
CSI 5180. Topics in Arti�cial Intelligence
Machine Learning for Bioinformatics Applications

Fall 2019

Projects

Version of October 29, 2019

1 Learning outcomes
• Critically assess a scienti�c publication
• Further develop lifelong learning skills
• Communicate technical information e�ectively in writing

2 Deadlines
• 2019-10-08 — Project proposal
• 2019-12-03 — Report

2.1 Deliverable
You must select a recent scienti�c publication where a machine learning algorithm was applied to a bioin-
formatics problem. You can select a paper from the bibliography below or one of your own choice. This
paper must be di�erent than the one you will be presenting in class.

You must recreate in part or in full the dataset used in that publication 1. As seen in our lecture on
essential bioinformatics skills, write scripts to automate this work. Make sure to describe the steps needed
to prepare your data (cleaning, normalization, encoding. . . ).

Apply twomachine learning algorithms to your dataset and analyze your results. One of these two algo-
rithms should be the same, or similar algorithm, to what was proposed in the publication. Were you able to
reproduce the results from the paper? If not, why? Compare the two machine-learning algorithms. Is one
approach better than the other? Why?

2.2 Teamwork
I am expecting that teams will be made of 1 or 2 members. Larger teams are possible and will have to
produce proportionally more work! Complementary work between teams is also welcomed, i.e. two or
more teams working on a related but complementary topic, leading to a more realistic application.

2.3 Report
The project is worth 20% of your �nal mark. Its marking will be based on the outline, a written report, as
well as the source code submitted along with your project. Reports should be su�ciently detailed that it
should be possible to rerun the analysis on the basis of the text alone. Having said that, you should also
make every conceivable e�ort to keep the report concise. Assuming a team of size 2, a 10–15 page report
should be appropriate. Suggested structure for the reports:

1If recreating the data happens to be too challenging for one reason or another, you can simulate the data, but only as a last resort.
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• Introduction
– Background
– Problem de�nition
– Describing the data

∗ Where did you get the data?
∗ What were the �le formats?
∗ Did you clean the data? If so, how?
∗ Did you encode the data? What choices did you make?

• Methods
• Results
• Conclusions
• Full list of references

2.4 Selected publications
You must select a publication in a distinct area than that of your presentation in class. Below you will
�nd a list of publications. You are welcomed proposing publications outside of the list. In an appendix, I
am including a list of the major journals where bioinformatics research is published.

Essential Cell Biology
[1] Lawrence Hunter. Life and its molecules: A brief introduction. AI Magazine, 25(1):9–22, 2004.

Introduction to Applications of Machine Learning in Bioinformatics
[1] Michael Molla, Michael Waddell, David Page, and Jude W. Shavlik. Using machine learning to design

and interpret gene-expression microarrays. AI Magazine, 25(1):23–44, 2004.

Reviews and Comparative Analyses
[1] Anne-Laure Boulesteix. Ten simple rules for reducing overoptimistic reporting in methodological

computational research. PLoS Comput Biol, 11(4):e1004191, Apr 2015.

[2] Davide Chicco. Ten quick tips formachine learning in computational biology. BioDataMin, 10:35, 2017.

[3] PedroM.Domingos. A fewuseful things to knowaboutmachine learning. Commun. ACM, 55(10):78–87,
2012.

[4] Jianwen Fang. A critical review of �ve machine learning-based algorithms for predicting protein sta-
bility changes upon mutation. Brief Bioinform, Jul 2019.

[5] Jalil Nourmohammadi Khiarak, Rana VALİZADEH-KAMRAN, Ahmad Heydariyan, and Najmeh
Damghani. Big data analysis in plant science and machine learning tool applications in genomics and
proteomics. International Journal of Computational and Experimental Science and Engineering, 4(2):23–31.

[6] Pedro Larrañaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano, Iñaki Inza, José A.
Lozano, Rubén Armañanzas, Guzmán Santafé, Aritz Pérez, and Victor Robles. Machine learning in
bioinformatics. Brie�ngs in Bioinformatics, 7(1):86–112, 03 2006.

