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Hidden Markov Models

In this lecture, we focus on learning algorithms suited for sequence (string) input
data. In particular, we study Hidden Markov Models. First, we introduce Markov
processes and Markov chains. Next, using the example of the occasionally dishonest
casino, we discern the concept of hidden variables. The presentation puts the
emphasis on the graphical nature of these models. We use the example of a gene
finder algorithm as running example.

General objective :
Explain the concepts related to Hidden Markov Models.
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Discuss the properties of a Markovian process
Explain the concept of hidden (latent) variables
Describe Hidden Markov Models
Name the important problems (questions) solved by HMM

Reading:
Sean R Eddy. What is a hidden Markov model? Nat Biotechnol
22(10):13156, Oct 2004.
Byung-Jun Yoon. Hidden Markov Models and their applications in biological
sequence analysis. Curr Genomics 10(6):40215, Sep 2009.
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Gene structure in eukaryotes - the input
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GAATTCTATATAAATAAGTATTAAATTCTGGTTAAAATATAGAAAAAATAGAATTAGATT
CAATGATATCTAATAACATACCAAGGAGTAAAGGACTAATTGAGGATGACTAGTCATTCT
ATAATTGGAAGCACGAATGAGGCTAAAAGAATGATAGTATGTTGTTCGATTCCAAAGGTG
AAAACCAAAGACGGAGAATTCTTATGGAGTCCTGTCTATTTTTATTAACCCTGTGAATTG
AAACATCTTAGTAACAGGAGGAAAAGAAATCAACCGAGATTTTAACGAGTAGTGGCGAGC
GAAAGTAAATGAAAACATTCATGTTTTGATCCGAAATATCTTATCGATGTTTCGATTTTT
TCAAAGACCCCGTACCGGGTCTTGGGGCATGTCTGAAATTGAACATCACACACTTACCCA
TGATAAAGGAGATGGTTTGGATCTTCGATTCTACCATTTTCAGGCAGTGTGTTTATGGAA
TGGGTGGCCAAAGAAGGTGAAAGTCCTGTAAATTTCAGTAGTAGACCACTTATGGAGTAG
AACGAATTTTGTTCAGAAGAAAGGGGTACCATCCTCTAATAAATTAAATATGATAGAATG
AACGATAGTGAAGAGTACCGTGAGGGAAAGTTGAAAAGTACCTCTAAGAGAACGAAGCCT
TCCGAGGCTTCGAATATCAATGCCGGAGGGGTGAAATAGATCCTGAATCAGTTAAGTCTA
AAAGCAGTTTGAGCCAAGATTATGGTGAAGACGTACCTTTTGCATAATGGGTCAGCAAGT
TAATTTTTGGAGCAAGAGAACAAAAGAACGTATCTTTGGTACGTTGGTGATCTAAGTGAA
AACAAAAGAACAAAGTGAGACTTAGTCTTACCCCTATACATAATTTTGCACTCAGTGTGA
CATGGCCAGGTGTAAGACCGA(...52,624,944...)ATCGTAGTAATGCTCTCCGAT
AAGAATCATTGATTCTTCGGACCCACATGGGTACCCATACTCCCCCCAAATGA



Gene structure in eukaryotes
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Regulatory sequence                                Regulatory sequence                    

           Promoter                    
           Enhancer                    
           /silencer                    

           Terminator                    

       Open reading frame                       5’UTR                                3’UTR                    

           Start                                Stop                    

           Enhancer                    
           /silencer                    

           Transcription                    

           modification                    

           Translation                    

           Pre­                    
           mRNA                    

           Protein                    

           DNA                    

           Mature                    

           Post­transcription                    

           mRNA                    

       Core                   Proximal            

             Exon                        
             Intron                                     Intron                        

             Exon                                     Exon                        

         Protein coding region                
             Poly­A tail                                 5'cap                

Source: Thomas Shafee (https://commons.wikimedia.org/wiki/File:Gene_structure_eukaryote_2_annotated.svg)

https://commons.wikimedia.org/wiki/File:Gene_structure_eukaryote_2_annotated.svg
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The gene structure comprises several elements, including a transcription
start site, a 5’ untranslated region (5’ UTR), an open reading frame
(ORF), a 3’ untranslated region (3’ UTR).

