
CSI 5180. Topics in Artificial Intelligence: Machine
Learning for Bioinformatics

Assignment 2

Marcel Turcotte

Version: Mar 5, 2025 18:07

Learning Objectives

• Write and execute a Jupyter Notebook.
• Download and analyze data in a cloud environment.
• Prepare biological data for a machine learning project.
• Train machine learning models.
• Perform hyperparameter tuning.

Assignment 2 builds upon our investigation into the identification of prokaryotic and eukaryotic promoters
using machine learning techniques. Our objective is to delve into several key topics discussed during the
course, such as class imbalance, hyperparameter tuning, and model selection. Additionally, we intend to
implement deep neural networks to enhance our analysis. To this end, we will employ one-hot encoding
techniques for our dataset and utilize convolutional neural networks (CNNs).

For those interested in extending their analysis, we propose a set of supplementary questions designed to
offer additional insight and potential for extra credit. Specifically, we invite you to explore the application
of Long Short-Term Memory (LSTM) networks or the integration of embeddings into your deep learning
architectures. This exploration aims to assess whether these enhancements can further optimize the
performance of your deep neural network models.

For a comprehensive overview of the promoter identification problem and a brief description of the dataset,
please refer to Assignment 1.

Submission

• Deadline:

– The deadline for submitting your notebook is February 26 at 8 PM.

• Individual Assignment:

– This task requires individual effort; collaboration is not permitted.

• Submission Platform:

– Please upload your completed notebook to the Assignment section (Assignment 2) on
Brightspace.

1

https://turcotte.xyz/teaching/csi-5180/evaluations/a1/


• Submission Format:

– Please ensure that your submission comprises a Jupyter Notebook containing all results and
an accompanying PDF version of the notebook. The PDF will facilitate discussions regarding
the evaluation of your work with your teaching assistant.

– The code should be executable on Google Colab. If your work involves additional libraries,
include appropriate installation commands for those libraries.

Note for Submission: To avoid receiving a zero, ensure that your code executes correctly. You are
responsible for verifying that your submission functions properly on a computer other than your own.
Make sure all cells in your notebook are executable.

Deliverable

1. Jupyter Notebook

Develop a Jupyter Notebook that explicitly includes the course title, assignment details, and your personal
information, such as your name and student identification number.

Just like for assignment 1, your notebook must read the data directly from the GitHub repository:

• CNNPromoterData on GitHub

To prevent errors when accessing data from GitHub, it is advisable to utilize URLs that direct to the
raw data files. For example, the raw data for the file Arabidopsis_non_prom.fa can be accessed via the
following URL. Here are the three links for your work.

• Arabidopsis_tata.fa (positive)
• Arabidopsis_non_tata.fa (positive)
• Arabidopsis_non_prom_big.fa (negative)

2. Data Encoding

To effectively utilize machine learning algorithms in bioinformatics, it is essential to transform biological
sequence data into a format amenable to computational analysis. One prevalent method for achieving
this is through the use of 𝑘-mers. In this context, each biological sequence is converted into a frequency
vector that represents the occurrence of all possible nucleotide tuples of length 𝑘, where 𝑘 is a user-defined
parameter.

For a given sequence 𝑆 and a specified 𝑘, the frequency of each 𝑘-mer, denoted as 𝑥𝑗, is calculated based
on the tuple [𝐴𝐶𝐺𝑇 ]𝑘(𝑗) present in 𝑆. It is important to note that any tuple containing characters outside
the nucleotide alphabet (A, C, G, T) are excluded from this analysis.

2

https://github.com/solovictor/CNNPromoterData
https://github.com/solovictor/CNNPromoterData/blob/master/Arabidopsis_tata.fa
https://raw.githubusercontent.com/solovictor/CNNPromoterData/refs/heads/master/Arabidopsis_tata.fa
https://raw.githubusercontent.com/solovictor/CNNPromoterData/refs/heads/master/Arabidopsis_tata.fa
https://raw.githubusercontent.com/solovictor/CNNPromoterData/refs/heads/master/Arabidopsis_non_tata.fa
https://raw.githubusercontent.com/solovictor/CNNPromoterData/refs/heads/master/Arabidopsis_non_prom_big.fa


3. Datasets

Construct three datasets:

1. positive = ‘Arabidopsis_tata.fa’, negative = ‘Arabidopsis_non_prom_big.fa’.
2. positive = ‘Arabidopsis_non_tata.fa’, negative = ‘Arabidopsis_non_prom_big.fa’.
3. positive = ‘Arabidopsis_tata.fa’ + ‘Arabidopsis_non_tata.fa’, negative = ‘Arabidop-

sis_non_prom_big.fa’.