[7] YumengLiu, XiaolongWang, andBinLiu. A comprehensive reviewand comparison of existing compu-
tational methods for intrinsically disordered protein and region prediction. Brief Bioinform, 20(1):330–
346, 01 2019.
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[8] ChuangMa, HaoHelen Zhang, and XiangfengWang. Machine learning for big data analytics in plants.
Trends Plant Sci, 19(12):798–808, Dec 2014.

[9] Mu�i Mahmud, Mohammed Shamim Kaiser, Amir Hussain, and Stefano Vassanelli. Applications of
deep learning and reinforcement learning to biological data. IEEE Transactions on Neural Networks and
Learning Systems, 29:2063–2079, 2018.

[10] Balachandran Manavalan, Shaherin Basith, Tae Hwan Shin, Leyi Wei, and Gwang Lee. mAHTPred: a
sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using ef-
fective feature representation. Bioinformatics, 35(16):2757–2765, Aug 2019.

[11] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. Deep learning in bioinformatics. Brief Bioinform,
18(5):851–869, 09 2017.

[12] Dai Hai Nguyen, Canh Hao Nguyen, and Hiroshi Mamitsuka. Recent advances and prospects of com-
putational methods for metabolite identi�cation: a review with emphasis on machine learning ap-
proaches. Brief Bioinform, Aug 2018.

[13] Randal S Olson, William La Cava, Zairah Mustahsan, Akshay Varik, and Jason H Moore. Data-driven
advice for applying machine learning to bioinformatics problems. Pac Symp Biocomput, 23:192–203,
2018.

[14] Kleber Padovani de Souza, João Carlos Setubal, André Carlos Ponce de Leon F de Carvalho, Guilherme
Oliveira, AnnieChateau, andRonnieAlves. Machine learningmeets genomeassembly. Brief Bioinform,
Aug 2018.

[15] Arwa B Raies and Vladimir B Bajic. In silico toxicology: computational methods for the prediction of
chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci, 6(2):147–172, Mar 2016.

[16] Georgina Stegmayer, Leandro E Di Persia, Mariano Rubiolo, Matias Gerard, Milton Pividori, Cristian
Yones, Leandro A Bugnon, Tadeo Rodriguez, Jonathan Raad, and Diego H Milone. Predicting novel
microRNA: a comprehensive comparison of machine learning approaches. Brief Bioinform, May 2018.

[17] Adi L Tarca, Vincent J Carey, Xue-wen Chen, Roberto Romero, and Sorin Drăghici. Machine learning
and its applications to biology. PLoS Comput Biol, 3(6):e116, Jun 2007.

[18] Chunming Xu and Scott A Jackson. Machine learning and complex biological data. Genome Biol,
20(1):76, 04 2019.

[19] Guido Zampieri, Supreeta Vijayakumar, Elisabeth Yaneske, and Claudio Angione. Machine and deep
learning meet genome-scale metabolic modeling. PLoS Comput Biol, 15(7):e1007084, Jul 2019.

[20] Yi-Hui Zhou and Paul Gallins. A review and tutorial ofmachine learningmethods formicrobiome host
trait prediction. Front Genet, 10:579, 2019.

Possible projects (new)
[1] Xinzhong Li, Haiyan Wang, Jintao Long, Genhua Pan, Taigang He, Oleg Anichtchik, Robert Belshaw,

Diego Albani, Paul Edison, Elaine K Green, and James Scott. Systematic analysis and biomarker study
for Alzheimer’s disease. Sci Rep, 8(1):17394, 11 2018.

[2] Yuan Lin, Yinyin Cai, Juan Liu, Chen Lin, and Xiangrong Liu. An advanced approach to identify an-
timicrobial peptides and their function types for penaeus through machine learning strategies. BMC
Bioinformatics, 20(Suppl 8):291, Jun 2019.
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Evaluating Learning Algorithms
[1] Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: a classi�cation perspective. Cam-

bridge University Press, Cambridge, 2011.

[2] Keegan Korthauer, Patrick K Kimes, Claire Duvallet, Alejandro Reyes, Ayshwarya Subramanian, Mingx-
iang Teng, Chinmay Shukla, Eric J Alm, and Stephanie CHicks. A practical guide tomethods controlling
false discoveries in computational biology. Genome Biol, 20(1):118, 06 2019.