Upstream of the gene, there is a regulatory sequence comprising enhancers,
silencers, and a promotor.
In eukaryotes, genes are made coding segments, called exons, and
non-coding segments, called introns, that need to be removed (spliced)
prior to translation.
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Gene finding/prediction
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Problem: identifying the segments of DNA that are making up
protein-coding genes.

This can be seen as segmentation and labelling of the DNA sequence.
A Hidden Markov Model allows representing and integrate these elements
into one model. Furthermore, these models have been shown to be effective.
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GENSCAN
C Burge and S Karlin. Prediction of complete gene structures in human
genomic DNA. J Mol Biol 268(1):7894, Apr 1997.

GENIE
Kulp, D., Haussler, D., Reese, M. G. & Eeckman, F. H. A generalized hidden
Markov model for the recognition of human genes in DNA. ISMB
International Conference on Intelligent Systems for Molecular Biology 4,
134142 (1996).

HMMGENE
Krogh, A. Two methods for improving performance of an HMM and their
application for gene finding. ISMB International Conference on Intelligent
Systems for Molecular Biology 5, 179186 (1997).
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Other applications include:
1. Modelling pairwise and multiple sequence alignments
2. Protein secondary structure prediction
3. Modelling transmembrane proteins
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Background information
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Our presentation will be informal. An entire course could be taught on Markov chains
and stochastic processes.

MAT 4374 Modern Computational Statistics
Simulation including the rejection method and importance sampling;
applications to Monte Carlo Markov chains. Resampling methods such as
the bootstrap and jackknife, with applications. Smoothing methods in curve
estimation.
MAT 5198 Stochastic Models
Markov systems, stochastic networks, queuing networks, spatial processes,
approximation methods in stochastic processes and queuing theory.
Applications to the modelling and analysis of computer-communications
systems and other distributed networks.
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Like finite state automata (FSA):

Finite Markov chains allow to model processes which can be represented by a
finite number of states.
A process can be in any of these states at a given time; for some
discrete units of time t = 0, 1, 2, . . ..
E.g. the type of nucleotide at a given position t in a sequence.
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Markov chains
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Unlike FSAs:

The transitions from one state to another are stochastic (not
deterministic).
If the current state of the process at time t is Ei then at time t + 1 either the
process stays in Ei or move to Ej , for some j , according to a well-defined
probability.
E.g. at time t + 1 the amino acid type for a given sequence position either
stays the same of is substituted by one of the remaining 19 amino acid types,
according to a well-defined probability, to be estimated.
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Markov chains
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Properties
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A (first order) Markovian process must conform to the following 2 properties:
1. Memoryless. If a process is in state Ei at time t then the probability that it

will be in state Ej at time t + 1 only depends on Ei (and not on the previous
states visited at time t ′ < t, no history). This is called a first-order
Markovian process.

2. Homogeneity of time. If a process is in state Ei at time t then the
probability that it will be in state Ej at time t + 1 is independent of t.

GAATTCTATATAAATAAGTATTAAATTCTGGTTAAAATATAGAAAAAATAGAATTAGATT

P(Xt+1 = A|Xt = T )
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Markov perperty, chain, process
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A Markov chain is a stochastic (probabilistic) model describing a
sequence of events.

Herein, we focus on discrete-time homogeneous finite Markov chain
models.
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Markov chain
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A (first order) Markov chain is a sequence of random variables

X0, . . . , Xt−1, Xt

that satisfies the following property

P(Xt = xt |Xt−1 = xt−1, Xt−2 = xt−2, . . . , X0 = x0) = P(Xt = xt |Xt−1 = xt−1)
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More generally, a m-order Markov chain is a sequence of random variables:

X0, . . . , Xt−1, Xt

that satisfies the following property

P(Xt = xt |Xt−1 = xt−1, Xt−2 = xt−2, . . . , X0 = x0)

= P(Xt = xt |Xt−1 = xt−1, . . . , Xt−m = xm)

Markov chain models are denoted Mm, where m is the order of the model, e.g. M0,
M1, M2, M3, etc. A 0-order model is known as a Bernouilli model.



