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Preamble

Message of the Day

‘Mind-captioning’ Al decodes brain activity to turn thoughts into text
Nature News, 2025-11-05.

Brief summary (Generated by gtp-5-mini on 2025-11-21):

e What it is: "Mind-captioning” is a technique that decodes brain activity to generate
descriptive sentences of what a person is seeing or imagining.


https://www.nature.com/articles/d41586-025-03624-1

e How it works: researchers used a deep-language model to convert captions from
>2,000 videos into numerical “meaning signatures,” then trained a separate model
to map six participants’ brain-scan patterns (while watching or recalling videos) to
those signatures.

e Key findings: the method can recover descriptive content from both perception and
memory, offering clues about how the brain represents meaning before language is
produced.

e Potential uses: could help people with language impairments communicate and
advance understanding of neural representations of thought.

e Risks and caveats: prior methods sometimes confounded model-generated
language with brain content; this approach aims to link brain patterns to pre-existing
meaning signatures. The work raises serious mental-privacy concerns (surveillance,
manipulation, discrimination) as decoding thought content becomes more accurate.

Learning objectives

¢ Explain the concept and key steps of Monte Carlo Tree Search (MCTS).

e Compare MCTS with other search algorithms like BFS, DFS, A* Simulated
Annealing, and Genetic Algorithms.

e Analyze how MCTS balances exploration and exploitation using the UCB1 formula.

o Implement MCTS in practical applications such as Tic-Tac-Toe.

Introduction

Monte Carlo Tree Search (MCTS)

In the introductory lecture on state space search, | used Monte Carlo Tree Search
(MCTS), a key component of AlphaGo, to exemplify the role of search algorithms in

reasoning.

Today, we conclude this series by examining the implementation details of this algorithm.

Applications

e De novo drug design

e Electronic circuit routing

e Load monitoring in smart grids

e Lane keeping and overtaking tasks

e Motion planning in autonomous driving

e Even solving the travelling salesman problem

See: Kemmerling, Litticke, and Schmitt (2024)



The paper by Kemmerling and colleagues (Kemmerling, Lutticke, and Schmitt 2024)
illustrates the wide range of applications for MCTS when combined with deep neural
networks.

Applications (continued)

See also Besta et al. (2025) on the role of MTCS in Reasoning Language Models (RLMs).

Historical Notes

e 2008: the algorithm is introduced in the context of Al game (Chaslot et al. 2008)
e 2016: the algorithm is combined with deep neural networks to create AlphaGo
(Silver et al. 2016)

Definition

A Monte Carlo algorithm is a computational method that uses random sampling to
obtain numerical results, often used for optimization, numerical integration, and
probability distribution estimation.

It is characterized by its ability to handle complex problems with probabilistic solutions,
trading exactness for efficiency and scalability.

Have you previously encountered the term “Monte Carlo algorithm"?

Have you previously encountered the term “Monte Carlo algorithm"? If so, please
provide representative examples of Monte Carlo methods.

Monte Carlo integration, approximating integrals via random sampling, is a canonical
example of Monte Carlo methods.

The method draws  ~ Uniform(a, b), then uses
b 1 n
de~(b—a),— X;).
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See Section 6.1 for examples of source code.

Algorithm

For a specified number of iterations (simulations):

1. Selection (guided tree descent)
2. Node expansion



3. Rollout (simulation)
4. Back-propagation

A Monte Carlo algorithm uses random sampling (simulations) for probability distribution
estimation.

Note that Step 4, labeled "back-propagation,” is not the same as the gradient-based
backpropagation algorithm used to train neural networks. MTCS does not compute
gradients or perform any gradient-based optimization.

e MCTS is not a single fixed algorithm, many variants exist in the literature and in
practice.

e The four canonical steps (Selection, Expansion, Simulation, Backpropagation)
admit multiple design choices:

= Expansion strategies vary widely:
o Incremental expansion: add one child per visit (common in classical UCT).
o Full expansion: add all legal children at once (common in some game
engines).
= Simulation policies range from pure random playouts to heuristic-guided
rollouts.
= Backpropagation updates may use win counts, average values, prior
probabilities, or value-network estimates.
= Tree persistence may reset every move, persist within a game, or persist
across games.

Implication: MCTS should be understood as a family of algorithms—different
implementations may behave very differently depending on expansion, rollout, and
backup rules.

Algorithm

function MONTE-CARLO-TREE-SEARCH(state) returns an action

tree < NODE(state)

while IS-TIME-REMAINING() do
leaf <— SELECT(tree)
child < EXPAND(leaf)
result < SIMULATE(child)
BACK-PROPAGATE(result, child)

return the move in ACTIONS(state) whose node has highest number of playouts

Attribution: Russell and Norvig (2020), Figure 5.11

Any-Time Algorithm



MCTS is a textbook example of an any-time algorithm:

e |t can be interrupted at any moment.
¢ More time = more simulations = better action estimates.
e |t returns the best current move given whatever number of iterations have been

completed.

This is exactly how it is used in Go, chess, Atari, MuZero, etc.: run until the time budget
expires, then act.

Discussion

Like other algorithms previously discussed, such as BFS, DFS, and A*, Monte Carlo Tree
Search (MCTS) maintains a frontier of unexpanded nodes.

Examining the relationship between MCTS and previous search algorithms offers
valuable insights into their similarities and differences, providing an excellent opportunity
to synthesize key concepts.

Discussion

Similar to A*, Monte Carlo Tree Search (MCTS) employs a heuristic, referred to as a
policy, to determine the next node for expansion.

However, in A*, the heuristic is typically a static function estimating cost to a goal,
whereas in MCTS, the “policy” involves dynamic evaluation.

By “static evaluation,” we mean a function that yields the same result for a given state,
irrespective of the moment the function is called within the program'’s execution.

Discussion

Similar to Simulated Annealing and Genetic Algorithms, Monte Carlo Tree Search
(MCTS) incorporates a mechanism to balance exploration and exploitation.

Discussion

e MCTS leverages all visited nodes in its decision-making process, unlike A*,
which primarily focuses on the current frontier.

e Additionally, MCTS iteratively updates the value of its nodes based on
simulations, whereas A* typically uses a static heuristic.

The efficacy of Monte Carlo Tree Search (MCTS) in identifying promising nodes
improves as the execution time is extended. The comparison between simulated



annealing and MCTS will be revisited shortly.

Discussion

In contrast to previous algorithms with implicit search trees, MCTS constructs an
explicit tree structure during execution.

As we will explore, MCTS maintains both explicit and implicit representations of the
search tree.

While previous algorithms often imply a search tree structure without explicitly
constructing it, MCTS explicitly builds and maintains a tree structure during execution.

This explicit tree is used to record the outcomes of simulations and guide decision-
making.

The explicit tree tracks visited states and their evaluations, while the implicit aspect
refers to the expansion of the tree during simulations.

Walk-through




Adapted from: Monte Carlo Tree Search by John Levine posted on YouTube on 2017-03-
06.

We begin by providing an overview of the algorithm's execution, followed by an in-depth
analysis of its individual components.

The accompanying diagram illustrates the algorithm’s operation after four iterations.
Before delving into the specifics of each iteration, it is essential to elucidate the
fundamental concepts.

In the diagram, the blue and purple nodes depict the explicit search tree constructed by
Monte Carlo Tree Search (MCTS) during each iteration. Each node maintains a record of
the number of visits and its cumulative score. The edges between nodes are annotated
with actions. For example, at the algorithm's initiation, two actions are available. Upon
selecting action a1, two additional actions become accessible.

The algorithm employs the UCB1 (Upper Confidence Bound 1) formula to select the
subsequent node to visit, thereby guiding the descent process.

Upon reaching a leaf node, the algorithm conducts a simulation, known as a rollout, to
estimate the node's potential utility.

Walk-through


https://youtu.be/UXW2yZndl7U
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Each node keeps track of the number of visits (n) and a total score ().

Sy is the initial state.

Walk-through
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Adding the available actions, a1 and az, as well as the corresponding states, S and Ss.

Walk-through (1.1)
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1.1 Start of the first iteration: Selection Step.

Walk-through (1.1)
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1.1 The UCB1 score of S and Sy are both oo since ny = ns = 0.

We can select the either node.

Walk-through (1.1)
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1.1 We reached a leaf node, Si.

Walk-through (1.2)
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1.2 Node expansion. This node has not been visited yet. Therefore, no expansion.

The node’s unvisited status is indicated by n = 0. Prior to expanding the node, it is
essential to evaluate its utility, which is accomplished through a rollout in the subsequent

step.

Walk-through (1.3)
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1.3 A rollout (simulation) is simply randomly selecting actions until a terminal node is
found.

In a rollout simulation, the algorithm iteratively selects subsequent actions until it
reaches a terminal node. At this stage, the utility of the resultant state is assessed
(game.evaluate(state, player) ). Notably, the trajectory from the selected node
to the terminal state is not tracked, as indicated by the wiggly line in the diagram.

Rollout simulations proceed from the selected node either until a terminal state is
encountered or a predetermined depth limit is achieved. If the latter occurs, a heuristic
or value function is employed to evaluate the state.

Walk-through (1.4)



1.4 Back-propagation.

Walk-through (1.End)



End of iteration 1.

Walk-through (2.1)
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2.1 Selection. Computing the UCB1 value of S; = 20 + 2 # and Sy = oo.
We select Ss.

To determine the next action, the algorithm must first ascertain the utility values of all
immediate child nodes.

Walk-through (2.2)



2.2 Expansion. This node has not been visited yet. Therefore, no expansion.

Walk-through (2.3)
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2.3 Rollout.

Walk-through (2.4)



2.4 Back-propagation.

Walk-through (2.End)



End of iteration 2.

Walk-through (3.1)



3.1 Selection. Calculating UCB1 values.

Walk-through (3.1)



3.1 Selection.

Computing the UCB1 value of S7 = 20 + 2\/@ = 21.67 and

Sy =10 +2¢/ 22 — 11.67.

Selecting S1

Walk-through (3.2)



3.2 Node expansion.

Walk-through (3.2)



3.2 Node expansion. Since n; > 0, the node is expanded.

Walk-through (3.3)
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3.3 Rollout.

Walk-through (3.4)



3.4 Back-propagation.

Walk-through (3.End)



End of iteration 3.

Walk-through (4.1)



4.1 Selection. Calculating UCB1 values.

Walk-through (4.1)



Computing the UCB1 value of S = % + 24/ @ =10 + 24/ @ = 11.48 and

hlf’) — 12.10.

