
CSI 5180. Topics in Artificial Intelligence: Machine
Learning for Bioinformatics

Assignment 1

Marcel Turcotte

Version: Feb 3, 2025 17:40

Learning Objectives

• Write and execute a Jupyter Notebook.
• Download and analyze data in a cloud environment.
• Prepare biological data for a machine learning project.
• Perform an exploratory data analysis.
• Train a machine learning model.

Assignments 1 and 2 will utilize the dataset associated with the publication by Umarov and Solovyev
(2017), which investigates the recognition of prokaryotic and eukaryotic promoters through convolutional
deep learning neural networks1.

• Umarov, R. K. and Solovyev, V. V. (2017). Recognition of prokaryotic and eukaryotic promoters
using convolutional deep learning neural networks. PLoS ONE, 12(2):e0171410.

In Assignment 1, the task involves developing a Jupyter Notebook to load and encode the dataset, vi-
sualize the data, and train one machine learning model. In Assignment 2, the analysis is extended by
exploring alternative encoding techniques and evaluating the performance of different machine learning
algorithms.

Promoter sequences are specific regions of DNA that signal the initiation site for gene transcription.
In eukaryotic organisms, these sequences are typically situated 25 to 35 base pairs upstream of the
transcription start site (TSS), as detailed by Scitable by Nature Education.

The publication by Umarov and Solovyev (2017) investigates two categories of promoters: TATA box
promoters and non-TATA box promoters, which serve as positive examples. To construct a set of nega-
tive examples, the authors randomly selected DNA sequences from the reverse complementary strand of
protein-coding regions.

• CNNPromoterData on GitHub

In our experiments, we achieved an accuracy rate of approximately 90% by employing a straightforward k-
mer encoding strategy in conjunction with logistic regression, as implemented in the scikit-learn library.

1I have some reservations regarding the publication, particularly concerning the methodology for generating negative ex-
amples and the protocol employed in the machine learning experiments. Consequently, I would advise against using this
paper as a definitive model. Despite these issues, the underlying problem is straightforward, allowing for the derivation
of robust results with relative ease. Furthermore, the paper conveniently provides access to valuable data!

1

https://www.nature.com/scitable/definition/promoter-259/
https://github.com/solovictor/CNNPromoterData
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


Submission

• Deadline:

– The deadline for submitting your notebook is February 24 at 8 PM.

• Individual Assignment:

– This task requires individual effort; collaboration is not permitted.

• Submission Platform:

– Please upload your completed notebook to the Assignment section (Assignment 1) on
Brightspace.

• Submission Format:

– Please ensure that your submission comprises a Jupyter Notebook containing all results and
an accompanying PDF version of the notebook. The PDF will facilitate discussions regarding
the evaluation of your work with your teaching assistant.

– The code should be executable on Google Colab. If your work involves additional libraries,
include appropriate installation commands for those libraries.

Note for Submission: To avoid receiving a zero, ensure that your code executes correctly. You are
responsible for verifying that your submission functions properly on a computer other than your own.
Make sure all cells in your notebook are executable.

Deliverable

1. Jupyter Notebook

Develop a Jupyter Notebook that explicitly includes the course title, assignment details, and your personal
information, such as your name and student identification number.

2. Loading the Dataset

Your notebook must read the data directly from the GitHub repository:

• CNNPromoterData on GitHub

To prevent errors when accessing data from GitHub, it is advisable to utilize URLs that direct to the
raw data files. For example, the raw data for the file Arabidopsis_non_prom.fa can be accessed via the
following URL. Here are the three links for your work.

• Arabidopsis_tata.fa (positive)
• Arabidopsis_non_tata.fa (positive)
• Arabidopsis_non_prom_big.fa (negative)

You will be conducting two experiments:

• positive = ‘Arabidopsis_tata.fa’, negative = ‘Arabidopsis_non_prom_big.fa’.
• positive = ‘Arabidopsis_non_tata.fa’, negative = ‘Arabidopsis_non_prom_big.fa’.

2

https://github.com/solovictor/CNNPromoterData
https://github.com/solovictor/CNNPromoterData/blob/master/Arabidopsis_tata.fa
https://raw.githubusercontent.com/solovictor/CNNPromoterData/refs/heads/master/Arabidopsis_tata.fa
https://raw.githubusercontent.com/solovictor/CNNPromoterData/refs/heads/master/Arabidopsis_tata.fa
https://raw.githubusercontent.com/solovictor/CNNPromoterData/refs/heads/master/Arabidopsis_non_tata.fa
https://raw.githubusercontent.com/solovictor/CNNPromoterData/refs/heads/master/Arabidopsis_non_prom_big.fa


The data is encoded using the FASTA format format, a widely recognized and straightforward file format in
bioinformatics. A FASTA file comprises one or more sequences, each initiated by a single-line description
that begins with a ‘>’ character. This descriptor line, which can typically be disregarded during data
processing, is followed by the sequence data itself. The sequence is usually distributed across multiple
lines, each typically not exceeding 80 characters. This line-length convention enhances readability and
was historically required for compatibility with older computer systems. In the dataset utilized for this
assignment, the line-by-line convention is not implemented, as each sequence is presented on a single
line.

3. Data Encoding

To effectively utilize machine learning algorithms in bioinformatics, it is essential to transform biological
sequence data into a format amenable to computational analysis. One prevalent method for achieving
this is through the use of 𝑘-mers. In this context, each biological sequence is converted into a frequency
vector that represents the occurrence of all possible nucleotide tuples of length 𝑘, where 𝑘 is a user-defined
parameter, typically set to 𝑘 = 4 in our study.