[3] Samaneh Kouchaki, Yang Yang, Timothy MWalker, A SarahWalker, Daniel J Wilson, Timothy E A Peto,
Derrick W Crook, CRyPTIC Consortium, and David A Cli�on. Application of machine learning tech-
niques to tuberculosis drug resistance analysis. Bioinformatics, 35(13):2276–2282, 11 2018.

[4] Lukas M Weber, Wouter Saelens, Robrecht Cannoodt, Charlotte Soneson, Alexander Hapfelmeier,
Paul P Gardner, Anne-Laure Boulesteix, Yvan Saeys, and Mark D Robinson. Essential guidelines for
computational method benchmarking. Genome Biol, 20(1):125, Jun 2019.

[5] Ying Zeng, Hongjie Yuan, Zheming Yuan, and Yuan Chen. A high-performance approach for predicting
donor splice sites based on short window size and imbalanced large samples. Biol Direct, 14(1):6, 04 2019.

Dimensionality Reduction, Feature Selection, and Feature Engineering
[1] Syed Faraz Ahmed, Ahmed A Quadeer, David Morales-Jimenez, and Matthew RMcKay. Sub-dominant

principal components inform new vaccine targets for HIV Gag. Bioinformatics, 35(20):3884–3889, Oct
2019.

[2] ÓscarÁlvarez, JuanLuis Fernández-Martínez, Celia Fernández-Brillet, AnaCernea, ZulimaFernández-
Muñiz, and Andrzej Kloczkowski. Principal component analysis in protein tertiary structure predic-
tion. J Bioinform Comput Biol, 16(2):1850005, 04 2018.

[3] Tallulah S Andrews and Martin Hemberg. M3Drop: dropout-based feature selection for scRNASeq.
Bioinformatics, 35(16):2865–2867, Aug 2019.

[4] Zafer Aydin, Oğuz Kaynar, and Yasin Görmez. Dimensionality reduction for protein secondary struc-
ture and solvent accesibility prediction. J Bioinform Comput Biol, 16(5):1850020, 10 2018.

[5] Gonzalo Cerruela García and Nicolás García-Pedrajas. Boosted feature selectors: a case study on pre-
diction P-gp inhibitors and substrates. J Comput Aided Mol Des, 32(11):1273–1294, 11 2018.

[6] Weng Howe Chan, Mohd Saberi Mohamad, Safaai Deris, Nazar Zaki, Shahreen Kasim, Sigeru Omatu,
Juan Manuel Corchado, and Hany Al Ashwal. Identi�cation of informative genes and pathways using
an improved penalized support vector machine with a weighting scheme. Comput Biol Med, 77:102–15,
10 2016.

[7] Wei Chen, Hao Lv, Fulei Nie, and Hao Lin. i6mA-Pred: identifying DNA N6-methyladenine sites in the
rice genome. Bioinformatics, 35(16):2796–2800, Aug 2019.

[8] Yuehui Chen and Yaou Zhao. A novel ensemble of classi�ers for microarray data classi�cation. Appl.
Soft Comput., 8(4):1664–1669, 2008.

[9] Shahana Yasmin Chowdhury, Swakkhar Shatabda, and Abdollah Dehzangi. iDNAProt-ES: Identi�ca-
tion of DNA-binding proteins using evolutionary and structural features. Sci Rep, 7(1):14938, 11 2017.

[10] Héctor Climente-González, Chloé-Agathe Azencott, Samuel Kaski, and Makoto Yamada. Block HSIC
Lasso: model-free biomarker detection for ultra-high dimensional data. Bioinformatics, 35(14):i427–
i435, 07 2019.

[11] Lakshmipadmaja D and B. Vishnuvardhan. Classi�cation performance improvement using random
subset feature selection algorithm for data mining. Big Data Research, 12:1–12, 2018.
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[12] Patrick Deelen, Sipko van Dam, Johanna C Herkert, Juha M Karjalainen, Harm Brugge, Kristin M Ab-
bott, Cleo C van Diemen, Paul A van der Zwaag, Erica H Gerkes, Evelien Zonneveld-Huijssoon, Jelkje J
Boer-Bergsma, Pytrik Folkertsma, Tessa Gillett, K Joeri van der Velde, Roan Kanninga, Peter C van den
Akker, Sabrina Z Jan, Edgar T Hoorntje, Wouter P Te Rijdt, Yvonne J Vos, Jan D H Jongbloed, Conny
MA vanRavenswaaij-Arts, Richard Sinke, Birgit Sikkema-Raddatz,Wilhelmina S Kerstjens-Frederikse,
Morris A Swertz, and Lude Franke. Improving the diagnostic yield of exome- sequencing by predicting
gene-phenotype associations using large-scale gene expression analysis. Nat Commun, 10(1):2837, Jun
2019.