Transition probabilities
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The transition probabilities, pij , can be represented graphically,

E1

E2

E3

0.4

0.4

0.8

0.6

0.1
0.6

0.1

or as a transition probability matrix,

P =

 0.8 0.1 0.1
0.6 0.4 0.0
0.6 0.0 0.4


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P =

 0.8 0.1 0.1
0.6 0.4 0.0
0.6 0.0 0.4


where pij is understood as the probability of a transition from state i (row)
to state j (column).
The values in a row represent all the transitions from state i , i.e. all
outgoing arcs, and therefore their sum must be 1.
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The framework allows answering elegantly questions such as this one, ‘‘a
Markovian random variable is in state Ei at time t, what is the
probability that it will be in state Ej at t + 2?”

For the Markovian process graphically depicted above, knowing that a
random variable is in state E2 at time t what is the probability that it
will be in state E5 at t + 2, i.e. after two transitions?
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There are exactly 3 paths of length 2 leading from E2 to E5: (E2, E2, E5),
(E2, E3, E5) and (E2, E4, E5).

The probability that (E2, E2, E5) is followed is 0.2 × 0.2 = 0.04
The probability that (E2, E3, E5) is followed is 0.1 × 0.4 = 0.04
The probability that (E2, E4, E5) is followed is 0.1 × 0.4 = 0.04
Therefore, the probability that the random variable is found in E5 at t + 2
knowing that it was in E2 at t is 0.04 + 0.04 + 0.04 = 0.12.
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There are exactly 3 paths of length 2 leading from E2 to E5: (E2, E2, E5),
(E2, E3, E5) and (E2, E4, E5).

The probability that (E2, E2, E5) is followed is 0.2 × 0.2 = 0.04
The probability that (E2, E3, E5) is followed is 0.1 × 0.4 = 0.04
The probability that (E2, E4, E5) is followed is 0.1 × 0.4 = 0.04
Therefore, the probability that the random variable is found in E5 at t + 2
knowing that it was in E2 at t is 0.04 + 0.04 + 0.04 = 0.12.
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In general, the probability that a random variable is found in state Ej at
t + 2 knowing that it was in Ei at t is,

p(2)
ij =

∑
k

pikpkj
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Source: [2] Figure 1
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What is hidden?



Dishonest casino
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A simplified example will help better understand hidden variables and the
characteristics of HMMs.

I want to play a game.
I will be tossing a coin n times.
This information can be represented as follows: { H, T, T, H, T, T, . . . } or
{ 0, 1, 1, 0, 1, 1, . . . }.
In fact, I will be using two coins!

One coin is fair, i.e. head and tail are equiprobable outcomes,
but the other one is loaded (biased), it returns head with probability 1

4 and
tail with probability 3

4 .

https://youtu.be/4siRWMULqj4


Dishonest casino

Background information 30/82

A simplified example will help better understand hidden variables and the
characteristics of HMMs.

I want to play a game.

I will be tossing a coin n times.
This information can be represented as follows: { H, T, T, H, T, T, . . . } or
{ 0, 1, 1, 0, 1, 1, . . . }.
In fact, I will be using two coins!

One coin is fair, i.e. head and tail are equiprobable outcomes,
but the other one is loaded (biased), it returns head with probability 1

4 and
tail with probability 3

4 .

https://youtu.be/4siRWMULqj4


Dishonest casino

Background information 30/82

A simplified example will help better understand hidden variables and the
characteristics of HMMs.

I want to play a game.
I will be tossing a coin n times.

This information can be represented as follows: { H, T, T, H, T, T, . . . } or
{ 0, 1, 1, 0, 1, 1, . . . }.
In fact, I will be using two coins!

One coin is fair, i.e. head and tail are equiprobable outcomes,
but the other one is loaded (biased), it returns head with probability 1

4 and
tail with probability 3

4 .

https://youtu.be/4siRWMULqj4


Dishonest casino

Background information 30/82

A simplified example will help better understand hidden variables and the
characteristics of HMMs.

