CSI5180. Machine Learning for Bioinformatics Applications

Fundamentals of Machine Learning — tasks and performance metrics

Marcel Turcotte

Version November 6, 2019

Preamble

Fundamentals of Machine Learning — tasks and performance metrics

In this lecture, we introduce concepts that will be essential throughout the semester: the types of machine learning tasks, the representation of the data, and the performance metrics.

General objective :

Describe the fundamental concepts of machine learning

Learning objectives

- Discuss the type of tasks in machine learning
- Present the data representation
- Describe the main metrics used in machine learning

Reading:

- Larranaga, P. et al. Machine learning in bioinformatics. *Brief Bioinform* 7:86112 (2006).
- Olson, R. S., Cava, W. L., Mustahsan, Z., Varik, A. & Moore, J. H. Data-driven advice for applying machine learning to bioinformatics problems. *Pac Symp Biocomput* 23:192203 (2018).

1. Preamble

2. Introduction

3. Evaluation

4. Prologue

Barbara Engelhardt, TEDx Boston 2017

Not What but Why: Machine Learning for Understanding Genomics

https://youtu.be/uC3SfnbCXmw

Introduction

Concepts

(http://www.site.uottawa.ca/~turcotte/teaching/csi-5180/lectures/04/01/ml_concepts.pdf)

- Tom M Mitchell. *Machine Learning*. McGraw-Hill, New York, 1997.
 - "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Scikit-Learn Cheat Sheet

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

Supervised learning

- Supervised learning is the most common type of learning.
- The **data set** ("experience") is a collection of **labelled** examples.
 - $\{(x_i, y_i)\}_{i=1}^N$
 - Each x_i is a **feature (attribute) vector** with D dimensions.
 - $x_k^{(j)}$ is the value of the **feature** *j* of the example *k*, for $j \in 1...D$ and $k \in 1...N$.
 - The label y_i is either a class, taken from a finite list of classes, {1, 2, ..., C}, or a real number, or a more complex object (vector, matrix, tree, graph, etc).
- Problem: given the data set as input, create a "model" that can be used to predict the value of y for an unseen x.

Supervised learning - an example

Prediction of Chemical Carcinogenicity in Human

- Input is a list of chemical compounds with information about their carcinogenicity.
 - Each compound is represented as a feature vector: electrogegativity, octanol-water partition, molecular weight, Pka, volume, dipole, etc.

Label

- **Classification**: $y_i \in \{\text{Carcinogenic}, \text{Not carcinogenic}\}$
- **Regression**: *y_i* is a real number

See: http://carcinogenome.org

Unsupervised learning

- **Unsupervised learning** is often the first in a new machine learning project.
- The data set ("experience") is a collection of unlabelled examples.
 - $\{(x_i)\}_{i=1}^N$
 - Each x_i is a **feature (attribute) vector** with *D* dimensions.
 - [▶] $x_k^{(j)}$ is the value of the **feature** *j* of the eample *k*, for *j* ∈ 1...*D* and *k* ∈ 1...*N*.
- Problem: given the data set as input, create a "model" that capture relationships in the data. In clustering, the task is to assign each example to a cluster. In dimensionality reduction, the task is to reduce the number of features in the input space.

Unsupervised learning - problems

Clustering

K-Means, DBSCAN, hierarchical

Anomaly detection

One-class SVM

Dimensionality reducation

 Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE) Biomarker discovery - identifying breast cancer subtypes.

- Input: gene expression data for a large number of genes and a large number of patients. The data is labelled with information about the breast cancer subtype.
- It would be unpractical to devise a diagnostic test relying on a large number of genes (biomarkers).
- Problem: identify a subset of genes (features), such that the expression of those genes alone can be used to create a reliable classifier.
 - > PAM50 is a group of 50 genes used for breast cancer subtype classification.

- The data set ("experience") is a collection of labelled and unlabelled examples.
 - Generally, the are many more unlabelled examples than labelled examples. Presumably, the cost of labelling examples is high.
- Problem: given the data set as input, create a "model" that can be used to predict the value of y for an unseen x. The goal is the same as for supervised learning. Having access to more examples is expected to help the algorithm.