[13] John M Giorgi and Gary D Bader. Transfer learning for biomedical named entity recognition with
neural networks. Bioinformatics, 34(23):4087–4094, Dec 2018.

[14] Isabelle Guyon and André Elissee�. An introduction to variable and feature selection. Journal of Ma-
chine Learning Research, 3:1157–1182, 2003.

[15] Lan Huong Nguyen and Susan Holmes. Ten quick tips for e�ective dimensionality reduction. PLoS
Comput Biol, 15(6):e1006907, Jun 2019.

[16] Ahmad Abu Shanab and Taghi Khoshgo�aar. Is gene selection enough for imbalanced bioinformatics
data? In 2018 IEEE International Conference on Information Reuse and Integration (IRI), pages 346–355.
IEEE, 2018.

[17] Fatima Zohra Smaili, Xin Gao, and Robert Hoehndorf. OPA2Vec: combining formal and informal con-
tent of biomedical ontologies to improve similarity-based prediction. Bioinformatics, 35(12):2133–2140,
Jun 2019.

[18] Jing Tang, YunxiaWang, Jianbo Fu, Ying Zhou, Yongchao Luo, Ying Zhang, Bo Li, Qingxia Yang,Weiwei
Xue, Yan Lou, Yunqing Qiu, and Feng Zhu. A critical assessment of the feature selectionmethods used
for biomarker discovery in current metaproteomics studies. Brief Bioinform, Jun 2019.

[19] Leyi Wei, Chen Zhou, Huangrong Chen, Jiangning Song, and Ran Su. ACPred-FL: a sequence-based
predictor using e�ective feature representation to improve the prediction of anti-cancer peptides.
Bioinformatics, 34(23):4007–4016, Dec 2018.

[20] Jing Xu, PengWu, Yuehui Chen, Qingfang Meng, Hussain Dawood, and MuhammadMurtaza Khan. A
novel deep �exible neural forest model for classi�cation of cancer subtypes based on gene expression
data. IEEE Access, 7:22086–22095, 2019.

[21] Silu Zhang, Junqing Wang, Torumoy Ghoshal, Dawn Wilkins, Yin-Yuan Mo, Yixin Chen, and Yunyun
Zhou. lncRNA gene signatures for prediction of breast cancer intrinsic subtypes and prognosis. Genes
(Basel), 9(2), Jan 2018.

Data Imputation
[1] Xuesi Dong, Lijuan Lin, Ruyang Zhang, Yang Zhao, David C Christiani, Yongyue Wei, and Feng Chen.

TOBMI: trans-omics block missing data imputation using a k-nearest neighbor weighted approach.
Bioinformatics, 35(8):1278–1283, Apr 2019.

[2] Timothy J Durham, Maxwell W Libbrecht, J Je�ry Howbert, Je� Bilmes, and William Sta�ord Noble.
PREDICTD PaRallel epigenomics data imputation with cloud-based tensor decomposition. Nat Com-
mun, 9(1):1402, 04 2018.

[3] Jason Ernst and Manolis Kellis. Large-scale imputation of epigenomic datasets for systematic annota-
tion of diverse human tissues. Nat Biotechnol, 33(4):364–76, Apr 2015.

[4] Kohbalan Moorthy, Aws Naser Jaber, Mohd Ar�an Ismail, Ferda Ernawan, Mohd Saberi Mohamad, and
Safaai Deris. Missing-values imputation algorithms for microarray gene expression data. Methods Mol
Biol, 1986:255–266, 2019.
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[5] Kohbalan Moorthy, Mohd Saberi Mohamad, and Safaai Deris. A review on missing value imputation
algorithms for microarray gene expression data. Current Bioinformatics, 9(1):18–22, 2014.

[6] Qian Qin and Jianxing Feng. Imputation for transcription factor binding predictions based on deep
learning. PLoS Comput Biol, 13(2):e1005403, 02 2017.