I want to play a game.
I will be tossing a coin n times.
This information can be represented as follows: { H, T, T, H, T, T, . . . } or
{ 0, 1, 1, 0, 1, 1, . . . }.

In fact, I will be using two coins!

One coin is fair, i.e. head and tail are equiprobable outcomes,
but the other one is loaded (biased), it returns head with probability 1

4 and
tail with probability 3

4 .

https://youtu.be/4siRWMULqj4


Dishonest casino

Background information 30/82

A simplified example will help better understand hidden variables and the
characteristics of HMMs.

I want to play a game.
I will be tossing a coin n times.
This information can be represented as follows: { H, T, T, H, T, T, . . . } or
{ 0, 1, 1, 0, 1, 1, . . . }.
In fact, I will be using two coins!

One coin is fair, i.e. head and tail are equiprobable outcomes,
but the other one is loaded (biased), it returns head with probability 1

4 and
tail with probability 3

4 .

https://youtu.be/4siRWMULqj4


Dishonest casino

Background information 30/82

A simplified example will help better understand hidden variables and the
characteristics of HMMs.

I want to play a game.
I will be tossing a coin n times.
This information can be represented as follows: { H, T, T, H, T, T, . . . } or
{ 0, 1, 1, 0, 1, 1, . . . }.
In fact, I will be using two coins!

One coin is fair, i.e. head and tail are equiprobable outcomes,

but the other one is loaded (biased), it returns head with probability 1
4 and

tail with probability 3
4 .

https://youtu.be/4siRWMULqj4


Dishonest casino

Background information 30/82

A simplified example will help better understand hidden variables and the
characteristics of HMMs.

I want to play a game.
I will be tossing a coin n times.
This information can be represented as follows: { H, T, T, H, T, T, . . . } or
{ 0, 1, 1, 0, 1, 1, . . . }.
In fact, I will be using two coins!

One coin is fair, i.e. head and tail are equiprobable outcomes,
but the other one is loaded (biased), it returns head with probability 1

4 and
tail with probability 3

4 .

https://youtu.be/4siRWMULqj4


Dishonest casino

Background information 31/82

If I were using the same coin for the duration of the game, then it would be
easy for you to guess which coin I am using.

For instance, we could look at the odds ratio:

P(S|Loaded) =
L∏

i=1
P(S(i)|Loaded)

P(S|Fair) =
L∏

i=1
P(S(i)|Fair)

P(S|Loaded)
P(S|Fair) =

∏L
i=1 P(S(i)|Loaded)∏L

i=1 P(S(i)|Fair)

log(P(S|Loaded)
P(S|Fair) ) =

L∑
i=1

log(P(S(i)|Loaded)
P(S(i)|Fair) )
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Let’s consider a specific sequence: S = { H, T, T, H, T, T }

P(S|Loaded) = 1
4

2 × 3
4

4 = 0.01977539062
P(S|Fair) = 1

2
6 = 0.015625

P(S|Loaded)
P(S|Fair) = 1.265625

log(P(S|Loaded)
P(S|Fair) ) = 0.1023050449
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However, I will not reveal when I am exchanging the coins.

This information is hidden from you.
Objective:

Looking at a series of observations, S, can you predict when the exchanges
of coins occurred?
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Hidden Markov Models (HMM)

Hidden Markov Model 35/82

“A hidden Markov model (HMM) is a statistical model that can be used to describe
the evolution of observable events [symbols] that depend on internal factors [states],
which are not directly observable.”

“An HMM consists of two stochastic processes (. . . )”:
Invisible process consisting of states
Visible (observable) process consisting of symbols

Yoon, B.-J. Hidden Markov Models and their Applications in Biological Sequence
Analysis. Current Genomics 10, 402415 (2009).
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Definitions
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We need to distinguish between the sequence of states (π) and the sequence of
symbols (S).

The sequence of states, denoted by π and called the path, is modelled as a
Markov chain, these transitions are not directly observable (they are
hidden),

akl = P(πi = l |πi−1 = k)
where akl is a transition probability from the state k to l .