The data is encoded using the FASTA format format, a widely recognized and straightforward file format in
bioinformatics. A FASTA file comprises one or more sequences, each initiated by a single-line description
that begins with a ‘>’ character. This descriptor line, which can typically be disregarded during data
processing, is followed by the sequence data itself. The sequence is usually distributed across multiple
lines, each typically not exceeding 80 characters. This line-length convention enhances readability and
was historically required for compatibility with older computer systems. In the dataset utilized for this
assignment, the line-by-line convention is not implemented, as each sequence is presented on a single
line.

In Assignment 1, we focused on two distinct datasets, each corresponding to a different type of promoter.
The objective was to develop a separate model for each promoter type. In the current assignment, we
introduce a third dataset in which the positive examples include sequences from both TATA-box-like and
non-TATA-box-like promoters.

This expansion enables two primary lines of inquiry:

1. Evaluation of a unified machine learning model’s capability to effectively classify both promoter
types. While the task remains a binary classification of promoter versus non-promoter, the positive
examples are now sourced from two different promoter categories.

2. Examination of the effects of class imbalance on model learning by utilizing datasets where the
positive (minority) class constitutes 12%, 34%, and 39% of the total data, respectively.

4. Class Imbalance

To conduct our experiment, we will use logistic regression with default parameters and compare three
distinct approaches to address class imbalance:

1. Baseline Experiment: No imbalance adjustment.
2. Class Weight Adjustment: Using the class_weight parameter set to balanced in scikit-learn’s

Logistic Regression, which adjusts weights inversely proportional to class frequencies.
3. Random Oversampling: Implemented with RandomOverSampler from imbalanced-learn.

The experimental protocol is as follows:

1. Partition the dataset by setting aside 20% as a hold-out set. Ensure that the stratify option is
enabled to maintain the same proportion of positive and negative examples in both the training and
hold-out sets.

2. Perform 10-fold stratified cross-validation on each of the three approaches (baseline, class weight
adjustment, and random oversampling). For each, report the mean and standard deviation of
balanced accuracy and the macro-averaged F1 score.

3. Train a model using each approach and evaluate it on the hold-out set.

3

https://en.wikipedia.org/wiki/FASTA_format
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://imbalanced-learn.org/stable/


The cross-validation process enables us to compute the average and standard deviation for each fold,
providing insights into the variability of predictions across folds. The final assessment uses the entire
training dataset, leveraging its larger size for more robust evaluation.

If computational resources are a constraint, consider applying 5-fold stratified cross-validation as an
alternative to the 10-fold approach.

Write down your observations.

5. Best k

To streamline this assignment, we will focus exclusively on the third dataset, which includes positive
examples from both TATA-box-like and non-TATA-box-like promoters. Based on your results from the
previous section, please select the most effective strategy for addressing class imbalance.

Ideally, all experiments conducted in this assignment would be integrated into a single cross-validation
framework. This approach would allow for the evaluation of potential combinations, such as random over-
sampling with specific values of k and various hyperparameters, to determine the optimal configuration.
However, to maintain simplicity, we will not implement this comprehensive procedure.

To identify the optimal value of k for k-mer encoding, employ cross-validation to evaluate values ranging
from 2 to 6. For each value of k, calculate and report the mean and standard deviation of both the
balanced accuracy and the macro-averaged F1 score.

Document your observations.

6. Hyperparameter optimization

Employing the previously utilized dataset, imbalance measure, and optimal k value, proceed with the
following analysis:

Select two traditional machine learning algorithms, such as Logistic Regression and Random Forest. For
each algorithm, identify key hyperparameters and conduct hyperparameter tuning as demonstrated in
class. Compute and report both the mean and standard deviation for the balanced accuracy and the
macro-averaged F1 score.