[7] Jacob Schreiber, Timothy Durham, Je�rey Bilmes, andWilliam Sta�ord Noble. Multi-scale deep tensor
factorization learns a latent representation of the human epigenome. bioRxiv, 2018.

[8] AiguoWang, Ye Chen, Ning An, Jing Yang, Lian Li, and Lili Jiang. Microarraymissing value imputation:
A regularized local learning method. IEEE/ACM Trans Comput Biol Bioinform, Feb 2018.

Unsupervised Learning
[1] Davide Chicco and Marco Masseroli. Ontology-based prediction and prioritization of gene functional

annotations. IEEE/ACM Trans Comput Biol Bioinform, 13(2):248–60, 2016.

[2] Pietro Coretto, Angela Serra, and Roberto Tagliaferri. Robust clustering of noisy high-dimensional
gene expression data for patients subtyping. Bioinformatics, 34(23):4064–4072, 12 2018.

[3] Pallavi Gaur and Anoop Chaturvedi. Clustering and candidate motif detection in exosomal miRNAs by
application of machine learning algorithms. Interdiscip Sci, 11(2):206–214, Jun 2019.

[4] Troy P Hubbard, Jonathan D D’Gama, Gabriel Billings, Brigid M Davis, and Matthew K Waldor. Unsu-
pervised learning approach for comparingmultiple transposon insertion sequencing studies.mSphere,
4(1), 02 2019.

[5] Benjamin T James, Brian B Luczak, and Hani Z Girgis. MeShClust: an intelligent tool for clustering
DNA sequences. Nucleic Acids Res, 46(14):e83, Aug 2018.

[6] Rachel Jeitziner, Mathieu Carrière, Jacques Rougemont, Steve Oudot, Kathryn Hess, and Cathrin
Brisken. Two-Tier Mapper, an unbiased topology-based clustering method for enhanced global gene
expression analysis. Bioinformatics, 35(18):3339–3347, Sep 2019.

[7] G Kerr, H J Ruskin, M Crane, and P Doolan. Techniques for clustering gene expression data. Comput
Biol Med, 38(3):283–93, Mar 2008.

[8] Vladimir Yu Kiselev, Tallulah S Andrews, andMartin Hemberg. Challenges in unsupervised clustering
of single-cell RNA-seq data. Nat Rev Genet, 20(5):273–282, 05 2019.

[9] Lokesh Kumar and Matthias E Futschik. Mfuzz: a so�ware package for so� clustering of microarray
data. Bioinformation, 2(1):5–7, May 2007.

[10] Xiangtao Li, Shixiong Zhang, and Ka-ChunWong. Single-cell RNA-seq interpretations using evolution-
ary multiobjective ensemble pruning. Bioinformatics, 35(16):2809–2817, Aug 2019.

[11] Hang Liu, Lei Peng, Joan So, Ka Hing Tsang, Chi Ho Chong, Priscilla Hoi Shan Mak, Kui Ming Chan,
and Siu Yuen Chan. TSPYL2 regulates the expression of EZH2 target genes in neurons. Mol Neurobiol,
56(4):2640–2652, Apr 2019.

[12] Matthew JMichalska-Smith and Stefano Allesina. Telling ecological networks apart by their structure:
A computational challenge. PLoS Comput Biol, 15(6):e1007076, Jun 2019.

[13] Hung Nguyen, Sangam Shrestha, Sorin Draghici, and Tin Nguyen. PINSPlus: a tool for tumor subtype
discovery in integrated genomic data. Bioinformatics, 35(16):2843–2846, Aug 2019.

[14] Jelili Oyelade, Itunuoluwa Isewon, Funke Oladipupo, Olufemi Aromolaran, Efosa Uwoghiren, Faridah
Ameh, Moses Achas, and Ezekiel Adebiyi. Clustering algorithms: Their application to gene expression
data. Bioinform Biol Insights, 10:237–253, 2016.
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[15] Ren Qi, Anjun Ma, Qin Ma, and Quan Zou. Clustering and classi�cation methods for single-cell RNA-
sequencing data. Brief Bioinform, Jul 2019.