Each state has emission probabilities associated with it:

ek(b) = P(S(i) = b|πi = k)

the probability of observing/emitting the symbol b when in state k .
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The alphabet of emitted symbols, Σ, the set of (hidden) states, Q, a
matrix of transition probabilities, A, as well as a the emission
probabilities, E , are the parameters of an HMM: M =< Σ, Q, A, E >.

It is often useful, to think of an HMM as a device generating sequences.

With some probability the process stays in the same state or moves to the
next state;
At each step, the process emits a symbol according to a well defined
probability distribution;
When looking at a sequence of observable symbols, the observer is
wondering if the sequence could have been produced or not by the
model.

Remembering our discussion about finite state automata, an HMM is
equivalent to a stochastic regular grammar.
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1. P(S, π): the joint probability of a sequence of symbols S and a
sequence of states π.

The decoding problem consists of finding a path π such that P(S, π) is
maximum;

2. P(S|θ): the probability of a sequence of symbols S given the model θ.

It represents the likelihood that sequence S has been produced by this HMM,
let’s call this the likelihood problem;

3. Finally, how are the parameters of the model (HMM), θ, learnt?

Let’s call this the parameter estimation problem.
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Begin

I j

M j

D j
... ...

End... ...

Joint probability of a sequence of symbols S and a sequence of states π:

P(S, π) = a0π1

L∏
i=1

eπi (S(i))aπi πi+1

P(S = VGPGGAHA, π = BEG, M1, M2, I3, I3, I3, M3, M4, M5, END)

⇒ However in practice, the state sequence π is not known in advance.
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P(0) = 1/2
P(1) = 1/2

π

P(0) = 1/4
P(1) = 3/4

π

.2.9

.8

.1

1 2

Modelled using an HMM, where each state represents a coin, with its
own emission probability distribution, and the transition probabilities
represent exchanging the coins.
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P(0) = 1/2
P(1) = 1/2

π

P(0) = 1/4
P(1) = 3/4

π

.2.9

.8

.1

1 2

Given an input sequence of symbols (heads and tails), such as 0, 1, 1, 0,
1, 1, 1, which sequence of states has the highest probability?



Worked example

Hidden Markov Model 42/82

Which path leads to the highest joint probability?

S 0 1 1 0 1 1 1
π π1 π1 π1 π1 π1 π1 π1
π π1 π1 π1 π1 π1 π1 π2

. . .
π π2 π2 π1 π1 π2 π2 π2

. . .
π π2 π2 π2 π2 π2 π2 π2

P(0) = 1/2
P(1) = 1/2

π

P(0) = 1/4
P(1) = 3/4

π

.2.9

.8

.1

1 2



Brute-force

Hidden Markov Model 43/82

Since the game consists of printing the series of switches from one coin to
the other, selecting the path with the highest joint probability, P(S, π),
seems appropriate.

Here, there are 27 = 128 possible paths, enumerating all of them is
feasible.
However, the number of states and consequently the number of possible
paths are generally much larger: O(ML), where M is the number of states
and L is the length of the sequence of symbols.
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Decoding problem

Hidden Markov Model 44/82

Given an observed sequence of symbols, S, the decoding problem consists
of finding a sequence of states, π, such that the joint probability of S and π
is maximum.

argmaxπ P(S, π)

For our game, the sequence of states is of interest because it serves to
predict the exchanges of coins.
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The most probable path can be found recursively. The score for the most
probable path ending in state l with observation i , noted vl(i), is given by,

vl(i) = el(S(i)) max
k

[vk(i − 1)akl ]

l...

k
a

kl

e (S(i))
v

k
l

(i−1)

where k is running for states such that akl is defined.
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The algorithm for solving the decoding problem is known as the Viterbi
algorithm. It finds the best (most probable) path using the dynamic
programming technique.

Forward. This requires filling the table v , for all i and for all l — see the
definition of vl(i) on the previous slide.
Traceback. Starting with vend(n), the algorithm reverses the computation to
find the path with maximum joint probability.

Sean R Eddy, What is dynamic programming?, Nat Biotechnol 22:7, 90910,
2004.
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π1

π2

S(1)

...