Selecting S,

Walk-through (4.2)



4.2 Expansion.

Walk-through (4.2)



4.2 Expansion. Both nodes have the same USCB1 value, oo.

Selecting Sg.

Walk-through (4.3)
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4.3 Rollout.

Walk-through (4.4)



4.4 Back-propagation.

Walk-through (4.End)



End of iteration 4.

Walk-through



If the algorithm halts at this stage, it will recommend as as the optimal move, given that
S5 possesses the highest average score.

In practical applications, various strategies are employed to determine the optimal
action. One common approach is to select the node with the highest number of visits, as
this method may offer greater robustness compared to choosing the node based solely
on the highest average score.

In applications such as chess, Go, or Atari games, MCTS conducts 1000 to 2000
simulations per move. This seemingly low count is attributed to the use of deep learning
algorithms, which direct the search through tree and default policies.

Each set of iterations, for instance, 1000, is utilized solely to determine the subsequent
optimal move.

During the initial iterations, MCTS operates with limited information for selecting the next
best move. As iterations increase, the estimates become more refined.

The number of nodes in a search tree after 1000 iterations of MCTS depends on several
factors, including the branching factor at each node and the specific policy used for
node expansion. Generally, each iteration of MCTS consists of four main steps: selection,
expansion, simulation, and backpropagation. During the expansion phase, a new node is
added to the tree.



In a typical MCTS setup:

1. Selection: Descent the existing tree from the root to a leaf node using a tree policy,
often based on Upper Confidence Bounds for Trees (UCT).

2. Expansion: Add one or more child nodes to the selected node if it is not fully
expanded.

3. Simulation: Perform a simulation from the new node to a terminal state.

4. Backpropagation: Update the value estimates of the path nodes based on the
simulation result.

Assuming that each iteration expands exactly one new node, the search tree will have
approximately 1000 additional nodes after 1000 iterations. However, the actual number
can vary if multiple nodes are expanded per iteration or due to the tree's initial setup and
other variations in the algorithm's implementation.

Russell and Norvig

(a) Selection ;I (b) Expansion

(c) Backpropagation
5 and simulation
black wins

Figure 5.10 One iteration of the process of choosing a move with Monte Carlo tree search
(MCTYS) using the upper confidence bounds applied to trees (UCT) selection metric, shown
after 100 iterations have already been done. In (a) we select moves, all the way down the
tree, ending at the leaf node marked 27/35 (for 27 wins for black out of 35 playouts). In (b)
we expand the selected node and do a simulation (playout), which ends in a win for black. In
(c), the results of the simulation are back-propagated up the tree.

Attribution: Russell and Norvig (2020), Figure 5.10

This example includes a significantly larger number of nodes, which may aid in
comprehending the selection step more effectively.

The algorithm seeks to navigate toward the most promising area of the tree,
characterized by the highest average score, and subsequently expands this section of
the search tree.



Observe that the backpropagation step updates all nodes along the path from the
selected node to the root. This update can influence the path chosen in the subsequent
iteration.

Because the algorithm operates in an adversarial setting, we count only victories
attributed to black nodes.

Summary: tree building

Initially, the tree has one node, it is Sp.
We add its descendants and we are ready to start.

The Monte Carlo Tree Search slowly builds its search tree.

Summary: 4 steps

With each iteration, the following steps occur:

1. Selection: Identify the "best” node by descending a single path in the tree, guided
by UCB1.

2. Expansion: Expand the node if it is a leaf in the MCTS Tree and n > 0.

3. Rollout: Simulate a game from the current state to a terminal state by randomly
selecting actions.

4. Backpropagation: Use the obtained information to update the current node and all

parent nodes up to the root.

Summary: nodes

Each node records its total score and visit count.

This information is used to calculate a value that guides tree descent, balancing
exploration and exploitation.

Summary: exploration vs exploitation

— In(N)
UCBL(S;)) =V, +C

n;

The usual value for C'is /2.



Exploration essentially occurs when two nodes have approximately the same average
score, then MCTS favours nodes with fewer visits (dividing by n).

For n < In(IN), the value of the ratio is greater than 1, whereas for n. > In(V), the ratio
becomes less than 1.

So there is a small fraction of the time where exploration kicks in. But even then, the
contribution of the ratio is quite tame, we're taking the square root of that ratio,
multiplied by /2 ~ 1.414213562.

Summary: exploration vs exploitation

In simulated annealing, the initial temperature and the scale of the objective function
are linked.

Acceptance rule for a candidate move with score change AE = E, ., — Fy4:

e If AE < 0: always accept (better or equal solution).
o If AE > 0: accept with probability

p =exp(—AE/T).

Summary: exploration vs exploitation

In Simulated Annealing:
e T defines how "“big" a bad move has to be before it is unlikely to be accepted.
e If T is large compared to typical AE:

= Even sizeable worsening moves have reasonable probability.
= Very exploratory.
o If T is small:

= Only very small worsening moves are accepted.
= Mostly exploitative / hill-climbing.

That's why you often pick initial T" using the distribution of AE on random states: e.g.,
“set T} so that a typical AFE has, say, 60-80% acceptance.” It's explicitly tied to the
scale of the scoring function.

Summary: C as an exploration scale

In UCT (UCB1) we're using



score(i) = V; + C\/ lnN,

n;
where:

o V,: average playout value of child 7 (exploitation term),
e IN: total visits to the parent node,

e m;: visits to child 2,

e (: exploration constant.

Summary: C as an exploration scale

At a given node:

e The child with largest score(?) is selected.
e The second term

In N
n;

C

is pure exploration: large when n; is small, shrinking as you visit that child.

Summary: C as an exploration scale

Consider two children, 1 and 2. You choose 2 instead of 1 when:

In N In N
Vo + Cy| = > Vi + Oy [ ——.
%) nq
In N In N
n1 n9

Summary: C as an exploration scale

Rearrange:

¢ The difference in average playout values that can be “overruled” by exploration is
proportional to C.

e Larger C - exploration term dominates more - you're willing to try a child whose
Vi is significantly worse, just because it's under-explored.

e Smaller C - you stick more to the currently best-looking V.

1. Extreme cases



e C = 0 (no exploration term)
m UCT score = purely the average value.
= The algorithm becomes greedy:

o It keeps going down the move that currently looks best.
o Other moves may get very few (or zero) visits.
= Consequences:

o Can lock into a wrong move if early rollouts were unlucky.

o Tree is very narrow and deep.

o With noisy rollouts and few simulations, play can be surprisingly bad.
e ('very large

= Exploration bonus dominates:

o Even if a move's average value looks worse, if it has fewer visits it still gets
chosen a lot.
= Consequences:

[¢]

Search becomes very exploratory, almost like “systematic dithering”.
Tree is wide and shallow.

(o]

(e]

Values at the root converge slowly; decisions are noisy.

[e]

With limited simulations, move choice can look close to random.

2. Moderate C': what actually changes as you vary it
For a sensible interval (say C'in [0.5, 2] for tic-tac-toe with rewards in [—1, 1]):
e Smaller C (e.g. 0.3-0.7):
= Faster commitment to the currently best-looking move.
= Tree shape: few branches highly explored, others barely touched.
= Good when:

o Rollouts are relatively low-noise,
o You have limited simulation budget,
o The "best” branch is easy to identify.
= Risk: can miss strong but initially unlucky moves.

e Larger C (e.g.1.0-2.0):
= More balanced coverage of children:

o Even if one move looks slightly better, others still get substantial visits.



= Tree shape: wider near the root, more even visit counts across moves.
= Good when:

o Rollouts are noisy,
o You want the algorithm to be more “open-minded” about alternatives.
= Risk: spends too much time on clearly bad branches if budget is small.

In aggregate metrics (e.g. win rate vs Random for fixed number of simulations):

e Asyouincrease C from 0O:

= Performance usually improves at first (you stop being myopic).
e Past some point:

= Performance then degrades (you explore so much you don't refine the best line
enough).

So you typically see a U-shaped curve in performance as a function of (C): too little
exploration is bad, too much is bad, there's a “sweet spot” that depends on the game,
rollout noise, and simulation budget.

3. What to look for in tic-tac-toe
If you vary C and watch:

e Tree statistics:

= Distribution of visit counts per child at the root.
= Depth vs breadth of the explored tree.
e Game outcomes vs a fixed opponent (e.g. Random or Minimax):

= With small C, you may see odd blunders due to “early over-commitment”.

= With large C, you may see “too much experimentation”, especially with few
simulations.

= For a mid-range C, the solver stabilizes into strong, consistent play.

That's the concrete, observable effect of changing C: it reshapes the trade-off between
digging deep into what looks good now versus giving other moves a fair chance.

Summary: C as an exploration scale

In the classical UCB1 theory, rewards are assumed to be in [0, 1], and there's a specific
recommended constant (e.g. \/5). If your reward scale is different (say in [—1, 1] or
large magnitude), you essentially rescale that constant; in practice people tune C
empirically.



Summary: C as an exploration scale

Analogy:

e Simulated annealing’s T" and MCTS's C both balance exploration vs exploitation.

e In both cases, their effective meaning depends on the scale of the objective /
rewards.

e In SA: "how bad can a move be and still often be accepted?”

¢ In MCTS: “how much worse can a child’s current V; be and still get chosen for
exploration?”

Summary: C as an exploration scale
Key differences:
¢ Simulated Annealing:

= Single trajectory.
= T'is explicitly scheduled (high to low) over time.
= Balances local moves in a single search path.

Summary: C as an exploration scale
e MCTS (UCT):
= Tree of many paths.

» ('is constant, but exploration decays automatically via \/In N /n;:

o Early: n; small = high exploration.

o Late: n; big - exploration term shrinks, behavior gets more greedy.

