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Fundamentals of Machine Learning — Feature Engineering and Data
Imputation

This lecture is all about the data. How the amount of data might affect the outcome
of the project. How to encode the various data types encountered in bioinformatics.
How to scale the data. Finally, how to handle situations where some values are missing.

General objective :
Describe the fundamental concepts of machine learning
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Describe the different ways to encode data, distinguishing the case of
ordinal and categorical data.
Compare the different ways to scale numerical values.
Explain the approaches to handle missing values.

Reading:
Ernst, J. & Kellis, M. Large-scale imputation of epigenomic datasets for
systematic annotation of diverse human tissues. Nat Biotechnol 33, 364376
(2015).
Durham, T. J., Libbrecht, M. W., Howbert, J. J., Bilmes, J. & Noble, W. S.
PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor
Decomposition. Nature Communications 9, (2018).
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1. Preamble

2. Data
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4. Scaling

5. Pipeline

6. Missing values

7. Case study

8. Prologue
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Size does matter
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“However, these results suggest
that we may want to reconsider
the trade-off between spending
time and money on algorithm
development versus spending it
on corpus development
algorithms themselves.”
Banko, M. & Brill, E. Scaling to
very very large corpora for natural
language disambiguation.
Association for Computational
Linguistics, 2001.



The Unreasonable Effectiveness of Data
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Halevy, A., Norvig, P. & Pereira, F. The Unreasonable Effectiveness of Data.
IEEE Intelligent Systems 24, 812 (2009).
https://youtu.be/yvDCzhbjYWs (01:02:56)

https://youtu.be/yvDCzhbjYWs
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“[Y]our training data be representative of the new cases you want to
generalize to.” [1]

Can a classifier trained on mouse data be applied on human data?
Ideally, the distribution of the training data and that of the future
applications should be similar.

Learning algorithms learn best on balanced data sets.
Real-world data might be highly skewed (billions of positions along the
genome, few transcriptions start sites).

Sampling bias

Experiment methods might produce more errors for certain parts of the
genome: highly repetitive regions, regions where the DNA is tightly packed.

Poor quality: some experimental methods produce a high number of false
positive (protein-protein interactions, ChIP-Seq, etc.).
A large number of irrelevant features might confuse the learning algorithms.
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Feature Engineering
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1. Get enough data
2. Extract features from the raw data

Labour intensive
Requires creativity
Domain knowledge is a plus!



Feature engineering - sequence information
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Some learning algorithms require the data to be represented as numerical values.
DNA sequences are made of four letters, A, C, G, T.

Consider the following representations, which one do you prefer and why?

1. A = 0, C = 1, G = 2, T = 3
2. A = [0,0], C = [0,1], G = [1,0], T = [1,1]
3. A = [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1]

The latter is called one-hot encoding and it should be preferred for
categorical data.
This increases the dimensionality of the feature vectors.
The other encodings are introducing a bias. With the first two encodings,
we are saying that A and C are somewhat similar, but A and T are not!
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Some learning algorithm requires the data to be represented as numerical values.
DNA sequences are made of four letters, A, C, G, T.

From assignment 1, we have seen that sequences can be represented by
l-words (grams) frequency vectors.
Compare one-hot and l-words.
Later in the semester, we will consider an additional encoding called
embedding.
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from numpy import a r r a y
from s k l e a r n . p r e p r o c e s s i n g import OneHotEncoder

data = [ ’T ’ , ’T ’ , ’C ’ , ’T ’ , ’G ’ , ’G ’ , ’C ’ , ’A ’ , ’C ’ , ’T ’ , ’T ’ , ’G ’ ]

v a l u e s = a r r a y ( data )
v a l u e s = v a l u e s . r e shape ( l en ( v a l u e s ) , 1 )

onehot_encoder = OneHotEncoder ( )
onehot_encoder . f i t ( v a l u e s )

va lues_encoded = onehot_encoder . t r a n s f o r m ( v a l u e s )

p r i n t ( va lues_encoded . t o a r r a y ( ) )

Save the encoding and use on your validation set, test set, and production!



keras.utils.to_categorical
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import numpy as np
from s k l e a r n . p r e p r o c e s s i n g import Labe lEncode r
from k e r a s . u t i l s import t o _ c a t e g o r i c a l

data = [ ’T ’ , ’T ’ , ’C ’ , ’T ’ , ’G ’ , ’G ’ , ’C ’ , ’A ’ , ’C ’ , ’T ’ , ’T ’ , ’G ’ ]

v a l u e s = a r r a y ( data )
v a l u e s = v a l u e s . r e shape ( l en ( v a l u e s ) , 1 )

l a b e l _ e n c o d e r = Labe lEncode r ( )
i n t ege r_encoded = l a b e l _ e n c o d e r . f i t _ t r a n s f o r m ( v a l u e s )

data_encoded = t o _ c a t e g o r i c a l ( i n t ege r_encoded )

p r i n t ( data_encoded )



pandas.get_dummies
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import pandas as pd

data = l i s t ( ’TTCTGGCACTTGGTTGTTCT ’ )

onehot_encoded = pd . get_dummies ( pd . S e r i e s ( data ) )

p r i n t ( onehot_encoded )

A C G T
0 0 0 0 1
1 0 0 0 1
2 0 1 0 0
3 0 0 0 1
4 0 0 1 0
5 0 0 1 0
...