[16] Alexander Rives, Siddharth Goyal, Joshua Meier, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma,
and Rob Fergus. Biological structure and function emerge from scaling unsupervised learning to 250
million protein sequences. bioRxiv, page 622803, 2019.

[17] Grzegorz Rorbach, Olgierd Unold, and Bogumil M Konopka. Distinguishing mirtrons from canonical
miRNAs with data exploration and machine learning methods. Sci Rep, 8(1):7560, 05 2018.

[18] Debajyoti Sinha, Akhilesh Kumar, Himanshu Kumar, Sanghamitra Bandyopadhyay, and Debarka Sen-
gupta. dropClust: e�cient clustering of ultra-large scRNA-seq data. Nucleic Acids Res, 46(6):e36, 04
2018.

[19] Xiaoping Su, Gabriel G Malouf, Yunxin Chen, Jianping Zhang, Hui Yao, Vicente Valero, John N We-
instein, Jean-Philippe Spano, Funda Meric-Bernstam, David Khayat, and Francisco J Esteva. Com-
prehensive analysis of long non-coding RNAs in human breast cancer clinical subtypes. Oncotarget,
5(20):9864–76, Oct 2014.

[20] Tian Tian, Ji Wan, Qi Song, and Zhi Wei. Clustering single-cell RNA-seq data with a model-based deep
learning approach. Nature Machine Intelligence, 1(4):191, 2019.

[21] Qiu Xiao, Jiawei Luo, Cheng Liang, Jie Cai, Guanghui Li, and Buwen Cao. CeModule: an integrative
framework for discovering regulatory patterns from genomic data in cancer. BMC Bioinformatics,
20(1):67, Feb 2019.

Supervised Learning
[1] Toby Dylan Hocking, Patricia Goerner-Potvin, Andreanne Morin, Xiaojian Shao, Tomi Pastinen, and

Guillaume Bourque. Optimizing ChIP-seq peak detectors using visual labels and supervised machine
learning. Bioinformatics, 33(4):491–499, 02 2017.

[2] Kevin Li, Rachel Chen,WilliamLindsey, AaronBest,MatthewDeJongh, ChristopherHenry, andNathan
Tintle. Implementing and evaluating a Gaussianmixture framework for identifying gene function from
TnSeq data. Pac Symp Biocomput, 24:172–183, 2019.

[3] Yuan Lin, Yinyin Cai, Juan Liu, Chen Lin, and Xiangrong Liu. An advanced approach to identify an-
timicrobial peptides and their function types for penaeus through machine learning strategies. BMC
Bioinformatics, 20(Suppl 8):291, Jun 2019.

Linear, Logistic Regression, naïve Bayes
[1] Kseniia Cheloshkina and Maria Poptsova. Tissue-speci�c impact of stem-loops and quadruplexes on

cancer breakpoints formation. BMC Cancer, 19(1):434, May 2019.

[2] Simon Dirmeier, Christiane Fuchs, Nikola S Mueller, and Fabian J Theis. netReg: network-regularized
linear models for biological association studies. Bioinformatics, 34(5):896–898, 03 2018.

[3] DanielWKennedy, NicoleMWhite, Miles C Benton, Andrew Fox, Rodney J Scott, Lyn RGri�ths, Kerrie
Mengersen, and Rodney A Lea. Critical evaluation of linear regression models for cell-subtype speci�c
methylation signal frommixed blood cell DNA. PLoS One, 13(12):e0208915, 2018.

[4] Justin RKlesmith and Benjamin JHackel. Improvedmutant function prediction via PACT: Protein Anal-
ysis and Classi�er Toolkit. Bioinformatics (Oxford, England), 35(16):2707–2712, 2019.
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[5] Wenyuan Li, Chun-Chi Liu, Shuli Kang, Jian-Rong Li, Yu-Ting Tseng, and Xianghong Jasmine Zhou.
Pushing the annotation of cellular activities to a higher resolution: Predicting functions at the isoform
level. Methods, 93:110–8, Jan 2016.

[6] Thomas Luechtefeld, Dan Marsh, Craig Rowlands, and Thomas Hartung. Machine learning of toxico-
logical big data enables read-across structure activity relationships (RASAR) outperforming animal test
reproducibility. Toxicol Sci, 165(1):198–212, 09 2018.