Summary



Progression of Natural Logarithm of N from 1 to 10000

— logim

log(n)

T T
0 2000 4000 6000 8000 10000

[4.60517019 6.90775528 9.21034037]

Summary

import numpy as np
import matplotlib.pyplot as plt

num_iterations = 10

# Define the range for n and N
n_values = np.arange(1l, num_iterations + 1)
N_values = np.arange(1l, num_iterations + 1)

# Prepare a meshgrid for n and N
N, n = np.meshgrid(N_values, n_values)

# Compute the expression for each pair (n, N)
Z = np.sqrt(2) * np.sqrt(np.log(N) / n)

# Plotting

plt.figure(figsize=(8, 6))

plt.contourf(N, n, Z, cmap='viridis"')

plt.colorbar(label=r'$\sqrt{2} \times \sqrt{\frac{\log{N}}{n}}$")
plt.xlabel('N")

plt.ylabel('n")

plt.title(r'Visualization of $\sqrt{2} \times \sqrt{\frac{\log{N}}{n}}$ for
plt.show()
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Summary

import numpy as np
import matplotlib.pyplot as plt

num_iterations = 100

# Define the range for n and N
n_values = np.arange(1l, num_iterations + 1)
N_values = np.arange(1l, num_iterations + 1)
# Prepare a meshgrid for n and N

N, n = np.meshgrid(N_values, n_values)

# Compute the expression for each pair (n, N)
Z = np.sqrt(2) * np.sqrt(np.log(N) / n)

# Plotting

plt.figure(figsize=(8, 6))

plt.contourf(N, n, Z, cmap='viridis')
plt.colorbar(label=r'$\sqrt{2} \times \sqrt{\frac{\log{N}}{n}}$")
plt.xlabel('N")

plt.ylabel('n")
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plt.title(r'Visualization of $\sqrt{2} \times \sqrt{\frac{\log{N}}{n}}$ for
plt.show()
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Origin of UCB1in MCTS:

The Upper Confidence Bound 1 (UCB1) formula originates from the multi-armed
bandit problem, a classic problem in reinforcement learning and decision theory. In this
problem, a gambler must decide which arm of multiple slot machines to pull to maximize
their total reward, balancing the exploration of less-known machines and the exploitation
of machines known to provide high rewards.

The UCB1 algorithm was developed to address this exploration-exploitation dilemma by
providing a statistical upper bound on the expected reward of each action (or arm). In
the context of Monte Carlo Tree Search (MCTS), UCB1 is adapted to guide the
selection of nodes during the Selection phase, helping the algorithm decide which node
to explore next.

Understanding the UCB1 Formula:

The UCB1 formula used in MCTS is:



UCB1G) = Vi + 0, | 2N

n;

° 171 The average reward (value) of node % (exploitation term).
e (': A constant parameter that balances exploration and exploitation (commonly set

to 1/2).
e N: The total number of simulations or visits to the parent node.
e n,;: The number of times node ¢ has been visited.

Components Explained:

1. Exploitation Term (Vi): Represents the average reward obtained from node 7,
encouraging the selection of nodes with higher known rewards.

In N

=,—): Provides a bonus to nodes that have been visited less

2. Exploration Term (C

frequently, encouraging the exploration of less-visited nodes.
Balancing Exploration and Exploitation:

e Exploitation: Favors nodes with high average rewards.
e Exploration: Favors nodes that have been visited less, to gather more information.

The exploration term decreases as n; increases, meaning that as a node is visited
more often, the incentive to explore it further diminishes. Conversely, nodes with fewer
visits receive a higher exploration bonus.

Why Exploration Occurs When Average Scores Are Similar:

Here's why:

e Similar Average Rewards (171): When nodes have comparable exploitation values,
the exploration term becomes the deciding factor in the UCB1 value.

¢ Influence of the Exploration Term:

= Less-Visited Nodes: Have a higher exploration term due to smaller n;,
increasing their UCB1 value.
= Well-Visited Nodes: Have a lower exploration term, as n; is larger.
e Result: The algorithm is more likely to select less-explored nodes when the average
rewards are similar, promoting exploration to potentially discover better outcomes.

Mathematical Insight:

e When 171 values are equal, the UCB1 formula simplifies to comparing the

exploration terms.



e The node with the smaller n; (less visited) will have a larger exploration term due to

the —— relationship.
Vi

e As N increases (more total simulations), the exploration bonus diminishes
logarithmically, ensuring that the algorithm eventually favors exploitation.

Visualizing the Exploration Term:
To further understand how exploration is encouraged:

o Exploration Term Behavior:
= Early Stages (n; is small): Exploration term is significant, promoting the
exploration of all nodes.
= Later Stages (n; increases): Exploration term decreases, and nodes with
higher average rewards are preferred.
¢ Logarithmic Growth:
= The In N term grows slowly, meaning that the exploration bonus reduces over
time unless n; remains low.

Conclusion:
The UCB1 formula in MCTS effectively balances exploration and exploitation by:

¢ Using the average reward to exploit known good nodes.

¢ Incorporating the exploration term to ensure that less-visited nodes are explored,
especially when their average rewards are similar to others.

e Adapting over time, so the algorithm initially explores widely but gradually focuses
on the most promising nodes as more information is gathered.

In summary, the UCB1 formula originates from the need to solve the exploration-
exploitation dilemma in the multi-armed bandit problem and is integral to MCTS's ability
to efficiently search large decision spaces. The exploration primarily occurs when nodes
have similar average scores because the exploration term then plays a crucial role in
differentiating between them, guiding the algorithm to potentially unexplored but
promising areas of the search space.

Additional Resources:

e Research Papers:
= Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time Analysis of the
Multiarmed Bandit Problem. Machine Learning.
m Kocsis, L., & Szepesvari, C. (2006). Bandit Based Monte-Carlo Planning. ECML.
¢ Further Reading:
= Monte Carlo Tree Search Tutorial
= Understanding UCB1 and MCTS


https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/
https://www.baeldung.com/cs/monte-carlo-tree-search

Core Game Framework

Game

import math

import random

import numpy as np

import matplotlib.pyplot as plt

class Game:

Abstract interface for a deterministic, 2-player, zero-sum,
turn-taking game.

Conventions (used by Tic-Tac-Toe and the solvers below):
— Players are identified by strings "X" and "0".
- evaluate(state) returns:

> @ 1if the position is good for "X"

< @ if the position is good for "0"

== @ for a draw or non-terminal equal position

def initial_state(self):
"""Return an object representing the starting position of the game."
raise NotImplementedError

def get_valid_moves(self, state):

Given a state, return an iterable of legal moves.
The type of 'move' is game-dependent (e.g., (row, col) for Tic-Tac-T

raise NotImplementedError

def make_move(self, state, move, player):

Return the successor state obtained by applying 'move' for 'player’
to 'state'. The original state should not be modified in-place.

raise NotImplementedError
def get_opponent(self, player):

""peturn the opponent of 'playel’ .

raise NotImplementedError



def

def

def

is_terminal(self, state):

Return True if 'state' is a terminal position (win, loss, or draw),
False otherwise.

raise NotImplementedError

evaluate(self, state):

Return a scalar evaluation of 'state':
+1 for X win, -1 for 0 win, @ otherwise (for Tic-Tac-Toe).
For other games this may be generalized, but here we keep it simple.

raise NotImplementedError
display(self, state):
"""Print a human-readable representation of 'state' (for debugging).

raise NotImplementedError

TicTacToe

class TicTacToe(Game):

Classic 3x3 Tic-Tac-Toe implementation using a NumPy array of strings.
Empty squares are represented by " ".
Player "X" is assumed to be the maximizing player.

def

def

def

_init_ (self):
self.size = 3

initial_state(self):
"""Return an empty 3x3 board."""
return np.full((self.size, self.size), " ")
get_valid_moves(self, state):
"U"UATL (i, j) pairs where the board cell is empty.'""
return [

(i, j)

for i in range(self.size)

for j in range(self.size)
if stateli, j] =" "



def

def

def

def

make_move(self, state, move, player):

Return a new board with 'player' placed at 'move' (row, col).
The original state is not modified.

new_state = state.copy()
new_state[move] = player
return new_state

get_opponent(self, player):
"""Swap player labels between 'X' and '0O'."""
return "0" if player == "X" else "X"

is_terminal(self, state):

A state is terminal if:
- Either player has a 3-in-a-row (evaluate != @), or
— There are no empty squares left (draw).

if self.evaluate(state) !'= 0:
return True
return " " not in state

evaluate(self, state):

Return +1 if X has three in a row, -1 if 0 has three in a row,
and @ otherwise (including non-terminal states and draws).

This is a '"game-theoretic" evaluation at terminal states; for
non-terminal positions we simply return 0.

lines = []

# Rows and columns

for i in range(self.size):
lines.append(statel[i, :1) # row i
lines.append(state[:, il) # column i

# Main diagonals
lines.append(np.diag(state))
lines.append(np.diag(np.fliplr(state)))

# Check each line for a win
for line in lines:
if np.all(line == "X"):
return 1
if np.all(line == "0"):



return -1
return 0

def display(self, state):

Visualize a Tic-Tac-Toe board using matplotlib.

Parameters
state : np.ndarray of shape (size, size)
Board containing ' ', 'X', or '0'.

size = self.size

fig, ax = plt.subplots()
ax.set_aspect('equal')
ax.set_x1im(0, size)
ax.set_ylim(0, size)

# Draw grid lines

for i in range(1l, size):
ax.axhline(i, color='black")
ax.axvline(i, color='black")

# Hide axes completely
ax.axis('off"')

# Draw X and 0 symbols
for i in range(size):
for j in range(size):
cx =J + 0.5
cy size - i - 0.5 # invert y-axis for correct row orie

symbol = statel[i, j]

if symbol == "X":
ax.plot(cx, cy, marker='x",
markersize=40 * (3/size),
color="blue',
markeredgewidth=3)
elif symbol == "0":
circle = plt.Circle((cx, cy),
radius=0.30 * (3/size),
fill=False,
color="red"',
linewidth=3)
ax.add_patch(circle)

plt.show()

Solver



class Solver:

Base class for all solvers (Random, Minimax, AlphaBeta, MCTS, etc.).

Solvers must implement:
- select_move(game, state, player)

Solvers may optionally implement:
- reset() : called at the start of each game
- opponent_played() : used by persistent solvers (e.g., MCTS)

e Solvers may keep internal state that persists across moves.
e GameRunner may call reset() automatically before every match.

def select_move(self, game, state, player):

Must be implemented by subclasses.
Returns a legal move for the given player.

raise NotImplementedError

def get_name(self):

Return the solver's name for reporting, logging, or tournament resul

The default returns the class name, but solvers may override
to include parameters (e.g., "MCTS(num_simulations=500)"").

return self.__class__.__name__

def opponent_played(self, move):

Optional. Called after the opponent moves.
Useful for stateful solvers like MCTS.
Stateless solvers can ignore it.

pass

def reset(self):

Optional. Called once at the beginning of each game.
Override only if the solver maintains internal state
(e.g., MCTS tree, cached analysis, heuristic tables).

pass



RandomSolver

class RandomSolver(Solver):

A simple baseline solver:
— At each move, chooses uniformly at random among all legal moves.
- Does not maintain any internal state (no learning).

def init_ (self, seed=None):
self.rng = random.Random(seed)

def select_move(self, game, state, player):

"""Return a random legal move for the current player.
moves = game.get_valid_moves(state)
return self.rng.choice(moves)

def opponent_played(self, move):

"""Random solver has no internal state to update.

pass

GameRunner

class GameRunner:

Utility to run a single game between two solvers on a given Game.