Feature engineering - ordinal
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Categorical data should not be encoded with ordered numbers.
Ordinal data can be encoded with ordered numbers.

Resolution: Poor = 1, Average = 2, Good = 3, Excellent = 4



Feature engineering - binning
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Occasionally, you might want to regroup ordinal values into bins (buckets).

Start position:
1 to 20 = n-terminal, -1 to -20 = c-terminal, otherwise = core.
Pros: might allow the algorithm to learn using less training examples.
Cons: could require domain expertise to create meaningful categories might
fail to generalize, perhaps n-terminal should have been defined as 1 to 21, 1
to 22, etc.
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Normalization
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Many learning algorithms work best if the numerical values of the features
have similar range of values, say [-1,1] or [0,1].

Namely, the optimization (say gradient descent) may converge more rapidly.

Normalization:
x (j)

i − min(j)

max(j) − min(j)

See: sklearn.preprocessing.MinMaxScaler



Standardization (or z-score normalization)
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With standardization, each feature has a normal distribution, with µ = 0 and σ = 1.

x (j)
i − µ(j)

σ(j)

Note that the range of values is not bounded!

See: sklearn.preprocessing.StandardScaler



Normalization or standardization?
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Treat scaling as a hyperparameter, try both, normalization and
standardization.
Standardization should be less affected by outliers than normalization.
Do you see why?
According to [2] §5, in general:

Use standardization with unsupervised learning
Use standardization if the values of the features are normally distributed
If there are outliers use standardization, see above.
Else, use normalization
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Recall
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As discussed in Essential Bioinformatics skills, write scripts for everything!
It documents your project
This allows to redo the work
With time, you will be building a reusable library of functions for your
specific domain
As new data become available, you will be able to retrain your learning
algorithm



sklearn.pipeline.Pipeline
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from s k l e a r n . p i p e l i n e import P i p e l i n e
from s k l e a r n . p r e p r o c e s s i n g import S t a n d a r d S c a l e r

num_pipe l ine = P i p e l i n e ( [
( ’ impute r ’ , S imp l e Impute r ( s t r a t e g y=" median " ) ) ,
( ’ a t t r i b s _ a d d e r ’ , Comb inedAtt r ibute sAdder ( ) ) ,
( ’ s t d _ s c a l e r ’ , S t a n d a r d S c a l e r ( ) ) ,
] )

t ra in ing_num_tr = num_pipe l ine . f i t _ t r a n s f o r m ( t ra in ing_num )

f u l l _ p i p e l i n e = ColumnTransformer ( [
( "num" , num_pipe l ine , num_att r ibs ) ,
( " ca t " , OneHotEncoder ( ) , [ " sequence " ] ) ,

] )

t r a i n i n g _ p r e p a r e d = f u l l _ p i p e l i n e . f i t _ t r a n s f o r m ( t r a i n i n g )
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Missing values

Missing values 27/51

What can you do or should you do if some values are missing?

DNase sensitivity footprinting data is not available for a particular cell line.
You can drop examples for which data is missing.

Can only be done if the data set is large enough and this will not impact
the outcome of the project.

You could drop features for which data is missing.

Can only be done if this will not impact the outcome of the project.

Use a learning algorithm that handles missing data, say XGBoost.

Not always feasible, sklearn.linear_model.LinearRegression would throw an
exception.

Data imputation
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Data imputation

Missing values 28/51

Data imputation is the process of replacing the missing values by
computed values.

Replace the missing values by the mean or median value for that feature
(column).

1
N

N∑
i=1

x (j)
i

from s k l e a r n . impute import S imp le Impute r
impute r = S imp le Impute r ( s t r a t e g y=" median " )

X = impute r . t r a n s f o r m ( t ra in ing_num )

Cons: ignores correlations (complex relationships) between features!

A related technique consists of replacing the missing values by the most
frequent value for that feature, with the same drawback as above.
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Data imputation is the process of replacing the missing values by
computed values.

Replace the missing values with a value outside of the normal range,
assuming that your data has been normalized, range [0,1], use -1 or 2 as a
special value.

Here, you are hoping that the learning algorithm will learn how to handle
missing values.
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Data imputation is the process of replacing the missing values by
computed values.