[7] Trisevgeni Rapakoulia, Xin Gao, Yi Huang, Michiel de Hoon, Mariko Okada-Hatakeyama, Harukazu
Suzuki, and Erik Arner. Genome-scale regression analysis reveals a linear relationship for promoters
and enhancers a�er combinatorial drug treatment. Bioinformatics, 33(23):3696–3700, Dec 2017.

[8] Liang Sun, Haitao Luo, Dechao Bu, Guoguang Zhao, Kuntao Yu, Changhai Zhang, Yuanning Liu, Run-
sheng Chen, and Yi Zhao. Utilizing sequence intrinsic composition to classify protein-coding and long
non-coding transcripts. Nucleic Acids Res, 41(17):e166, Sep 2013.

[9] Heng Xiong, Dongbing Liu, Qiye Li, Mengyue Lei, Liqin Xu, Liang Wu, Zongji Wang, Shancheng Ren,
Wangsheng Li, Min Xia, Lihua Lu, Haorong Lu, Yong Hou, Shida Zhu, Xin Liu, Yinghao Sun, JianWang,
Huanming Yang, Kui Wu, Xun Xu, and Leo J Lee. RED-ML: a novel, e�ective RNA editing detection
method based on machine learning. Gigascience, 6(5):1–8, 05 2017.

Decision Trees, Random forests and eXtreme Gradient Boosting
[1] Xing Chen, LiHuang, Di Xie, andQi Zhao. EGBMMDA: Extreme gradient boostingmachine formiRNA-

disease association prediction. Cell Death Dis, 9(1):3, 01 2018.

[2] Sayamon Hongjaisee, Chanin Nantasenamat, Tanawan Samleerat Carraway, and Watshara Shoombu-
atong. HIVCoR: A sequence-based tool for predicting HIV-1 CRF01_AE coreceptor usage. Comput Biol
Chem, 80:419–432, Jun 2019.

[3] Dharm Skandh Jain, Sanket Rajan Gupte, and Raviprasad Aduri. A data driven model for predicting
RNA-Protein interactions based on gradient boosting machine. Sci Rep, 8(1):9552, 06 2018.

[4] Michael Lee, Erdahl T Teber, Oliver Holmes, Katia Nones, Ann-Marie Patch, Rebecca A Dagg, Loretta
M S Lau, JoyceHLee, Christine ENapier, JonathanWArthur, SeanMGrimmond, Nicholas KHayward,
Peter A Johansson, Graham JMann, Richard A Scolyer, James SWilmott, Roger R Reddel, John V Pear-
son, Nicola Waddell, and Hilda A Pickett. Telomere sequence content can be used to determine ALT
activity in tumours. Nucleic Acids Res, 46(10):4903–4918, 06 2018.

[5] Maxwell W Libbrecht, Oscar L Rodriguez, Zhiping Weng, Je�rey A Bilmes, Michael M Ho�man, and
William Sta�ord Noble. A uni�ed encyclopedia of human functional DNA elements through fully au-
tomated annotation of 164 human cell types. Genome Biol, 20(1):180, 08 2019.

[6] Joseph Luttrell, 4th, Tong Liu, Chaoyang Zhang, and Zheng Wang. Predicting protein residue-residue
contacts using random forests and deep networks. BMC Bioinformatics, 20(Suppl 2):100, Mar 2019.

[7] Arturo Magana-Mora and Vladimir B Bajic. OmniGA: Optimized omnivariate decision trees for gener-
alizable classi�cation models. Sci Rep, 7(1):3898, 06 2017.

[8] Raghvendra Mall, Luigi Cerulo, Luciano Garofano, Veronique Frattini, Khalid Kunji, Halima Bens-
mail, Thais S Sabedot, Houtan Noushmehr, Anna Lasorella, Antonio Iavarone, andMichele Ceccarelli.
RGBM: regularized gradient boosting machines for identi�cation of the transcriptional regulators of
discrete glioma subtypes. Nucleic Acids Res, 46(7):e39, 04 2018.

[9] Bethany Signal, Brian S Gloss, Marcel E Dinger, and Tim R Mercer. Machine learning annotation of
human branchpoints. Bioinformatics, 34(6):920–927, 03 2018.
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[10] Junhui Wang and Michael Gribskov. IRESpy: an XGBoost model for prediction of internal ribosome
entry sites. BMC Bioinformatics, 20(1):409, Jul 2019.