This class is deliberately simple: it alternates moves between "X" and "
until a terminal state is reached.

def __init_ (self, game, verbose=False):
self.game = game
self.verbose = verbose

def play_game(self, solver_X, solver_0):

Play one full game:
- solver_X controls player "X"
- solver_0 controls player "0O"

Returns



result : int
+1 if X wins, -1 if 0 wins, @ for a draw.

state = self.game.initial_state()
player = "X"
solvers = {"X": solver_X, "0": solver_0}

# Play until terminal position
while not self.game.is_terminal(state):
# Current player selects a move
move = solvers[player].select_move(self.game, state, player)

# Apply the move
state = self.game.make_move(state, move, player)

if self.verbose:
self.game.display(state)

# Notify the opponent (for persistent solvers like MCTS)
opp = self.game.get_opponent(player)
solvers [opp] .opponent_played(move)

# Switch active player
player = opp

if self.verbose:
print(self.game.evaluate(state), "\n")

# Final evaluation from X's perspective
return self.game.evaluate(state)

evaluate_solvers

def evaluate_solvers(game, solver_X, solver_0, num_games, verbose=False):

Evaluate two solvers head-to-head on a given game.

Parameters
game : Game
An instance of a Game (e.g., TicTacToe).
solver_X : Solver
Solver controlling player "X" (the maximizing player).
solver_0 : Solver

Solver controlling player "0" (the minimizing player).
num_games : int
Number of games to play with these fixed roles.

— The same solver instances are reused across games.
This allows xpersistentx solvers (e.g., MCTS) to accumulate



experience across games.
— Qutcomes are interpreted from X's perspective:
+1 —> X wins
-1 —> 0 wins
0 — draw

runner = GameRunner(game)

# Aggregate statistics over all games
results = {

"X_wins": 0,

"0_wins": 0,

"draws": 0,

for i in range(num_games):
# Play one game with solver_X as "X" and solver_0 as "0"
outcome = runner.play_game(solver_X, solver_0)

# Update counters based on outcome (+1, -1, or @)
if outcome ==
results["X_wins"] += 1
if verbose:
print(f"Game {i + 1}: X wins")
elif outcome == -1:
results["0_wins"] += 1
if verbose:
print(f"Game {i + 1}: 0 wins")
else:
results["draws"] += 1
if verbose:
print(f"Game {i + 1}: Draw")

# Print final summary

if verbose:
print(f"\nAfter {num_games} games:")
print(f" X ({solver_X.get_name()}) wins: {results['X_wins']}")
print(f" 0 ({solver_0.get_name()}) wins: {results['O_wins']}")
print(f" Draws: {results['draws']}")

return results

MinimaxSolver

from functools import lru_cache

def canonical(state):

Convert a NumPy array board into a hashable, immutable representation
(tuple of tuples). This allows us to use it as a key in dicts or
as an argument to lru_cache. MCTS can also reuse this representation.



return tuple(map(tuple, state))

class MinimaxSolver(Solver):

A classic, exact Minimax solver for Tic-Tac-Toe.

— Assumes "X" is the maximizing player.
- Uses memoization (lru_cache) to avoid recomputing values for
identical positions.

def select_move(self, game, state, player):

Public interface: choose the best move for 'player' using Minimax.
For Tic-Tac-Toe we can safely search the full game tree.

# Store game on self so _minimax can use it
self.game = game

# From X's perspective: X is maximizing, 0 1s minimizing
maximizing = (player == "X")

# For Tic-Tac-Toe, depth=9 is enough to cover all remaining moves.
_, move = self._minimax(canonical(state), player, maximizing, 9)
return move

@lru_cache(maxsize=None)
def _minimax(self, state_key, player, maximizing, depth):

Internal recursive minimax.

Parameters

state_key : hashable representation of the board (tuple of tuples)

player : player to move at this node ("X" or "0")

maximizing: True if this node is a 'max' node (X to move),
False if this is a 'min' node (0 to move)

depth : remaining search depth (not used for cutoffs in this
full-search Tic-Tac-Toe implementation, but kept for
didactic purposes and easy extension).

# Recover the NumPy board from the canonical state_key
state = np.array(state_key)

# Terminal test: win, loss, or draw

if self.game.is_terminal(state):
# Evaluation is always from X's perspective: +1, -1, or 0
return self.game.evaluate(state), None

moves = self.game.get_valid_moves(state)



best_move = None

if maximizing:
# X to move: maximize the evaluation
best_val = -math.inf
for move in moves:
st2 = self.game.make_move(state, move, player)
val, _ = self._minimax(
canonical(st2),
self.game.get_opponent(player),
False,
depth - 1
)
if val > best_val:
best_val = val
best_move = move
return best_val, best_move

else:
# 0 to move: minimize the evaluation (since evaluation is for X)
best_val = math.inf
for move in moves:
st2 = self.game.make_move(state, move, player)
val, _ = self._minimax(
canonical(st2),
self.game.get_opponent(player),
True,
depth - 1
)
if val < best_val:
best_val = val
best_move = move
return best_val, best_move

MinimaxAlphaBetaSolver

class MinimaxAlphaBetaSolver(Solver):

A classical Minimax solver enhanced with Alpha-Beta pruning.

— Assumes "X" is the maximizing player.

- Uses memoization (lru_cache) to avoid recomputing states.
- Performs a xfullx search of Tic-Tac-Toe (depth=9).

— Returns the optimal move for the current player.

#
# Solver interface
#

def select_move(self, game, state, player):



Public interface required by Solver.
Runs Alpha-Beta search from the current state.

self.game = game
maximizing = (player == "X") # X maximizes, O minimizes

# Reset cache between games to avoid storing millions of keys
self._alphabeta.cache_clear()

value, move = self._alphabetal
canonical(state),

player,

maximizing,

9, # full-depth search
-math.inf, # alpha

math.inf # beta

)

return move

#
# Internal alpha-beta with memoization
#

@lru_cache(maxsize=None)
def _alphabeta(self, state_key, player, maximizing, depth, alpha, beta):

Parameters

state_key : tuple-of-tuples board

player : player whose turn it is ('X' or '0")
maximizing: True if this node is a maximizing node for X
depth : remaining depth

alpha : best guaranteed value for maximizer so far
beta : best guaranteed value for minimizer so far

state = np.array(state_key)

# Terminal or horizon case
if self.game.is_terminal(state) or depth ==
return self.game.evaluate(state), None

moves = self.game.get_valid_moves(state)
best_move = None

#
# MAX (X)
#

if maximizing:
value = -math.inf

for move in moves:



st2 = self.game.make_move(state, move, player)

child_val, _ = self._alphabeta(
canonical(st2),
self.game.get_opponent(player),
False, # now minimizing
depth - 1,
alpha,
beta

)

if child_val > value:
value = child_val
best_move = move
alpha = max(alpha, value)
if beta <= alpha:
break # B-cutoff

return value, best_move

#

# MIN (0)
#

else:
value = math.inf

for move in moves:
st2 = self.game.make_move(state, move, player)

child_val, _ = self._alphabetal(
canonical(st2),
self.game.get_opponent(player),
True, # now maximizing
depth - 1,
alpha,
beta

)

if child_val < value:
value = child_val
best_move = move
beta = min(beta, value)
if beta <= alpha:
break # a-cutoff

return value, best_move

Sanity Check

game = TicTacToe()



RandomSolver(7)
MinimaxSolver()

a
b

results = evaluate_solvers(game, a, b, num_games=100)

results

{'X_wins': 0, 'O_wins': 82, 'draws': 18}

Sanity Check

game = TicTacToe()

RandomSolver(7)
MinimaxAlphaBetaSolver()

a
b

results = evaluate_solvers(game, a, b, num_games=100)

results

{'X_wins': 0, 'O_wins': 82, 'draws': 18}
Implementation

MCTSClassicSolver

class MCTSClassicSolver(Solver):

A textbook, first-contact implementation of Monte Carlo Tree Search (MCI
for deterministic 2-player zero-sum games (e.g., Tic-Tac-Toe).

Key ideas:
— For each decision, we build a tree rooted at the current position.
— Each node stores:
* state: board position
* player: player to move in this state ("X" or "0")
* N: visit count
* W: total reward from this node player's perspective
* children: move —> child Node
* untried_moves: list of legal moves not yet expanded
* parent: link to the parent node (for backpropagation)
— One MCTS *simulationx = selection - expansion - simulation (rollout)
- We throw away the tree after returning a move (no learning).

class Node:
"MYA single node in the MCTS search tree."""

def __init__ (self, state, player, parent=None, moves=None):
self.state = state # board position (NumPy array)



self.player = player # player to move in this state

self.parent = parent # parent Node (None for root)
self.children = {} # move —> child Node
self.untried_moves = list(moves) if moves is not None else []
self.N =0 # visit count

self.W = 0.0 # total reward (this player's pers

def __init_ (self, num_simulations=500, exploration_c=math.sqrt(2), seec

#

Parameters
num_simulations : int
Number of simulations (playouts) to run per move.
exploration_c : float
Exploration constant C in the UCT formula.
seed : int or None
Optional random seed for reproducibility.

self.num_simulations = num_simulations
self.exploration_c = exploration_c
self.rng = random.Random(seed)

None
None # root Node for the current search

self.game
self.root

# Public Solver interface

#

def select_move(self, game, state, player):

Choose a move for 'player' in 'state' using classic MCTS.

A new tree is built from scratch for this call. The tree is not
reused for later moves or games.

self.game = game

None # root Node for the current search

self.root

# Create the root node for the current position.

root_state = state.copy()

root_moves = self.game.get_valid_moves(root_state)

self.root = self.Node(root_state, player, parent=None, moves=root_mc

# Run multiple simulations starting from the root.
for _ in range(self.num_simulations):
self. _run_simulation()

# After simulations, choose the child with the largest visit count.
if not self.root.children:
# No children: no legal moves (terminal). Fall back to random it



moves = self.game.get_valid_moves(self.root.state)
return self.rng.choice(moves) if moves else None

best_move = None
best_visits = -1
for move, child in self.root.children.items():
if child.N > best_visits:
best_visits = child.N
best_move = move

return best_move

def opponent_played(self, move):

Classic MCTS here is stateless across moves and games:
we rebuild the tree for every decision.

