games.

Implementation details with a Python example for Tic-Tac-Toe.

Efficiency Improvements:

Use of caching (memoization) to enhance algorithm performance.

Reduction of computational overhead in game search trees.

Pruning Techniques:

Introduction to pruning in search trees to avoid unnecessary computations.

Detailed explanation of Alpha-Beta pruning.

Criteria for pruning and walkthrough examples illustrating the process.

Alpha-Beta Pruning:

Integration with the minimax algorithm.

Role of alpha and beta parameters in optimizing search.

Impact on the number of nodes evaluated.

Performance Comparison:

Analysis of node exploration between minimax and alpha-beta pruning.

Quantitative demonstration of efficiency gains.

Node Ordering and Pruning Effectiveness:

Discussion on how node evaluation order affects pruning success.

Strategies for ordering nodes to maximize pruning potential.

Next lecture

We will look at the Monte Carlo Tree Search (MCTS) algorithm

References

Russell, Stuart, and Peter Norvig. 2020. Artificial Intelligence: A Modern Approach. 4th

ed. Pearson. http://aima.cs.berkeley.edu/.

Shannon, Claude E. 1959. “Programming a Computer Playing Chess.” Philosophical

Magazine Ser.7, 41 (312).

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

http://aima.cs.berkeley.edu/
mailto:Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