[11] LeiWang, Zhu-HongYou, XingChen, Yang-Ming Li, Ya-NanDong, Li-Ping Li, andKai Zheng. LMTRDA:
Using logistic model tree to predict miRNA-disease associations by fusingmulti-source information of
sequences and similarities. PLoS Comput Biol, 15(3):e1006865, 2019.

[12] Xin Wang, Peijie Lin, and Joshua W K Ho. Discovery of cell-type speci�c DNA motif grammar in cis-
regulatory elements using random forest. BMC Genomics, 19(Suppl 1):929, 01 2018.

[13] Jing Xu, PengWu, Yuehui Chen, Qingfang Meng, Hussain Dawood, and MuhammadMurtaza Khan. A
novel deep �exible neural forest model for classi�cation of cancer subtypes based on gene expression
data. IEEE Access, 7:22086–22095, 2019.

HiddenMarkovModels (HMM)
[1] Cristian V Crisan, Aroon T Chande, Kenneth Williams, Vishnu Raghuram, Lavanya Rishishwar, Gabi

Steinbach, Samit SWatve, Peter Yunker, I King Jordan, andBrianKHammer. Analysis of Vibrio cholerae
genomes identi�es new type VI secretion system gene clusters. Genome Biol, 20(1):163, 08 2019.

[2] ThomasHarrison, JaimeRuiz, Daniel B Sloan, Asa Ben-Hur, andChristina Boucher. aPPRove: AnHMm-
based method for accurate prediction of RNA-pentatricopeptide repeat protein binding events. PLoS
One, 11(8):e0160645, 2016.

[3] Ka-ChunWong. DNAmotif recognitionmodeling from protein sequences. iScience, 7:198–211, Sep 2018.

[4] Tobias Zehnder, Philipp Benner, and Martin Vingron. Predicting enhancers in mammalian genomes
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This section lists the scienti�c journals where bioinformatics research is most o�en published. The num-
bers in parentheses are the impact factors of these journals. Major contributions and/or interdisciplinary
research are published in journals such as the following:

• Nature (40.137)
• Science (37.205)
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• Nature Communications (12.353)
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• Molecular Biology and Evolution (10.217)
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• BMC Bioinformatics (2.213)
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• Computers in Biology and Medicine (2.115)
• Journal of Theoretical Biology (2.049)
• Evolutionary Bioinformatics (1.877)
• Journal of Mathematical Biology (1.846)
• Statistical Applications in Genetics and Molecular Biology (1.77)
• Journal of Proteomics & Bioinformatics (1.57)
• Algorithms for Molecular Biology (1.536)
• Computational Biology and Chemistry (1.331)
• Journal of Data Mining in Genomics & Proteomics (1.16)
• Journal of Computational Biology (1.032)
• Journal of Bioinformatics and Computational Biology (0.931)
• Current Bioinformatics (0.770)

Lists of bioinformatics journals can be found here:

• https://en.wikipedia.org/wiki/List_of_bioinformatics_journals
• https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_bioinformatics

B Resources
• http://www.bioinformatics.org/wiki/journals
• https://en.wikipedia.org/wiki/List_of_bioinformatics_journals
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https://www.springer.com/mathematics/mathematical+biology/journal/11538
http://www.journals.elsevier.com/computers-in-biology-and-medicine/
http://www.journals.elsevier.com/journal-of-theoretical-biology/
http://journals.sagepub.com/home/evb
https://www.springer.com/mathematics/mathematical+biology/journal/285
http://www.degruyter.com/view/j/sagmb
https://www.omicsonline.org/proteomics-bioinformatics.php
https://almob.biomedcentral.com
http://www.journals.elsevier.com/computational-biology-and-chemistry/
https://www.omicsonline.org/data-mining-in-genomics-proteomics.php
http://www.liebertpub.com/cmb
http://www.worldscinet.com/jbcb/jbcb.shtml
https://benthamscience.com/journals/current-bioinformatics/
https://en.wikipedia.org/wiki/List_of_bioinformatics_journals
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_bioinformatics
http://www.bioinformatics.org/wiki/journals
https://en.wikipedia.org/wiki/List_of_bioinformatics_journals
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