So we do not need to track the opponent's move.

pass
#
# Internal MCTS steps
#

def _run_simulation(self):

Perform one MCTS simulation from the root.

1. Selection: descend the tree using UCT until we reach a node
that is terminal or has untried moves.

2. Expansion: if the node is non-terminal and has untried moves,
expand one child.

3. Simulation (rollout): from the new child, play random moves
to the end of the game.

4. Backpropagation: update N and W along the path with the outcome.

node = self.root

# 1. SELECTION: descend while fully expanded and non-terminal.
while True:

if self.game.is_terminal(node.state):
# Terminal position: evaluate immediately.
outcome = self.game.evaluate(node.state) # from X's perspec
self._backpropagate(node, outcome)
return

if node.untried_moves:

# 2. EXPANSION: choose one untried move and create a child r
move = self.rng.choice(node.untried_moves)



node.untried_moves. remove(move)

next_state = self.game.make_move(node.state, move, node.play
next_player = self.game.get_opponent(node.player)

next_moves = self.game.get_valid_moves(next_state)

child = self.Node(next_state, next_player, parent=node, move
node.children[move] = child

# 3. SIMULATION: rollout from the newly created child.
outcome = self._rollout(child.state, child.player)

# 4. BACKPROPAGATION: update all nodes on the path from chil
self._backpropagate(child, outcome)

return

# Node is fully expanded and non-terminal - choose a child by UC
node = self._select_child(node)

def _select_child(self, node):

UCT selection: for each child

V_parent(child) = - (child.W / child.N)
UCT = V_parent(child) + C *x sqrt( ln(N_parent + 1) / N_child )

We store W and N from the child's own perspective, so we negate
child.W / child.N to get the parent's perspective.

parent_visits = node.N
best_score = -math.inf
best_child = None

for move, child in node.children.items():

if child.N == 0:

score = math.inf # always explore unvisited children at lec

else:

# Average reward from the child's own perspective.
avg_child = child.W / child.N

# Parent and child players alternate; reward from parent per
# 1s the negative of the child's perspective.
reward_parent = -avg_child

exploration = self.exploration_c * math.sqrt(
math.log(parent_visits + 1) / child.N
)

score = reward_parent + exploration

if score > best_score:

best_score = score
best_child child



return best_child

def _rollout(self, state, player_to_move):

Random playout from 'state' until the game ends.

Returns the final result from X's perspective:
+1 if X wins, -1 if 0 wins, @ for draw.

current_state = state.copy()
current_player = player_to_move

while not self.game.is_terminal(current_state):
moves = self.game.get_valid_moves(current_state)
move = self.rng.choice(moves)
current_state = self.game.make_move(current_state, move, current
current_player = self.game.get_opponent(current_player)

return self.game.evaluate(current_state)

def _backpropagate(self, node, outcome):

Backpropagate the simulation outcome up the tree.
outcome is always from X's perspective: +1, -1, or 0.

For each node on the path from 'node' up to the root:
— Convert outcome to that node's player's perspective:

reward = outcome if node.player == "X"
= —outcome if node.player == "0"
- Update:
node.N += 1
node.W += reward

current = node
while current is not None:

if current.player == "X":
reward = outcome
else:
reward = -outcome
current.N += 1

N
current.W += reward

current current.parent

Node



class MCTSClassicSolver(Solver):
class Node:

def __init_ (self, state, player, parent=None, moves=None):

self.state = state # board position (NumPy array)
self.player = player # player to move in this state
self.parent = parent # parent Node (None for root)
self.children = {} # move —> child Node
self.untried_moves = list(moves) if moves is not None else []
self.N =0 # visit count

self.W = 0.0 # total reward (this player's pers

MCTSClassicSolver is_a Solver .

Uses Node to explicitely build its search tree.

__1init

def __init_ (self, num_simulations=500, exploration_c=math.sqrt(2), seec

self.num_simulations = num_simulations
self.exploration_c = exploration_c
self.rng = random.Random(seed)

None
None

self.game
self.root

Public Solver interface

def select_move(self, game, state, player):

self.game
self.root

game
None # building a new tree for each call

# Create the root node for the current position.
root_state = state.copy()
root_moves = self.game.get_valid_moves(root_state)

self.root = self.Node(root_state, player, parent=None, moves=root_mc

# Run multiple simulations starting from the root.
for _ in range(self.num_simulations):
self. run_simulation()

best_move = None
best_visits = -1
for move, child in self.root.children.items():
if child.N > best_visits:
best_visits = child.N
best_move = move



return best_move

Public Solver interface

def opponent_played(self, move):
pass

_run_simulation

def _run_simulation(self):
node = self.root

# 1. SELECTION: descend while fully expanded and non-terminal.
while True:

if self.game.is_terminal(node.state):
# Terminal position: evaluate immediately.
outcome = self.game.evaluate(node.state) # from X's perspec
self._backpropagate(node, outcome)
return

if node.untried_moves:
# 2. EXPANSION: choose one untried move and create a child r
move = self.rng.choice(node.untried_moves)
node.untried_moves.remove(move)
next_state = self.game.make_move(node.state, move, node.play
next_player = self.game.get_opponent(node.player)

next_moves = self.game.get_valid_moves(next_state)

child = self.Node(next_state, next_player, parent=node, move
node.children[move] = child

# 3. SIMULATION: rollout from the newly created child.
outcome = self._rollout(child.state, child.player)

# 4. BACKPROPAGATION: update all nodes on the path from chil
self._backpropagate(child, outcome)

return

# Node is fully expanded and non-terminal - choose a child by UC
node = self._select_child(node)

_select_child



def select_child(self, node):

parent_visits = node.N
best_score = -math.inf
best_child = None

for move, child in node.children.items():
if child.N == 0:
score = math.inf # always explore unvisited children at lec
else:
# Average reward from the child's own perspective.
avg_child = child.W / child.N

# Parent and child players alternate; reward from parent per
# 1s the negative of the child's perspective.
reward_parent = -avg_child

exploration = self.exploration_c * math.sqrt(
math.log(parent_visits + 1) / child.N
)

score = reward_parent + exploration

if score > best_score:
best_score score
best_child child

return best_child

_rollout

def _rollout(self, state, player_to_move):

current_state = state.copy()
current_player = player_to_move

while not self.game.is_terminal(current_state):
moves = self.game.get_valid_moves(current_state)
move = self.rng.choice(moves)
current_state = self.game.make_move(current_state, move, current
current_player = self.game.get_opponent(current_player)

return self.game.evaluate(current_state)

_backpropagate

def _backpropagate(self, node, outcome):

current = node
while current is not None:
if current.player == "X":



reward = outcome
else:

reward —outcome

current.N += 1
current.W += reward

current = current.parent

visualize_tree

from graphviz import Digraph

def visualize_tree(root, max_depth=3, show_mcts_stats=True, show_edge_labels

Visualize a game tree rooted at "root’ using Graphviz.

Assumes:
- ‘root’ is a Node with attributes:
state, player, children: dict[move —> Node], N, W.
— This matches the Node used in MCTSClassicSolver.

Parameters
root : Node
Root of the (sub)tree to visualize.
max_depth : int
Maximum depth to recurse (root at depth 0).
show_mcts_stats : bool
If True, include N and V for each node (compact vertical layout).
show_edge_labels : bool
If True, label edges with the move (e.g., (row, col)).

dot = Digraph(format="png")

dot.edge_attr.update(
fontsize="8",
fontname="Comic Sans MS"

)
# Make the tree compact

dot.graph_attr.update(
rankdir="TB", # top-to-bottom
nodesep="0.15", # horizontal spacing
ranksep="0.50", # vertical spacing

dot.node_attr.update(
shape="box",
fontsize="9",
fontname="Comic Sans MS",
margin="0.02,0.02",



)

def add_node(node, node_id, depth):
if depth > max_depth:
return

# Build compact label
if show_mcts_stats and node.N > 0:

V = node.W / node.N

# player on top, then N, then V (vertical)

label = f"{node.player}\\nN={node.N:\\nV={V:.2f}"
else:

label = f'{node.player}"

dot.node(node_id, label=label)

# Recurse on children
if depth == max_depth:
return

for move, child in node.children.items():
child_id = f"{id(child)}"
if show_edge_labels:
dot.edge(node_id, child_id, label=str(move))
else:
dot.edge(node_id, child_id)
add_node(child, child_id, depth + 1)

add_node(root, "root", depth=0)

return dot

Search Tree (num_simulations=10)

game = TicTacToe()
state = game.initial_state()
player = "X"

solver = MCTSClassicSolver(num_simulations=10, seed=4)
move = solver.select_move(game, state, player)
dot = visualize_tree(solver.root, 9, True)

print(move)
dot

(1, 9)

|#No description has been provided for this image

Search Tree (num_simulations=500)



game = TicTacToe()
state = game.initial_state()
player = "X"

solver = MCTSClassicSolver(num_simulations=500, seed=4)
move = solver.select_move(game, state, player)

dot = visualize_tree(solver.root, 9, True)
print(move)
dot

(1, 1)
L,';No description has been provided for this image

Search Tree (num_simulations=500)

game = TicTacToe()
state = game.initial_state()
player = "X"

solver = MCTSClassicSolver(num_simulations=500, seed=4)
move = solver.select_move(game, state, player)

dot = visualize_tree(solver.root, 2, True)
print(move)
dot

(1, 1)
L,:No description has been provided for this image

Visualizing only two layers of the tree (depth = 2).

Search Tree (num_simulations=10)

game = TicTacToe()
state = game.initial_state()
player = "X"

solver = MCTSClassicSolver(num_simulations=10, seed=4)
move = solver.select_move(game, state, player)

dot = visualize_tree(solver.root, 1, True)

print(move)

dot

(1, 0)

L':No description has been provided for this image

Visualizing only one layer of the tree (depth =1).



As the number of simulations increases, both the number of nodes and the tree's depth
proportionally expand. However the tree complexity, action selection is based only on
the immediate descendants of the root node

Why increasing the number of simulations then?