For a given sequence 𝑆 and a specified 𝑘, the frequency of each 𝑘-mer, denoted as 𝑥𝑗, is calculated based
on the tuple [𝐴𝐶𝐺𝑇 ]𝑘(𝑗) present in 𝑆. It is important to note that any tuple containing characters outside
the nucleotide alphabet (A, C, G, T) are excluded from this analysis.

This 𝑘-mer based frequency vectorization offers a robust framework for comparing sequences. Identical
or highly similar sequences yield similar frequency vectors, whereas sequences that have diverged due
to mutations exhibit increasingly dissimilar vectors. This approach is advantageous as it facilitates the
comparison of sequences of varying lengths and is resilient to certain evolutionary changes, such as segment
rearrangements or duplications. Nonetheless, it is important to acknowledge that this method does lead
to the loss of some sequence information.

To illustrate, consider the sequence 𝑆 = GAAGAC, composed of the nucleotides A, C, G, and T. When
employing 𝑘-mers of size 2, the frequency distribution vector is constructed as follows:

AA = 1/5
AC = 1/5
AG = 1/5
AT = 0
CA = 0
CC = 0
CG = 0
CT = 0
GA = 2/5
GC = 0
GG = 0
GT = 0
TA = 0
TC = 0
TG = 0
TT = 0

3

https://en.wikipedia.org/wiki/FASTA_format


4. Understanding your Data

The success of a machine learning experiment is fundamentally contingent upon a comprehensive under-
standing of the data.

4.1 Class Distribution

For the upcoming experiments, assess the distribution of instances within each class, distinguishing be-
tween positive and negative examples. Determine whether the datasets for these experiments are balanced
or exhibit class imbalance.

4.2 Visualization

Our dataset is characterized by a high dimensionality that poses challenges for straightforward visualiza-
tion. Specifically, for the case where 𝑘 = 4, each instance is represented as a 256-dimensional vector. To
address the visualization challenge, t-Distributed Stochastic Neighbor Embedding (t-SNE) is frequently
employed to project high-dimensional data into a lower-dimensional space, typically two dimensions, that
can be readily visualized. For each experimental condition, you are asked to:

1. Generate a graph representing the positive examples.
2. Generate a graph representing the negative examples.
3. Generate a composite graph that includes both positive and negative examples.

It is advisable to investigate the influence of various parameters. For instance, consider altering the value
of 𝑘 between 4 and 6. Additionally, parameters such as ‘perplexity’ and ‘early_exaggeration’ are critical
and warrant exploration due to their potential impact on the results.

Regarding expected outcomes, an optimal scenario would be the emergence of two distinct clusters from
your analysis (positive and negative examples). Such a clear separation would imply that the classification
problem is likely to be straightforward. Write down your observations.

5. Data Partitioning

Divide your dataset into distinct training and testing subsets, allocating 20% of the data specifically for
testing purposes.

6. Training and Testing

For each experimental condition:

• Train a logistic regression.
• Measure the performance of your model on the test set. Use the method classification_report

to show the precision, recall, and f1-score.
• Show the resulting confusion matrix.

Write down your observations.

4

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html


Evaluation Criteria

The report, which is your Jupyter Notebook, should comprehensively document the entire process followed
during this assignment. The Jupyter Notebook must include the following:

• Your name, student number, and a report title.
• A section for each step, containing the relevant Python code and explanations or results.

– For sections requiring Python code, include the code in a cell.
– For sections requiring explanations or results, include these in a separate cell or in combination

with code cells.

• Ensure logical separation of code into different cells. For example, the definition of a function should
be in one cell and its execution in another. Avoid placing too much code in a single cell to maintain
clarity and readability.

• The notebook you submit must include the results of the execution, complete with graphics, ensuring
that the teaching assistant can grade the notebook without needing to execute the code.

Resources

If you do use AI assistance, thoroughly document your interactions. Include the tools and their versions
in your report, along with a transcript of all interactions. Most AI assistants keep a record of your
conversations. The recommended practice is to create a new conversation specifically for the presentation
and consistently reuse this conversation throughout your work on the presentation. Ensure that this
conversation is solely dedicated to the presentation. Submit this conversation transcript in the reference
section of your summary.

Questions

• You may ask your questions in the Assignment topic of the discussion forum on Microsoft Teams.

• Alternatively, you can email the teaching assistant. However, using the forum is strongly preferred,
as it allows your fellow students to benefit from the questions and the corresponding answers pro-
vided by the teaching assistants.

References

Umarov, Ramzan Kh, and Victor V Solovyev. 2017. “Recognition of Prokaryotic and Eukaryotic Pro-
moters Using Convolutional Deep Learning Neural Networks.” Edited by Igor B Rogozin. PLoS ONE
12 (2): e0171410. https://doi.org/10.1371/journal.pone.0171410.

5

https://doi.org/10.1371/journal.pone.0171410

	bullseye Learning Objectives
	calendar Submission
	upload Deliverable
	1. Jupyter Notebook
	2. Loading the Dataset
	3. Data Encoding
	4. Understanding your Data
	4.1 Class Distribution
	4.2 Visualization

	5. Data Partitioning
	6. Training and Testing

	check-circle Evaluation Criteria
	comment Resources
	question-circle Questions
	book References