- In reinforcement learning, the agent "lives" in an environment.
- The **state** of the environment is represented as a feature vector.
- The agent is capable of actions that (possibly) change the state of the environment.
- Each action brings a **reward** (or punishment).
- Problem: learn a policy (a model) that takes as input a feature vector representing the environment and produce as output the optimal action the action that maximizes the expected average reward.

ML for bioinformatics

- In industry, ML is often used where hand-coding programs is complex/tedious.
 - Think about optical caracter recognition, image recognition, or driving an autonomous vehicle.
- In a related way, ML is advantageous for situations where the conditions/environment keeps changing.
 - Detecting/filtering spam/junk mail.
- In **bioinformatics**, the emphasis might be on the following:
 - Solving complex problems for which no satisfactory solution exists;
 - As part of the discovery process, extracting trends/patterns, leading to a better understanding of some problem.

Here is **bibliography of machine learning for bioinformatics**, in **BibTeX** format as well as **PDF**.

Evaluation

Evaluating Learning Algorithms

Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: a classification perspective. Cambridge University Press, Cambridge, 2011.

Words of caution

- Sound evaluation protocol
- The **right** performance measure
- We focus on classification problems since regression is often evaluated using simple measures, such as root mean square deviation

Source: Géron 2019, Figure 1.19

Confusion matrix - binary classification

		Predicted		
		Negative Positive		
Actual	Negative	True negative (TN)	False positive (FP)	
	Positive	False negative (FN)	True positive (TP)	

In statistics, FP is often called type I errors, whereas FN is often called type II errors

Confusion matrix - binary classification

		Predicted		
		Negative Positive		
Actual	Negative	True negative (TN)	False positive (FP)	
	Positive	False negative (FN)	True positive (TP)	

- In statistics, FP is often called type I errors, whereas FN is often called type II errors
- The confusion matrix contains all the necessary information to evaluate our result.

Confusion matrix - binary classification

		Predicted		
		Negative Positive		
Actual	Negative	True negative (TN)	False positive (FP)	
	Positive	False negative (FN)	True positive (TP)	

- In statistics, FP is often called type I errors, whereas FN is often called type II errors
- The confusion matrix contains all the necessary information to evaluate our result.
- More concise metrics, such as accuracy, precision, recall, or F₁ score, are often more intutive to use.

sklearn.metrics.confusion_matrix

from sklearn.metrics import confusion_matrix

```
y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 1, 1, 0, 0, 0, 1, 1, 1, 1]
```

```
confusion_matrix(y_actual,y_pred)
```

array([[1, 2], [3, 4]])

tn, fp, fn, tp = confusion_matrix(y_actual, y_pred).ravel()
(tn, fp, fn, tp)

(1, 2, 3, 4)

Perfect prediction

from sklearn.metrics import confusion_matrix

```
y_actual = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]
y_pred = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]
```

```
confusion_matrix(y_actual,y_pred)
```

array([[4, 0], [0, 6]])

tn, fp, fn, tp = confusion_matrix(y_actual, y_pred).ravel()
(tn, fp, fn, tp)

(4, 0, 0, 6)

How acccurate is this result?

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

0.5

Accuracy is the proportion of (all) your predictions that are correct

sklearn.metrics.accuracy_score

```
y_actual = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]

y_pred = [1, 0, 1, 1, 0, 0, 0, 1, 0, 0]

print(accuracy_score(y_actual, y_pred))
```

0.0

```
y_actual = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]

y_pred = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1]

print(accuracy_score(y_actual, y_pred))
```

1.0

 $y_actual = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0]$ $y_pred = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$ $print(accuracy_score(y_actual, y_pred))$

What is the acccury score?

 $y_actual = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0]$ $y_pred = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$ $print(accuracy_score(y_actual, y_pred))$

What is the acccury score?
 (0+8)/10 = 0.8

```
y_actual = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0]

y_pred = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

print(accuracy_score(y_actual,y_pred))
```

- What is the acccury score?
 - ♦ (0+8)/10 = 0.8
- Why is it problematic?