Augmenting the number of simulations enhances our confidence in the decision-making
process

Search Tree (num_simulations=50)

game = TicTacToe()
state = game.initial_state()
player = "X"

solver = MCTSClassicSolver(num_simulations=50, seed=4)
move = solver.select_move(game, state, player)

dot = visualize_tree(solver.root, 1, True)

print(move)

dot

(1, 9)

L':No description has been provided for this image

Search Tree (num_simulations=250)

game = TicTacToe()
state = game.initial_state()
player = "X"

solver = MCTSClassicSolver(num_simulations=250, seed=4)
move = solver.select_move(game, state, player)

dot = visualize_tree(solver.root, 1, True)

print(move)

dot

(2, 2)
|#.No description has been provided for this image

Search Tree (num_simulations=500)

game = TicTacToe()
state = game.initial_state()
player = "X"

solver = MCTSClassicSolver(num_simulations=500, seed=4)
move = solver.select_move(game, state, player)
dot = visualize_tree(solver.root, 1, True)



print(move)
dot

(1, 1)

L,jNo description has been provided for this image

Search Tree (num_sims=1000)

game = TicTacToe()
state = game.initial_state()
player = "X"

solver = MCTSClassicSolver(num_simulations=1000, seed=4)
move = solver.select_move(game, state, player)

dot = visualize_tree(solver.root, 1, True)

print(move)

dot

(1, 1)
l#No description has been provided for this image

Move Preference vs num_simulations

def mcts_heatmaps(game, solver_class, simulations_list, player="X", seed=0):

Display heatmaps showing square visit frequencies
for different MCTS simulation counts.

Parameters

game : TicTacToe instance

solver_class : a class such as MCTSClassicSolver
simulations_list : list of ints (e.g. [50, 100, 200, 500, 1000])
player : "X" or "0"

initial = game.initial_state()

len(simulations_1list)
plt.subplots(1, num_plots, figsize=(3 * num_plots, 3))

num_plots
fig, axes

if num_plots ==
axes = [axes] # normalize indexing

for ax, sims in zip(axes, simulations_list):
#

# Run MCTS
#

solver = solver_class(num_simulations=sims, seed=seed)
solver.reset()



solver.select_move(game, initial, player) # builds tree
root = solver.root

#
# Build a 3x3 matrix of visits
#

visit_matrix = np.zeros((3, 3), dtype=float)

for move, child in root.children.items():
i, j = move
visit_matrix[i, j] = child.N

#
# Normalize (avoid division by zero)
#

vmax = visit_matrix.max()
if vmax > 0:

heat = visit_matrix / vmax
else:

heat = visit_matrix

#
# Plot heatmap
#

im = ax.imshow(heat, cmap="viridis", vmin=0, vmax=1)
ax.set_title(f"{sims} simulations")
ax.set_xticks([])

ax.set_yticks([])

plt.tight_layout()
plt.show()
plt.close(fig)

game = TicTacToe()

mcts_heatmaps (
game,
solver_class=MCTSClassicSolver,
simulations_list=[50, 200, 500, 1000, 5000],
player="X",

50 simulations 200 simulations 500 simulations 1000 simulations 5000 simulations

num_simulations & 50, 200, 500, 1000, 5000.




Tallies by X's first move

def tally_scores(game):
Enumerate all complete games of Tic-Tac-Toe from the initial position
(X to move) and tally how many end in:

- X win
- draw
- 0 win

Returns

overall : dict
{'X': total X wins, 'draw': total_draws, 'O': total_0_wins}

table : list[list[dict]]
A 3x3 list of dicts. For each cell (i, j),
table[i]l [j] = {'X': ..., 'draw': ..., '0': ...}
counts games where X's xfirst movex was at (i, j).

size = game.size # should be 3 for standard Tic-Tac-Toe

# Overall tallies for all games
overall = {'X': @0, 'draw': @0, 'O': 0}

# Per—-first-move tallies as a 3x3 grid

table = [
[ {'X': 0, 'draw': @, '0': @} for _ in range(size) ]
for _ in range(size)

def recurse(state, player, first_move):

Depth—first enumeration of all complete games.

Parameters

state : board position (NumPy array)

player : 'X' or '0' (player to move)

first_move : None, or (row, col) of X's very first move

# Base case: terminal state - classify outcome

if game.is_terminal(state):
v = game.evaluate(state) # +1 (X win), -1 (0 win), @ (draw)

if v > 0:
outcome = 'X'
elif v < 0:
outcome = '0'

else:



outcome = 'draw'’

# Update overall tally
overallloutcome] += 1

# If we know X's first move, update that cell's tally too
if first_move is not None:

i, j = first_move

table[i] [j] [outcome] += 1

return

# Recursive case: expand all legal moves

for move in game.get_valid_moves(state):
next_state = game.make_move(state, move, player)
next_player = game.get_opponent(player)

# Record X's very first move
if first_move is None and player == "X":

fm = move # this becomes the first_move for the rest of thi
else:

fm = first_move

recurse(next_state, next_player, fm)

# Start from the empty board, X to move, and no first_move yet
initial_state = game.initial_state()
recurse(initial_state, player="X", first_move=None)

return overall, table

def print_tally_table(table):

Print a 3x3 table of tallies.

Each cell shows: X:<wins> D:<draws> 0:<wins>
where counts are restricted to games where X's first move
was played in that cell.

size = len(table)
for i in range(size):
row_cells = []
for j in range(size):
stats = table[i] [j]
cell_str = f"X:{stats['X']1} D:{stats['draw']} O:{stats['0O']}"
row_cells.append(cell_str)
print(" | ".join(row_cells))
print()

def print_tally_table_percentages(table):

Print a 3x3 table of tallies.



Each cell shows: X:<wins> D:<draws> 0:<wins>
where counts are restricted to games where X's first move
was played in that cell.

size = len(table)
for i in range(size):
row_cells = []
for j in range(size):
stats = tablel[i] [j]
cell_str = f"X:{stats['X']1/255168:.2%} D:{stats['draw']/255168:.
row_cells.append(cell_str)
print(" | ".join(row_cells))
print()

game = TicTacToe()

overall, table = tally_scores(game)

print("Overall tally:")
print(overall) # {'X': ..., 'draw': ..., '0': ...}

print("\nTallies by X's first move (3x3 grid):")
print_tally_table(table)

print("\nTallies by X's first move (3x3 grid) as percentages:")
print_tally_table_percentages(table)



Overall tally:
{'X": 131184, 'draw': 46080, '‘O": 77904}
{'X": 51.41%, ‘draw’: 18.06%, 'O": 30.53%}

Tallies by X's first move (3x3 grid, X/draw/O):

14652/5184/7896 14232/5184/10176 14652/5184/7896
14232/5184/10176 15648/4608/5616 14232/5184/10176

14652/5184/7896 14232/5184/10176 14652/5184/7896

Tallies by X's first move (3x3 grid, X/draw/O) as percentages:

5.74% [ 2.03% [ 3.09% 5.58% | 2.03% / 3.99% 5.74% | 2.03% | 3.09%
5.58% [ 2.03% / 3.99% 6.13% [ 1.81% [ 2.20% 5.58% / 2.03% / 3.99%

5.74% [ 2.03% [ 3.09% 5.58% [2.03% [ 3.99% 5.74% [2.03% [ 3.09%

evaluate_solvers_with_plot

def evaluate_solvers_with_plot(game, solver_X, solver_0, num_games):
Play 'num_games' games between solver_X (as 'X') and solver_0 (as '0'),
track cumulative performance, and plot running average scores.

Scoring is from X's perspective:
outcome = +1 if X wins
outcome = -1 if 0 wins
outcome = @ if draw

The running average score for 0 is simply the negative of X's
running average (zero-sum).

runner = GameRunner(game)

# Counters for final summary
results = {

"X_wins": 0,

"0_wins": 0,

"draws": 0,

by

# For plotting: running average score as a function of game index
avg_scores_X = []
avg_scores_0 = []



cumulative_score_X = 0.0

for i in range(num_games):
outcome = runner.play_game(solver_X, solver_0)
# Update win/draw counters

if outcome ==
results["X_wins"] += 1
elif outcome == -1:
results["0_wins"] += 1
else:

results["draws"] += 1

# Update cumulative score (from X's perspective)
cumulative_score_X += outcome

avg_X = cumulative_score_X / (i + 1)

avg_0 = -avg_X # zero-sum

avg_scores_X.append(avg_X)
avg_scores_0.append(avg_0)

# Plot running average scores

games = range(1, num_games + 1)

plt.figure(figsize=(8, 4))

plt.plot(games, avg_scores_X, label=f"X: {solver_X.get_name()}")
plt.plot(games, avg_scores_0, label=f"0: {solver_0.get_name()}")
plt.axhline(0.0, linestyle="--", linewidth=1)

plt.xlabel("Game number")

plt.ylabel("Average score")

plt.title("Running average score (X perspective)")

plt.legend()

plt.tight_layout()

plt.show()

return results, avg_scores_X, avg_scores_0

Random vs MCTS

RandomSolver(seed=0)
MCTSClassicSolver(num_simulations=10, seed=1)

rand
mcts

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, rand, mcts, num_gz
results



Running average score (X perspective)

1.00 — X: RandomSolver
—— 0: MCTSClassicSolver

0.75 4

0.50

0.25 4

0.00

—0.25

Average score

—0.50

—0.75

—1.00

T
0 20 40 60 80 100
Game number

{'X_wins': 19, 'O_wins': 72, ‘'draws': 9}

num_simulations=10

Random vs MCTS

RandomSolver(seed=0)
MCTSClassicSolver(num_simulations=100, seed=1)

rand
mcts

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, rand, mcts, num_gz
results

Running average score (X perspective)

1.00

0.75 4
0.50

0.25 4

—— X: RandomSalver

0.00 —— 0: MCTSClassicSolver |

Average score

—0.25

—0.50

—0.75

—1.00

T T T T T T
0 20 40 60 80 100
Game number
{'X_wins': 0, 'O_wins': 91, ‘'draws': 9}

num_simulations=100

MCTS vs Random



mcts
rand

MCTSClassicSolver(num_simulations=10, seed=0)
RandomSolver(seed=0)

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, mcts, rand, num_gan

results

Running average score (X perspective)

1.00

0.75

0.50

0.25

0.00

—0.25 1

Average score

—0.50 1

—0.75 1

—1.00 -

—— X: MCTSClassicSolver |
0: RandomSolver

{'X_wins': 89,

0 20 40
Game number

'draws': 6}

100

'0_wins': 5,

num_simulations=10

MCTS vs Random

mcts
rand

MCTSClassicSolver(num_simulations=100, seed=0)
RandomSolver(seed=0)