Determine which model and corresponding hyperparameter configuration yields the best performance.
Record and discuss your observations.

7. One-hot encoding

K-mer encoding inherently results in the loss of some sequence information. In contrast, one-hot encoding
is a prevalent method for representing categorical data. Utilizing our third sequence dataset, which
comprises positive examples from both TATA-box-like and non-TATA-box-like promoter regions, generate
a one-hot encoded representation of the data.

4



8. Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) are widely recognized as powerful deep learning models, particu-
larly in bioinformatics. It is recommended to utilize Keras with TensorFlow serving as the backend due
to its simplicity.

Typically, cross-validation experiments are conducted to optimize hyperparameters, such as the number
of layers, filters, and their respective sizes, as well as activation functions, dropout and pooling strategies,
optimizers, and regularization techniques. However, to streamline the assignment, we propose a pre-
defined architecture that is known to perform well for the given problem. This sequential architecture is
outlined as follows:

1. A one-dimensional convolutional (Conv1D) layer with 32 filters, a kernel size of 5, and a relu
activation function.

2. A max pooling 1D layer with a pool size of 2.
3. A second Conv1D layer with 32 filters, a kernel size of 5, and a relu activation function.
4. A global max pooling 1D layer.
5. A dense layer with 64 units employing the relu activation function.
6. A dropout layer with a dropout probability of 0.5.
7. A dense layer with 1 unit using a sigmoid activation function.

For this architecture, utilize binary_crossentropy as the loss function and the adam optimizer, with a
batch size of 32.

Begin by reserving 20% of the dataset for testing purposes. To determine the optimal number of training
epochs, create a plot with the loss value on the y-axis and the number of epochs on the x-axis. The plot
should display two curves: one for training loss and another for validation loss. Note that the validation
set is automatically generated by the model’s fit method using a validation_split of 10% (0.1) from
the training data. The optimal number of epochs is identified as the point where the validation loss begins
to increase, indicating potential overfitting.

Once the optimal number of epochs is established, proceed to train the model using this epoch count and
evaluate its performance on the reserved test set.

Ensure comprehensive documentation of your observations throughout the process, detailing any insights
and implications derived from the model’s performance and behavior.

9. Hyperparameter Tuning for Convolutional Networks (Optional)

Important

Our exploration represents only an initial foray into the potential applications of deep learning models
with this dataset. Numerous additional models and experimental approaches could be investigated.
Outlined below is a series of optional suggestions. While these are not required to achieve a perfect
score of 10/10, each completed experiment may earn you an additional bonus point, up to a maximum
of 2 points, representing a 20% increase in your total score.

Conduct a thorough experiment aimed at optimizing the hyperparameters of convolutional neural net-
works. Consider the following strategies:

• Adjust the number of convolutional layers to explore their impact on model performance.
• Modify the number of kernels per layer to assess how it influences feature extraction capabilities.

5

https://keras.io
https://www.tensorflow.org


• Experiment with different filter sizes to determine their effect on capturing spatial hierarchies.
• Evaluate various activation functions to identify their role in non-linear transformations.
• Alter dropout probabilities to investigate their efficacy in mitigating overfitting.

Meticulously record your findings throughout the process, and present a detailed report on the optimal
network architecture identified.

10. Long Short-Term Memory (LSTM) (optional)

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN) designed to
effectively capture temporal dependencies and long-range correlations in sequence data. However, Long
Short-Term Memory also require more resources for training.

Just like for convolutional neural networks, cross-validation experiments would be conducted to optimize
hyperparameters. However, to streamline the assignment, we propose a pre-defined architecture that is
known to perform well for the given problem. This sequential architecture is outlined as follows:

• One LSTM layer with 64 units.
• One dense layer with 32 units and relu activation function.
• One Dropout layer with dropout probability 0.5.
• One dense layer with one unit and sigmoid activation function.

For this architecture, utilize binary_crossentropy as the loss function and the adam optimizer, with a
batch size of 32.