 $precision = \frac{TP}{TP + FP}$

0.666666666666666

Precision is the proportion of your positive predictions that are correct

```
y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]

y_pred = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

print(precision_score(y_actual, y_pred))
```

Given the above example, what is the precision score?

```
y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]

y_pred = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

print(precision_score(y_actual, y_pred))
```

Given the above example, what is the precision score?
1/(1+0) = 1.0

```
y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]

y_pred = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

print(precision_score(y_actual, y_pred))
```

Given the above example, what is the **precision score**?

1/(1+0) = 1.0

Why is it problematic?

```
y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 0, 0, 0, 0, 0, 1, 0, 0]
```

```
print(precision_score(y_actual,y_pred))
```

- Given the above example, what is the **precision score**?
 - ↓ 1/(1+0) = 1.0
- Why is it problematic?
 - One could select a small number of high confidence predictions and get a high precision score, but that might not be useful.

Recall (sensitivity or true positive rate (TPR))

$$\text{recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

```
from sklearn.metrics import recall_score
y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 1, 1, 0, 0, 0, 1, 1, 1, 1]
print(recall_score(y_actual,y_pred))
```

0.5714285714285714

Recall is the proportion of the true positive that are correctly predicted

$$F_{1} \text{ score} = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{\text{TP}}{\text{FP} + \frac{\text{FN} + \text{FP}}{2}}$$

```
from sklearn.metrics import f1_score
y_actual = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 1, 1, 0, 0, 0, 1, 1, 1, 1]
print(f1_score(y_actual,y_pred))
```

0.6153846153846153

F₁ is the harmonic mean of precision and recall

Remarks

- The harmonic mean gives more weight to low values, whereas the arithmetic mean treats all the values equally.
- **F**₁ score favours classifiers having similar precision and recall.
- Depending on the specific problem, one might want to put more weight on one metric or the other.
 - Imagine classifier producing a list of candidates to be validated experimentally, say a list of RNA molecules having a specific motif will be packaged in exosomes.
 - A classifier having a high recall might produce a long list of motifs. However, creating a large collection of **knockout** molecules might be expensive.
- Increasing recall often occurs at the expense of lowering precision, and vice-versa. This called the precision/recall trade-off.

Precision/recall trade-off

Figure 3-3. In this precision/recall trade-off, images are ranked by their classifier score, and those above the chosen decision threshold are considered positive; the higher the threshold, the lower the recall, but (in general) the higher the precision

Source: Géron 2019, Figure 3.3

Precision/recall trade-off

Source: Géron 2019, Figure 3.5

Receiver Operating Characteristics (ROC) curve

True positive rate (TPR) against false positive rate (FPR)

		Predicted		
		Negative Positive		
Actual	Negative	True negative (TN)	False positive (FP)	
	Positive	False negative (FN)	True positive (TP)	

- True positive rate (TPR) against false positive rate (FPR)
- An ideal classifier has **TPR** close to **1.0** and **FPR** close to **0.0**

		Predicted		
		Negative Positive		
Actual	Negative	True negative (TN)	False positive (FP)	
	Positive	False negative (FN)	True positive (TP)	

- True positive rate (TPR) against false positive rate (FPR)
- An ideal classifier has **TPR** close to **1.0** and **FPR** close to **0.0**
- $TPR = \frac{TP}{TP+FN}$ (recall)

		Predicted	
		Negative	Positive
Actual	Negative	True negative (TN)	False positive (FP)
	Positive	False negative (FN)	True positive (TP)

- True positive rate (TPR) against false positive rate (FPR)
- An ideal classifier has **TPR** close to **1.0** and **FPR** close to **0.0**
- **T** $PR = \frac{TP}{TP+FN}$ (recall)
- **TPR** approaches **one** when the number of **false negative** predictions is low

		Predicted	
		Negative	Positive
Actual	Negative	True negative (TN)	False positive (FP)
	Positive	False negative (FN)	True positive (TP)

- True positive rate (TPR) against false positive rate (FPR)
- An ideal classifier has **TPR** close to **1.0** and **FPR** close to **0.0**
- **T** $PR = \frac{TP}{TP+FN}$ (recall)
- **TPR** approaches **one** when the number of **false negative** predictions is low

•
$$FPR = \frac{FP}{FP+TN}$$
 (a.k.a. [1-specificity])