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, mcts, rand, num_gan

results

Running average score (X perspective)

1.00

—

0.75
0.50
0.25

L 0: RandomSolver

Average score

—0.25 1

—0.50 1

—0.75 1

—1.00 -

—— X: MCTSClassicSolver |

40 60
Game number

100



{'X_wins': 97, 'O_wins': 0, ‘'draws': 3}

num_simulations=100

Minimax vs MCTS

minimax = MinimaxSolver()
mcts = MCTSClassicSolver(num_simulations=10, seed=2)

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, minimax, mcts, num_
results

Running average score (X perspective)

llDO 1 —\.\——'—'—-_\-—'_—_—_
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{'X_wins': 95, 'O_wins': @, 'draws': 5}

num_simulations=10

Minimax vs MCTS

minimax = MinimaxSolver()
mcts = MCTSClassicSolver(num_simulations=100, seed=2)

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, minimax, mcts, num_
results



Running average score (X perspective)

1.00 — X: MinimaxSolver

—— 0: MCTSClassicSolver
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0.50

0.25 4

D.00 === == e e e oo

—0.25

Average score

—0.50

—0.75

—1.00

T
0 20 40 60 80 100
Game number

{'X_wins': 53, 'O_wins': @, 'draws': 47}

num_simulations=100

Minimax vs MCTS

minimax = MinimaxSolver()
mcts = MCTSClassicSolver(num_simulations=500, seed=2)

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, minimax, mcts, num_
results

Running average score (X perspective)
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num_simulations=500

MCTS vs Minimax



mcts = MCTSClassicSolver(num_simulations=10, seed=2)
minimax = MinimaxSolver()

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, mcts, minimax, num_
results

Running average score (X perspective)

0.8

—— X: MCTSClassicSolver
—— O: MinimaxSolver

Average score

0 20 40 60 80 100
Game number

{'X_ wins': 0, 'O_wins': 47, ‘'draws': 53}

num_simulations=10

MCTS vs Minimax

mcts = MCTSClassicSolver(num_simulations=100, seed=2)
minimax = MinimaxSolver()

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, mcts, minimax, num_
results

Running average score (X perspective)

—— X: MCTSClassicSolver
—— O: MinimaxSolver
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{'X_wins': 0, 'O_wins': 1, 'draws': 99}

num_simulations=100

MCTS vs Minimax

mcts = MCTSClassicSolver(num_simulations=500, seed=2)
minimax = MinimaxSolver()

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, mcts, minimax, num_
results

Running average score (X perspective)
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MCTS (few sims) vs MCTS (few sims)

mcts_a
mcts_b

MCTSClassicSolver(num_simulations=10, seed=3)
MCTSClassicSolver(num_simulations=10, seed=4)

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, mcts_a, mcts_b, nun
results



Running average score (X perspective)

1.00 — X: MCTSClassicSolver
—— 0: MCTSClassicSolver
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MCTS (few sims) vs MCTS (many sims)

MCTSClassicSolver(num_simulations=10, seed=3)
MCTSClassicSolver(num_simulations=500, seed=4)

mcts_a
mcts_b

results, avg_X, avg_0 = evaluate_solvers_with_plot(game, mcts_a, mcts_b, nun
results

Running average score (X perspective)
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Learning Across Moves and Games

class MCTSSolver(Solver):

Monte Carlo Tree Search solver for deterministic, zero-sum,



two-player games like Tic-Tac-Toe.

Key ideas:
The solver maintains a search tree keyed by canonical(state).
Each node stores:
* N: visit count
* W: total reward from the perspective of the player to move at
that node (positive is good for that player)
* children: mapping move —> child_state_key
* untried_moves: moves that have not been expanded yet
* player: the player to move at this node ("X" or "0")
- select_move():
* Ensures the current state is in the tree.
* Runs a fixed number of simulations from the current root.
* Returns the move leading to the most visited child.
opponent_played(move):
* Advances the internal root along the actual move played
(if that move has been explored).
* This allows the solver to reuse search statistics across moves
and across games.

def __init_ (self, num_simulations=500, exploration_c=math.sqrt(2), seec

Parameters
num_simulations : int

Number of MCTS simulations to run per move.
exploration_c : float

Exploration constant 'c' in the UCT formula.
seed : int or None

Optional random seed for reproducibility.
self.num_simulations = num_simulations
self.exploration_c = exploration_c
self.rng = random.Random(seed)

# The search tree: state_key —> node dictionary
self.tree = {}

# Current root in the tree
self.root_key = None # canonical(state)
self.root_player = None # player to move at the root ("X" or "0")

# Game reference (set on first select_move)
self.game = None

#
# Public API
#
def select_move(self, game, state, player):

Choose a move for 'player' from 'state' using Monte Carlo Tree Searc

This method:



1. Synchronizes the internal root with the provided state.
2. Runs a fixed number of MCTS simulations from the root.
3. Returns the move leading to the child with the largest visit cour

self.game = game

canonical(state)

state_key

# Ensure the root in the tree corresponds to the current state.

# If this state has been seen before, we reuse its node and statisti
self.root_key = state_key

self.root_player = player

self._get_or_create_node(state_key, player)

# Run MCTS simulations starting from the current root
for _ in range(self.num_simulations):
self._run_simulation()

# After simulations, pick the child with the highest visit count.
root_node = self.tree[self.root_key]

if not root_node["children"]:
# No children: must be a terminal state or no legal moves.
# Fall back to any valid move (or raise error); here we pick at
moves = self.game.get_valid_moves(np.array(self.root_key))
return self.rng.choice(moves)

best_move = None
best_visits = -1

for move, child_key in root_node["children"].items():
child = self.treel[child_key]
if child["N"] > best_visits:
best_visits = child["N"]
best_move = move

return best_move

def opponent_played(self, move):

Update the internal root based on the opponent's move.
This is called by GameRunner after the other player has made a move.

We try to move the root to the corresponding child node:
— If the move was explored, we reuse that subtree.
— Otherwise, we create a fresh node for the resulting state.
# If we do not yet have a root or a game reference, nothing to do.
if self.root_key is None or self.game is None:
return

root_node = self.tree.get(self.root_key)
if root_node is None:
# Should not happen, but be robust.
self.root_key = None



self.root_player = None
return

# If we already explored this move from the root, just move down the
if move in root_node["children"]:

child_key = root_node["children"] [move]

self.root_key = child_key

self.root_player = self.treelchild_key] ["player"]

return

# Otherwise, we need to apply the move on the board and create a nen
state = np.array(self.root_key)

player_who_played = root_node["player"]

next_state = self.game.make_move(state, move, player_who_played)
next_key = canonical(next_state)

next_player = self.game.get_opponent(player_who_played)

self.root_key = next_key
self.root_player = next_player
self._get_or_create_node(next_key, next_player)

#
# Internal helpers
#

def _get_or_create_node(self, state_key, player_to_move):

Ensure that a node for 'state_key' exists in the tree.

If not present, create it with:

-N=0, W=20

untried_moves = all valid moves from this state
children = {}

player = player_to_move

if state_key not in self.tree:

state = np.array(state_key)

self.tree[state_keyl = {
"N": 0, # visit count
"W': 0.0, # total reward from this node's player's perspect
"children": {}, # move —> child_state_key
"untried_moves": self.game.get_valid_moves(state),
"player": player_to_move,

I

return self.tree[state_key]

def _run_simulation(self):

Perform one MCTS simulation from the current root:

1. SELECTION:
Follow the tree using UCT until we reach a node with untried_move
or a terminal state.
2. EXPANSION:
If the node has untried_moves and is non-terminal, expand one mov
3. ROLLOUT:



From the new leaf, play random moves to a terminal state.
4. BACKPROPAGATION:
Propagate the final outcome back along the visited path.
if self.root_key is None:
return # nothing to do

state_key = self.root_key
state = np.array(state_key)

path = []1 # list of state_keys visited along this simulation

#
# 1-2. Selection & Expansion
#
while True:
path.append(state_key)
node = self.tree[state_key]

# If this is a terminal state, stop and evaluate directly.

if self.game.is_terminal(state):
outcome = self.game.evaluate(state) # from X's perspective
break

# If there are untried moves, expand one of them.
if node["untried_moves"]:
move = node["untried_moves"].pop()
next_state = self.game.make_move(state, move, node["player"]
next_key = canonical(next_state)
next_player = self.game.get_opponent(node["player"])

# Create the child node if it does not yet exist.
self._get_or_create_node(next_key, next_player)

# Link child in the tree
node["children"] [move]l = next_key

# The rollout starts from this new leaf node.
state_key = next_key

state = next_state

path.append(state_key)

outcome = self._rollout(state, next_player)
break

# Otherwise, the node is fully expanded: select a child using UC
move, child_key = self._select_child(node)

state_key = child_key

state = np.array(state_key)

#
# 4. Backpropagation
#
self._backpropagate(path, outcome)

def _select_child(self, node):



def

Select a child of 'node' using the UCT (Upper Confidence Bound) rule
UCT score from the perspective of the player at 'node':

score(child) = mean_reward_from_node_perspective
+ c % sqrt( In(N_parent + 1) / N_child )

Note:

— Each child stores W and N from its own player's perspective.

— We convert the child's value to the parent's perspective by flippi
the sign, because the child player is always the opponent of the
parent player in a two-player alternating game.

node ["N"]

node["player"]

parent_visits
parent_player

best_move = None
best_child_key = None
best_score = -math.inf

for move, child_key in node["children"].items():
child = self.treelchild_key]

if child["N"] == 0:
# Encourage exploring unvisited children at least once.
uct_score = math.inf

else:
# Average reward from the child's player perspective.
avg_child_reward = child["W"] / child["N"]

# Convert to the parent's perspective.
# Parent and child players are always opponents here.
reward_from_parent_perspective = -avg_child_reward

uct_score = (

reward_from_parent_perspective

+ self.exploration_c

* math.sqrt(math.log(parent_visits + 1) / child["N"])
)

if uct_score > best_score:
best_score = uct_score
best_move = move
best_child_key = child_key

return best_move, best_child_key

_rollout(self, state, player_to_move):

Perform a random playout (simulation) from 'state' until a terminal

Parameters

state : NumPy array
Current board position.



player_to_move : str
Player to move ("X" or "0") at this rollout start.