Begin by reserving 20% of the dataset for testing purposes. To determine the optimal number of training
epochs, create a plot with the loss value on the y-axis and the number of epochs on the x-axis. The plot
should display two curves: one for training loss and another for validation loss. Note that the validation
set is automatically generated by the model’s fit method using a validation_split of 10% (0.1) from
the training data. The optimal number of epochs is identified as the point where the validation loss begins
to increase, indicating potential overfitting.

Once the optimal number of epochs is established, proceed to train the model using this epoch count and
evaluate its performance on the reserved test set.

Ensure comprehensive documentation of your observations throughout the process, detailing any insights
and implications derived from the model’s performance and behavior.

11. Embedding (optional)

Embedding is a technique used to convert discrete data, such as words or sequences, into continuous vec-
tor spaces, facilitating their use in machine learning models. When applied to protomer DNA sequence
recognition, embeddings transform these sequences into dense vectors that capture syntactic and seman-
tic information. This enables models to identify patterns and relationships within the sequences more
effectively, enhancing their ability to recognize and differentiate specific protomer sequences.

You can either train your own embedding or use a pre-trained embedding.

6



12. Cross-Species (optional)

We have demonstrated the capability to train a single model using positive examples originating from two
distinct promoter categories: TATA-box-like and non-TATA-box-like. An intriguing avenue for further
investigation would be to assess the cross-species applicability of such a model. Specifically, evaluating
whether a model trained on data from species a can be effectively utilized to analyze corresponding
data from species b could significantly enhance our ability to interpret genomic information from newly
sequenced species.

Essentially, this means filling a table like this one where the row indicate the species used for training
and the column the species used for testing.

Arabidopsis Mouse Human Bacilus E. coli
Arabidopsis
Mouse
Human
Bacilus
E. coli

Each cell needs to contain the balanced accuracy and macro-averaged F1 score.

Evaluation Criteria

The report, which is your Jupyter Notebook, should comprehensively document the entire process followed
during this assignment. The Jupyter Notebook must include the following:

• Your name, student number, and a report title.
• A section for each step, containing the relevant Python code and explanations or results.

– For sections requiring Python code, include the code in a cell.
– For sections requiring explanations or results, include these in a separate cell or in combination

with code cells.

• Ensure logical separation of code into different cells. For example, the definition of a function should
be in one cell and its execution in another. Avoid placing too much code in a single cell to maintain
clarity and readability.

• The notebook you submit must include the results of the execution, complete with graphics, ensuring
that the teaching assistant can grade the notebook without needing to execute the code.

Resources

If you do use AI assistance, thoroughly document your interactions. Include the tools and their versions
in your report, along with a transcript of all interactions. Most AI assistants keep a record of your
conversations. The recommended practice is to create a new conversation specifically for the presentation
and consistently reuse this conversation throughout your work on the presentation. Ensure that this
conversation is solely dedicated to the presentation. Submit this conversation transcript in the reference
section of your summary.

7



Questions

• You may ask your questions in the Assignment topic of the discussion forum on Brightspace.

• Alternatively, you can email the teaching assistant. However, using the forum is strongly preferred,
as it allows your fellow students to benefit from the questions and the corresponding answers pro-
vided by the teaching assistants.

References

Umarov, Ramzan Kh, and Victor V Solovyev. 2017. “Recognition of Prokaryotic and Eukaryotic Pro-
moters Using Convolutional Deep Learning Neural Networks.” Edited by Igor B Rogozin. PLoS ONE
12 (2): e0171410. https://doi.org/10.1371/journal.pone.0171410.

8

https://doi.org/10.1371/journal.pone.0171410

	bullseye Learning Objectives
	calendar Submission
	upload Deliverable
	1. Jupyter Notebook
	2. Data Encoding
	3. Datasets
	4. Class Imbalance
	5. Best k
	6. Hyperparameter optimization
	7. One-hot encoding
	8. Convolutional neural networks (CNNs)
	9. Hyperparameter Tuning for Convolutional Networks (Optional)
	10. Long Short-Term Memory (LSTM) (optional)
	11. Embedding (optional)
	12. Cross-Species (optional)

	check-circle Evaluation Criteria
	comment Resources
	question-circle Questions
	book References