Replace the missing values with a value in the middle of the normal
range, assuming that your data is distributed in the range [-1,1], use 0.
For categorical data, use small non-zero numerical values.

Say [0.25, 0.25, 0.25, 0.25] where you would have used [1, 0, 0, 0] for A, [0, 1,
0, 0] for C, [0, 0, 1, 0] for G, [0, 0, 0, 1] for T.

The hope is that those intermediate values will not affect too negatively the
results.

In all the cases, you cannot know in advance which method works best,
you will have compare several methods and use the one that works best.
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Data imputation is the process of replacing the missing values by
computed values.

What else can you do?
What is the problem that we are trying to solve?

Predict some unknown label for a given example.
Does this sound familiar to you?
Indeed, this can be seen as a supervised learning problem.
Let x̂i be a new example, [x (1)

i , x (2)
i , x (j−1)

i , x (j+1)
i , . . . , x (D)

i ] and ŷi = x j
i .

Use all the examples xi for which x j
i is not missing as training set.

Train a classifier, which you will use the predict (impute) the missing values.
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Data imputation is the process of replacing the missing values by
computed values.

Using a learning algorithm:

1. Use an instance-based method such k nearest neighbours (k-NN) to find
the k closest examples. Use the non-missing value from the neighbourhood.

2. Use a model-based method such as random forest, tensor decomposition,
or deep neural networks.

Why?

These approaches can potentially handle complex relationships
(correlations) between features!
However, these approaches are cost intensive (labour, CPU time, memory,
etc.).
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What is epigenetics?
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https://youtu.be/_aAhcNjmvhc

https://youtu.be/_aAhcNjmvhc


What is epigenetics?
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“Chemical compounds that are added to
single genes can regulate their activity;
these modifications are known as epigenetic
changes.”

“The epigenome comprises all of the
chemical compounds that have been added
to the entirety of ones DNA (genome) as a
way to regulate the activity (expression) of
all the genes within the genome.”
“The chemical compounds of the epigenome
are not part of the DNA sequence, but are
on or attached to DNA (epi- means above
in Greek).”

Source: https://ghr.nlm.nih.gov/primer/howgeneswork/epigenome

https://ghr.nlm.nih.gov/primer/howgeneswork/epigenome
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What is epigenetics?
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“(. . . ) a change in phenotype without a change in genotype (. . . )”

https://www.whatisepigenetics.com/fundamentals/

https://www.whatisepigenetics.com/fundamentals/


ENCODE
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https://www.encodeproject.org

https://www.encodeproject.org


ENCODE - Assays
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https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001046

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001046


ENCODE - Conceptually
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https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001046

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001046


ENCODE - Cell types/lines
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https://www.nature.com/articles/nature14248

https://www.nature.com/articles/nature14248


ENCODE - Matrix

Case study 41/51

From W. S. Noble’ talk:
359 assay types
583 cell types
Theoretically: 209,297 pairs!
5,707 experiments have been done
The matrix is less than 5 %
complete

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001046

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001046


ENCODE - 3D Matrix
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For every assay (359)
For every cell line (583)

For every position (3.2 Gbp)

Durham, T. J., Libbrecht, M. W., Howbert, J. J., Bilmes, J. & Noble, W. S.
PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor
Decomposition. Nature Communications 9, (2018).



ENCODE - Data imputation

Case study 43/51

Ernst, J. & Kellis, M. Large-scale imputation of epigenomic datasets for
systematic annotation of diverse human tissues. Nat Biotechnol 33, 364376
(2015).
Durham, T. J., Libbrecht, M. W., Howbert, J. J., Bilmes, J. & Noble, W. S.
PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor
Decomposition. Nature Communications 9, (2018).
Schreiber, J. Durham, T., Bilmes, J., and Noble, W. S. Multi-scale deep
tensor factorization learns a latent representation of the human epigenome.
bioRxiv, 2018.



William Noble - IPAM 2018
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https://youtu.be/JzSf5AU9VVc (46:13)

Durham, T. J., Libbrecht, M. W., Howbert, J. J., Bilmes, J. & Noble, W. S.
PREDICTD PaRallel Epigenomics Data Imputation with Cloud-based Tensor
Decomposition. Nature Communications 9, (2018).
Schreiber, J. Durham, T., Bilmes, J., and Noble, W. S. Multi-scale deep
tensor factorization learns a latent representation of the human epigenome.
bioRxiv, 2018.

https://youtu.be/JzSf5AU9VVc
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The amount of data might be more important than the learning algorithm
itself.

Categorical data can be encoded using the one-hot encoding.
Consider scaling the data
Write scripts
We have seen several approaches for handling missing values
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Next module
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Dimensionality reduction, feature selection and unsupervised
learning.
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