S(2) S(3) S(n-1) S(n)

πm

...



Decoding problem — gene finding
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Source: [2] Figure 1

For a given input sequence, the decoding problem reveals the path with
maximum join probability. Effectively telling us the nucleotides that are likely
to be in exons (states E1, E2, E3) and those that likely to be in introns
(state I).



Decoding problem — Gene finding
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Source: [1] Figure 1
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In the case of a Markov chain there is a single path for a given sequence S
and therefore P(S|θ) is given by,

P(S|θ) = P(S(1))
n∏

i=2
aS(i−1)S(i)

In the case of an HMM, there are several paths producing the same S
(some paths will be more likely than others) and P(S|θ) should be defined as
the sum of all the probabilities of all possible paths producing S,

P(S|θ) =
∑

π

P(S, π)

The number of paths grows exponentially with respect to the length of
the sequence, therefore all the paths cannot simply be enumerated and
summed.
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Modifying the Viterbi algorithm changing the maximization by a sum
calculates the probability of the observed sequence up to position i ending in
state l ,

fl(i) = el(S(i))
∑

k
fk(i − 1)akl



The likelihood problem
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The score represents the probability of the sequence up to (and including)
S(i), noted fl(i), is given by,

fl(i) = el(S(i))
∑

k
[fk(i − 1)akl ]

l...

k
akl

e (S(i))
fk

l

(i−1)

where k is running for states such that akl is defined.
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We now turn to our third and final question. How to determine the
parameters of the model?
Let x1, . . . , xN be N independent examples forming the training set (typically,
N sequences of observable symbols), the objective is to find a set
parameters, θ, such that:

max
θ

ΠN
i=1P(xi |θ)



Model Specification
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Structure (topology): states + interconnect
Estimating the transition/emission probabilities



Modelling the length
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At least 5 symbols long

2 to 8 symbols long



Arbitrary deletions
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Too expensive, too many parameters to evaluate!

Silent (null) states do not emit symbols.

⇒ Silent states prevent modelling specific distant transitions.



Profile HMMs
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Begin

I j

M j

D j
... ...

End... ...

⇒ Models insertion/deletions separately.



Gene prediction
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5’ 3’
GT AG

...

Flanking regionExon n

CAAT

GC

TATA
boxbox

box box

GT AG

5’UTR 3’UTR

initiation
Transcription

Stop
codon

Poly (A)
Initiation
codon

Exon 2Flanking region

GC

Exon 1
Intron I

Source: [2] Figure 1



The parameter estimation problem

Hidden Markov Model 59/82

Problem: estimate the ast and ek(b) probabilities.
Given:

a fixed topology;
n independent positive examples: S1, S2, . . . , Sn.

Two scenarios:
The paths are known (existing annotated genes)
The paths are unknown
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Expectation-Maximization (EM) algorithm
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1. Choose an initial model. If no prior information is available, make all the
transition probabilities equiprobable, similarly for the emission probabilities;

2. Use the decoding algorithm for finding the maximum likelihood path for
each input sequence (E-step);

3. Using these paths, tally statistics for estimating all akl and ek(b) values
(M-step);

4. Repeat 3 and 4 until the parameter estimates converge.

Sometimes called the Baum-Welch algorithm. Gradient descent can also be used.
Chuong B Do and Serafim Batzoglou, What is the expectation maximization
algorithm?, Nat Biotechnol 26:8, 897899, 2008.
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sklearn.hmm
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sklearn.hmm has been “deprecated due to it no longer matching the scope
and the API of the project.” It was removed starting with the release 0.17
[as of writing this, the current version of Scikit-Learn is 0.21.3].
Pomegranate implements probabilistic models, including hidden Markov
models.

Documentation
Most of the time, hidden Markov models are implemented in specializedd
tools, such as GENSCAN, GENIE, HMMGENE, UGENE, SAM,
HMMER, etc.

https://pomegranate.readthedocs.io
https://pomegranate.readthedocs.io/en/latest/HiddenMarkovModel.html


HMMER
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Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755763
(1998).