Returns
outcome : int
Final game result from X's perspective:
+1 (X wins), -1 (0 wins), or @ (draw).
current_state = state.copy()
current_player = player_to_move

# Play random moves until the game ends.
while not self.game.is_terminal(current_state):
moves = self.game.get_valid_moves(current_state)
move = self.rng.choice(moves)
current_state = self.game.make_move(current_state, move, current
current_player = self.game.get_opponent(current_player)

return self.game.evaluate(current_state) # +1, -1, or @ from X's pe

def _backpropagate(self, path, outcome):

Backpropagate the final outcome along the simulation path.

Parameters
path : list of state_keys

The sequence of states visited from root to leaf.
outcome : int

Final result from X's perspective: +1, -1, or 0.

For each node on the path:
— We convert 'outcome' to that node's player's perspective:
reward = outcome if player == "X"
= —outcome if player == "QO"
— Then update:
node.N += 1
node.W += reward
for state_key in path:
node = self.tree[state_key]
player = node["player"]

# Convert outcome from X's perspective to this node's perspectiy

if player == "X":
reward = outcome
else:
reward = —-outcome

node["N"] += 1
node["W"] += reward

Same Computational Budget



mcts_a = MCTSSolver(num_simulations=10, seed=3)

mcts_c MCTSClassicSolver(num_simulations=10, seed=4)

results, _, _ = evaluate_solvers_with_plot(game, mcts_a, mcts_c, num_games=]
results

Running average score (X perspective)
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results, _, _ = evaluate_solvers_with_plot(game, a, b, num_games=375)
results

Running average score (X perspective)
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In this example, the MCTSSolver executes a limited number of simulations, yet it

accumulates learning over successive moves and games. In contrast, the



MCTSClassicSolver is allocated a larger computational budget, enabling it to
perform a greater number of simulations. Initially, the MCTSClassicSolver
demonstrates superior performance for approximately the first 75 games. However, as
the MCTSSolver accrues experience and its simulation count approaches that of the
MCTSClassicSolver , its performance steadily improves.

Learner vs Minimax

a
b

MCTSSolver(num_simulations=10, seed=3)
MinimaxSolver()

results, _, _ = evaluate_solvers_with_plot(game, a, b, num_games=375)
results

Running average score (X perspective)
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Learner vs Minimax

a = MCTSSolver(num_simulations=20, seed=3)
b = MinimaxSolver()
results, _, _ = evaluate_solvers_with_plot(game, a, b, num_games=375)

results



Running average score (X perspective)
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results, _,
results

= MCTSSolver(num_simulations=50, seed=3)
MinimaxSolver()

_ = evaluate_solvers_with_plot(game, a, b, num_games=375)
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Exploration

¢ Incorporate heuristics to detect when a winning move is achievable in a single

step.



e Experiment with varying the number of iterations and the constant C.

Monte Carlo Tree Search

Where we are now: plain MCTS

e We already know:
= A search tree of Tic-Tac-Toe positions
= Nodes store:
o Number of times visited
o Average game outcome from that position
m MCTS uses this tree to choose moves

Monte Carlo Tree Search

e In our current code:
= Selection: follow the tree (UCT) to promising nodes
= Expansion: add a new child node
= Rollout: play random moves to the end of the game
= Backpropagation: send the final result back up the tree

Monte Carlo Tree Search

e This works very well for Tic-Tac-Toe, but:
= Random rollouts can be slow and noisy in larger games

= The tree does not "know" anything before search starts

Add a Policy Network

Goal: give MCTS a better idea of which moves to explore first.
New component: policy network

e Input: a board position
e Qutput: a probability for each legal move
= "In this position, move A looks 40%, move B 30%, move C 10%, ..."

Add a Policy Network

Usage inside MCTS:

e At a new node (when we expand a state):
1. Call the policy network on the board



2. Store the move probabilities as priors for this node
e During selection:
= MCTS still uses visit counts from the tree
= But now it also uses the policy priors to prefer moves that look good according
to the network

Add a Value Network

Goal: avoid long random rollouts and get a direct estimate of how good a position is.
New component: value network

e Input: a board position

e Qutput: a single number:
= Close to +1if X is likely to win
m Close to -1if O is likely to win
= Around O for a likely draw

Add a Value Network

Usage inside MCTS:

o At aleaf node (frontier of the tree):
® |Instead of doing a random rollout:
1. Call the value network on the board
2. Use its output as the leaf value

3. Backpropagate this value up the tree

AlphaTicTacToe

Putting it together (AlphaGo-style “AlphaTicTacToe"):

¢ MCTS + policy network:
= Guides which moves to explore
e MCTS + value network:
= Evaluates positions without random playouts
e Qver time, both networks can be trained from example games (e.g., self-play):
= Policy network learns “good moves”
= Value network learns “good positions”

Learning reinforcement learning comfortably takes about a semester. However, in
practice, systems like AlphaGo/AlphaZero combine Monte Carlo Tree Search (MCTS)
with deep neural networks that output a policy (promising moves) and a value (how
good a position is). These networks are trained from self-play games, using the game



outcomes as a reward signal. That loop, act, observe outcomes, update the policy/value
to do better next time, is exactly what we call reinforcement learning.

In later work, AlphaGo Zero and AlphaZero use one neural network with two outputs
(policy and value). This simplifies the architecture.

Prologue

Summary

e Monte Carlo Tree Search (MCTS) is a search algorithm used for decision-making
in complex games.

e MCTS operates through four main steps: Selection, Expansion, Rollout
(Simulation), and Backpropagation.

e |t balances exploration and exploitation using the UCB1 formula, which guides
node selection based on visit counts and scores.

e MCTS maintains an explicit search tree, updating node values iteratively based on
simulations.

¢ The algorithm has wide-ranging applications, including Al gaming, drug design,
circuit routing, and autonomous driving.

e Introduced in 2008, MCTS gained prominence with its use in AlphaGo in 2016.

e Unlike traditional algorithms like A*, MCTS uses dynamic policies and leverages all
visited nodes for decision-making.

e Implementing MCTS involves tracking node statistics and applying the UCB1
formula to guide search.

e A practical example of MCTS is demonstrated through implementing Tic-Tac-Toe.

e Further exploration includes integrating MCTS with deep learning models like
AlphaZero and MuZero.

Further exploration

e JAX-native environment for simulations
e AlphaZero

e MuZero

e Gumbel

e MCTS Tic-Tac-Toe with Visualization

The End

e Consult the course website for information on the final examination.


https://github.com/sotetsuk/pgx
https://deepmind.google/discover/blog/alphazero-shedding-new-light-on-chess-shogi-and-go/
https://deepmind.google/discover/blog/muzero-mastering-go-chess-shogi-and-atari-without-rules/
https://openreview.net/forum?id=bERaNdoegnO
https://github.com/kevinzhangftw/Monte-Carlo-Tree-Search-Tic-Tac-Toe/tree/master
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Appendix

Numerical Integration

import random

import math

import numpy as np

import matplotlib.pyplot as plt

def monte_carlo_integrate_visual_with_sticks(f, a, b, n_samples, seed=None):

Monte Carlo integration visualization.
Shows the function curve, sampled points, and vertical lines ("sticks").
Also plots convergence of the Monte Carlo estimate.

if seed is not None:
np.random.seed(seed)

XS
A

np.random.uniform(a, b, size=n_samples)
f(xs)

cumulative_avg = np.cumsum(ys) / np.arange(1l, n_samples + 1)
estimates = (b - a) * cumulative_avg


https://arxiv.org/abs/2501.11223
https://doi.org/10.1007/s10489-023-05240-w
http://aima.cs.berkeley.edu/
https://doi.org/10.1038/nature16961

fig, ax = plt.subplots(1, 2, figsize=(13, 4))

# —— Left panel: samples + vertical lines ————-—
X = np.linspace(a, b, 400)
ax[0].plot(X, f(X), color="black", label="f(x)")

# Vertical lines
for x_i, y_i in zip(xs, ys):
ax[0] .plot([x_i, x_il, [@, y_il, color="gray", alpha=0.3, linewidth=

# Sampled points
ax[0].scatter(xs, ys, s=12, color="blue", alpha=0.6, label="Samples")

ax[0].set_title("Monte Carlo Samples")
ax[0].set_xlabel("x")
ax[0].set_ylabel("f(x)")
ax[0].grid(True)

ax[0].legend()

i ————— Right panel: convergence ————-

true_value = 2.0 # [o™m sin(x) dx

ax[1].plot(estimates, label="Monte Carlo estimate")

ax[1] .axhline(true_value, linestyle="—-", color="red", label="True value

ax[1].set_title("Convergence of Integral Estimate")
ax[1].set_xlabel("Number of samples")
ax[1].set_ylabel("Estimate")

ax[1].grid(True)

ax[1].legend()

plt.tight_layout()
plt.show()

return estimates[-11]
def main():

f = np.sin

a, b =0.0, math.pi

n_samples = 500

estimate = monte_carlo_integrate_visual_with_sticks(f, a, b, n_samples,
print(f"Final estimate = {estimate:.6f} (true = 2.0)")

main()



Monte Carlo Samples Convergence of Integral Estimate
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Final estimate = 2.022106 (true = 2.0)

Numerical Integration

def monte_carlo_integrate(f, a, b, n_samples, seed=None):

Estimate [_a~b f(x) dx using simple Monte Carlo integration.

Parameters
f : callable

Function to integrate.
a, b : float

Integration bounds (a < b).
n_samples : int

Number of random samples to draw.
seed : int or None

Optional seed for reproducibility.

Returns
estimate : float
Monte Carlo estimate of the integral.

if seed is not None:
random.seed(seed)

total = 0.0

for _ in range(n_samples):
x = random.uniform(a, b)
total += f(x)

return (b - a) * total / n_samples

def main():
# Example: integrate f(x) = sin(x) on [0, m]
f = math.sin
a, b =0.0, math.pi

for n in [100, 1_000, 10_000, 100_000]:
estimate = monte_carlo_integrate(f, a, b, n, seed=0)
print(f"n = {n:6d} - estimate =~ {estimate:.6f} (delta = {abs(2.0 - ¢
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main()

= 100 - estimate = 2.080957 (delta = 0.080957)

1000 - estimate = 1.992136 (delta = 0.007864)
= 10000 - estimate = 2.007041 (delta = 0.007041)
= 100000 - estimate = 1.996149 (delta = 0.003851)
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