		Predicted	
		Negative	Positive
Actual	Negative	True negative (TN)	False positive (FP)
	Positive	False negative (FN)	True positive (TP)

- True positive rate (TPR) against false positive rate (FPR)
- An ideal classifier has **TPR** close to **1.0** and **FPR** close to **0.0**
- **T** $PR = \frac{TP}{TP+FN}$ (recall)
- **TPR** approaches **one** when the number of **false negative** predictions is low
- $FPR = \frac{FP}{FP+TN}$ (a.k.a. [1-specificity])
- **FPR** approaches **zero** when the number of **false positive** is low

		Predicted	
		Negative	Positive
Actual	Negative	True negative (TN)	False positive (FP)
	Positive	False negative (FN)	True positive (TP)

Source: Géron 2019, Figure 3.6

from sklearn.metrics import roc_curve

fpr , tpr , thresholds = roc_curve(y_actual , y_pred_scores)

Area Under the Curve (AUC)

Source: Géron 2019, Figure 3.7

from sklearn.metrics import roc_auc_score

roc_auc_score(y_actual, y_pred_scores)

- SGD has an AUC of 0.9611778893101814
- Random Forest has an AUC of 0.9983436731328145

AUC/Bioinformatics

Zhou, Y.-H. & Gallins, P. A Review and Tutorial of Machine Learning Methods for Microbiome Host Trait Prediction. *Front Genet* 10, 579 (2019).

Unsupervised and supervised learning are the two main types of tasks in machine learning. Other types include semi-supervised learning and reinforcement learning.

- Unsupervised and supervised learning are the two main types of tasks in machine learning. Other types include semi-supervised learning and reinforcement learning.
- Supervised learning uses **labelled** examples.

- Unsupervised and supervised learning are the two main types of tasks in machine learning. Other types include semi-supervised learning and reinforcement learning.
- Supervised learning uses labelled examples.
 - When the label is a class (or a complex object, such as a matrix or a graph), the learning task is called classification. Given some unseen example x predict its lable y.

- Unsupervised and supervised learning are the two main types of tasks in machine learning. Other types include semi-supervised learning and reinforcement learning.
- Supervised learning uses labelled examples.
 - When the label is a class (or a complex object, such as a matrix or a graph), the learning task is called classification. Given some unseen example x predict its lable y.
 - When the label is a real number, the task is called **regression**.

- Unsupervised and supervised learning are the two main types of tasks in machine learning. Other types include semi-supervised learning and reinforcement learning.
- Supervised learning uses labelled examples.
 - When the label is a class (or a complex object, such as a matrix or a graph), the learning task is called classification. Given some unseen example x predict its lable y.
 - When the label is a real number, the task is called **regression**.
- A **confusion matrix** describes the performance of (classification) learning algorithm.

- Unsupervised and supervised learning are the two main types of tasks in machine learning. Other types include semi-supervised learning and reinforcement learning.
- Supervised learning uses labelled examples.
 - When the label is a class (or a complex object, such as a matrix or a graph), the learning task is called classification. Given some unseen example x predict its lable y.
 - When the label is a real number, the task is called **regression**.
- A **confusion matrix** describes the performance of (classification) learning algorithm.
 - Performance measure such as accuracy, precision, recall, and F_a summarize different aspects of the confusion matrix.

- Unsupervised and supervised learning are the two main types of tasks in machine learning. Other types include semi-supervised learning and reinforcement learning.
- Supervised learning uses labelled examples.
 - When the label is a class (or a complex object, such as a matrix or a graph), the learning task is called classification. Given some unseen example x predict its lable y.
 - When the label is a real number, the task is called **regression**.
- A **confusion matrix** describes the performance of (classification) learning algorithm.
 - Performance measure such as accuracy, precision, recall, and F_a summarize different aspects of the confusion matrix.
- ROC curves allow to visualize the TPR vs FPR tradeoff, whereas AUC is useful to compare multiple algorithms or hyperparameters combinations.

Training learning algorithms

References

Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: a classification perspective. Cambridge University Press, Cambridge, 2011.

Aurélien Géron.

Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, 2nd edition, 2019.

Andriy Burkov.

The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

Tom M Mitchell.

Machine Learning. McGraw-Hill, New York, 1997.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS) University of Ottawa