3371 citations according to Scopus
J. Mistry, R. D. Finn, S. R. Eddy, A. Bateman, M. Punta. Challenges in
Homology Search: HMMER3 and Convergent Evolution of Coiled-Coil
Regions. Nucleic Acids Research 41:e121, 2013.
http://hmmer.org/publications.html
http://hmmer.org

http://hmmer.org/publications.html
http://hmmer.org


Pfam
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“The Pfam database is a large collection of protein families, each
represented by multiple sequence alignments and hidden Markov models
(HMMs).”
E.L.L. Sonnhammer, S.R. Eddy and R. Durbin. Pfam: a comprehensive
database of protein families based on seed alignments. Proteins 28:405-420,
1997.

806 citations according to Scopus
S. El-Gebali, et al. The Pfam protein families database in 2019. Nucleic
Acids Research (2019), doi: 10.1093/nar/gky995
Pfam 32.0, September 2018, 17,929 entries
https://pfam.xfam.org

https://pfam.xfam.org
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A Markov process is memoryless, which means that the probability that
the system be in state Ej at time t depends only on the state, Ei , at time
time t − 1 (first order model).

Those probabilities do not depend on the value of t. This property is called
homogeneity of time. Here, time is finite.
A hidden Markov model comprises two elements: a sequence of
observable symbols and a sequence of hidden states.



Summary

Prologue 66/82

A Markov process is memoryless, which means that the probability that
the system be in state Ej at time t depends only on the state, Ei , at time
time t − 1 (first order model).
Those probabilities do not depend on the value of t. This property is called
homogeneity of time. Here, time is finite.

A hidden Markov model comprises two elements: a sequence of
observable symbols and a sequence of hidden states.



Summary

Prologue 66/82

A Markov process is memoryless, which means that the probability that
the system be in state Ej at time t depends only on the state, Ei , at time
time t − 1 (first order model).
Those probabilities do not depend on the value of t. This property is called
homogeneity of time. Here, time is finite.
A hidden Markov model comprises two elements: a sequence of
observable symbols and a sequence of hidden states.



Next module
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Support Vector Machine
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If the observed sequence of symbols was of length one, the sequence of
states would also be of length one (in our restricted example).

Which state would you predict if the observed symbol was a 0? What if it
was a 1?
Now consider an observed sequence of length two, let’s assume that the last
symbol is 1, what is the probability of that symbol being emitted from state
π1?
There are two ways of ending up in π1 while producing S(2):

1. S(1) could have been produced from π1, and the state remained π1,
2. or 2) S(1) could have been produced from π2, and there was a transition π2

to π1.

The two joint probabilities would be P(S(1)|π1)P(π1 → π1)P(S(2)|π1) and
P(S(1)|π2)P(π2 → π1)P(S(2)|π1).
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Now consider an observed sequence of length three, let’s assume that the
last symbol is 1, what is the probability of that symbol being emitted from
state π1?
There are two ways of ending up in π1 while producing S(3):

1. the last state that led to the production of the sequence of symbols S[1, 2]
was π1 and the state remained π1,

2. the last state that led to the production of the sequence of symbols S[1, 2]
was π2 and it is followed by a transition π2 to π1, with probability a21.

Let’s define vk(i) as the probability of the most probable path ending in state k
while producing the observation i . Using this notation for formulating the
probabilities for the above two scenarios.

v1(3) = max [ v1(2) × a11 × e1(0), v2(2) × a21 × e1(0) ]



Decoding problem
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For our 2 states HMM, we can write the following equation,

v1(i) = max [ v1(i − 1) × a11 × e1(S(i)), v2(i − 1) × a21 × e1(S(i)) ]

v2(i) = max [ v1(i − 1) × a12 × e2(S(i)), v2(i − 1) × a22 × e2(S(i)) ]
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π1

π2

0 11 0 1 1 1
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The most probable path can be found recursively. The score for the most
probable path ending in state l with observation i , noted vl(i), is given by,

vl(i) = el(S(i)) max
k

[vk(i − 1)akl ]

l...

k
a

kl

e (S(i))
v

k
l

(i−1)

where k is running for states such that akl is defined.
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The algorithm for solving the decoding problem is known as the Viterbi
algorithm. It finds the best (most probable) path using the dynamic
programming technique.

Forward. First, this requires filling the table v , for all i and for all l — see
the definition of vl(i) on the previous slide.
Traceback. Next, starting with vend(n), the algorithm reverses the
computation to find the path with maximum joint probability.

Sean R Eddy, What is dynamic programming?, Nat Biotechnol 22:7, 90910,
2004.



Decoding problem: Viterbi algorithm
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Initialization:
v0 = 1, vk = 0, k > 0

Recurrence:
vl(i) = el(S(i)) max

k
(vk(i − 1)akl)

where, vk(i) represents the probability of the most probable path ending in
state k and position i in S.
A pointer (backward) is kept from l to the value of k that maximizes
vk(i − 1)akl .

⇒ Implementation issues: because of the products (small) probabilities leads to
underflow the algorithm is implemented using the logarithm of the values and therefore
the products becomes sums.
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π1

π2

S(1)

...

S(2) S(3) S(n-1) S(n)

πm

...
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# t r a n s i t i o n p r o b a b i l i t i e s ( t )
$t [ 0 ] [ 0 ] = 0 . 9 ; $t [ 0 ] [ 1 ] = 0 . 1 ;
$t [ 1 ] [ 0 ] = 0 . 2 ; $t [ 1 ] [ 1 ] = 0 . 8 ;

# e m i s s i o n p r o b a b i l i t i e s ( e )
$e [ 0 ] [ 0 ] = 0 . 5 0 ; $e [ 0 ] [ 1 ] = 0 . 5 0 ;
$e [ 1 ] [ 0 ] = 0 . 0 5 ; $e [ 1 ] [ 1 ] = 0 . 9 5 ;

# obse r v ed sequence (S)
@S = (0 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) ;

# i n i t i a l i z a t i o n ( d i s the dynamic programming t a b l e )
$d [ 0 ] [ 0 ] = $e [ 0 ] [ $S [ 0 ] ] ;
$d [ 1 ] [ 0 ] = $e [ 1 ] [ $S [ 0 ] ] ;
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f o r ( $ j =1; $ j < @S ; $ j++ ) {
f o r ( $ i =0; $ i <= 1 ; $ i++ ) {

$m = 0 ;
f o r ( $k=0; $k <= 1 ; $k++ ) {

$v = $d [ $k ] [ $ j −1]∗ $t [ $k ] [ $ i ]∗ $e [ $ i ] [ $S [ $ j ] ] ;
i f ( $v > $m ) {

$from = $k ; $to = $ i ; $m = $v ;
}

}
$d [ $ i ] [ $ j ] = $m;
$ t r [ $ i ] [ $ j ] = " ( $from−>$to ) " ;

}
}
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f o r ( $ i =0; $ i <= 1 ; $ i++ ) {
f o r ( $ j =0; $ j < @S ; $ j++ ) {

p r i n t f "\ t %5.5 f " , $d [ $ i ] [ $ j ] ;
}
p r i n t "\n" ;
f o r ( $ j =0; $ j < @S ; $ j++ ) {

p r i n t f "\ t %s " , $ t r [ $ i ] [ $ j ] ;
}
p r i n t "\n" ;

}
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t[0][0] = 0.9; t[0][1] = 0.1; t[1][0] = 0.2; t[1][1] = 0.8;
e[0][0] = 0.50; e[0][1] = 0.50; e[1][0] = 0.05; e[1][1] = 0.95;

0 1 0 1 0 1 1 1 1 1 1 1
0.50000 0.22500 0.10125 0.04556 0.02050 0.00923 0.00415 0.00187 0.00084 0.00038 0.00017 0.00008

(0->0) (0->0) (0->0) (0->0) (0->0) (0->0) (0->0) (0->0) (0->0) (0->0) (0->0)
0.05000 0.04750 0.00190 0.00962 0.00038 0.00195 0.00148 0.00113 0.00086 0.00065 0.00049 0.00038

(0->1) (1->1) (0->1) (1->1) (0->1) (1->1) (1->1) (1->1) (1->1) (1->1) (1->1)
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