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Support Vector Machines

In this lecture, we consider one of the most popular kernel methods, the support
vector machines. We informally discuss their main concepts: separating
hyperplane, maximum-margin hyperplane, the soft margin, and kernel functions.
As a running example, we consider the case of classifying acute leukemias patients
using DNA microarray data.

General objective :
Explain in your own words support vector machines
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Discuss the concept of separating hyperplane
Explain why soft margin is needed
Describe in your own words the maximum-margin hyperplane
Justify the need for a kernel function

Reading:
Noble, W. S. What is a support vector machine? Nat Biotechnol
24:15651567 (2006).
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DNA Microarrays
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Lowe, R., Shirley, N., Bleackley, M., Dolan, S. & Shafee, T. Transcriptomics technologies. PLoS
Comput Biol 13, (2017).



DNA microarrays
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https://youtu.be/yzBVOCwRanI

https://youtu.be/yzBVOCwRanI


Classification of cancer

Problem 9/42

Affymetrix microarrays with 6,817 genes

38 samples

27 samples from individuals with acute lymphoblastic leukemia (ALL)
11 samples from individuals with acute myeloid leukemia (AML)

Sources:
T R Golub, D K Slonim, P Tamayo, C Huard, M Gaasenbeek, J P Mesirov,
H Coller, M L Loh, J R Downing, M A Caligiuri, C D Bloomfield, and E S
Lander, Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring, Science 286:5439, 5317, 1999.
Noble, W. S. What is a support vector machine? Nat Biotechnol 24,
15651567, 2006.
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{(xi , yi)}N
i=1

N = 38
Each xi represents the expression of D (6,817) genes for given sample - a
feature vector with D dimensions.
x (j)

i is the value of the feature j of the example i , for j ∈ 1 . . . D and
i ∈ 1 . . . N. This is the expression level of gene j for sample i .
The label yi is AML (acute myeloid leukemia) or ALL (acute lymphoblastic
leukemia), two classes of acute leukemias.

For reasons that will become evident in the technical part of our discussion,
let’s use the label -1 for one of the two classes, and 1 for the other class,
y ∈ {−1, 1}.

A binary classification task.
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Just like hidden Markov models (HMM), support vector machines
(SVM) have a strong theoretical foundation.

We first introduce the essential concepts informally.

Adapted from:

Noble, W. S. What is a support vector machine? Nat Biotechnol 24,
15651567, 2006.

We consider two genes, ZYX and MARCKSL1, so that the data is
represented in a two-dimensional plane.
Four concepts:

Separating hyperplane
Maximum-margin hyperplane
Soft-margin
Kernel function
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Separating hyperplane - 2 genes (features)
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Source: [1] Figure 1a



Separating hyperplane - 1 genes (feature)
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Source: [1] Figure 1c



Separating hyperplane - 3 genes (features)
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Source: [1] Figure 1d



Separating hyperplane - D genes (features)
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Given D features (genes), D >> 3, the decision boundary is a
hyperplane.
“The general term for a straight line in a high-dimensional space is a
hyperplane, and so the separating hyperplane is, essentially, the line
that separates the ALL and AML samples.” [1]



Many separating hyperplanes
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Source: [1] Figure 1e

There are generally infinitely many separating hyperplanes,
which one to choose?

What would be a good guiding principle?
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Maximum-margin hyperplane
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The support vectors are
the examples closest to the
separating hyperplane.

The margin is the distance
between the separating
hyperplane (decision
boundary) and the support
vectors.
Problem: of all possible
separating hyperplanes
find the one with the
largest margin.

Source: [4] Figure 5.1
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Maximum-margin hyperplane
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The support vectors are
the examples closest to the
separating hyperplane.
The margin is the distance
between the separating
hyperplane (decision
boundary) and the support
vectors.
Problem: of all possible
separating hyperplanes
find the one with the
largest margin. Source: [4] Figure 5.1



Maximum-margin hyperplane (continued)

Introduction 19/42

Selecting a decision boundary with maximum distance to any example is
supported by statistical learning theory.

A large margin should decrease the generalization error (errors on new
cases).
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Warning

Introduction 20/42

Source: [4] Figure 5.2

Support vector machines can be negatively affected by features having
different scales. On the left, x1 ranges from 0 to 75, whereas x2 ranges
from 0 to 6.

Suggestion: use sklearn.preprocessing.StandardScaler.
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Maximum-margin hyperplane
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Source: [1] Figure 1f



Linearly separable?
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So far, we have assumed
that our data set is linearly
separable.

Not all the data sets are
linearly separable and this
will affect us in two ways.
First, we might want to be
able to allow for a small
number of classification
errors.

These might actually
represent errors in our
training set.

Source: [1] Figure 1g
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Soft margin
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Source: [1] Figure 1h

A user defined parameter, the soft margin (C), controls how many
misclassification errors are allowed.



Linearly separable? (Take 2) — one feature
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Source: [1] Figure 1i

No single point can separate the two classes!



Kernel function
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Source: [1] Figure 1j

Adding a new dimension to our data.

Here, simply taking the square values of our feature.
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Informally, a kernel function can be seen as a mechanism to map data to a
higher dimensionality space.

With some luck, intuition, intelligence or experience, one is able to find a
kernel function such that the data is linearly separable in the resulting
space.
“It is possible to prove that, for any given data set with consistent labels
(where consistent simply means that the data set does not contain two
identical objects with opposite labels) there exists a kernel function that
will allow the data to be linearly separated.” [1]



Kernel function

Introduction 26/42

Informally, a kernel function can be seen as a mechanism to map data to a
higher dimensionality space.
With some luck, intuition, intelligence or experience, one is able to find a
kernel function such that the data is linearly separable in the resulting
space.

“It is possible to prove that, for any given data set with consistent labels
(where consistent simply means that the data set does not contain two
identical objects with opposite labels) there exists a kernel function that
will allow the data to be linearly separated.” [1]



Kernel function

Introduction 26/42

Informally, a kernel function can be seen as a mechanism to map data to a
higher dimensionality space.
With some luck, intuition, intelligence or experience, one is able to find a
kernel function such that the data is linearly separable in the resulting
space.
“It is possible to prove that, for any given data set with consistent labels
(where consistent simply means that the data set does not contain two
identical objects with opposite labels) there exists a kernel function that
will allow the data to be linearly separated.” [1]



Kernels
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Linear
Polynomial
Gaussian RBF (radial basis function)
Sigmoid



Kernel function
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Source: [1] Figure 1k

The result of projecting up the two-dimensional data into a four-dimensional
space.

Then projecting from the four-dimensional space down to a two-dimensional
space (the curved line).



Kernel function

Introduction 28/42

Source: [1] Figure 1k

The result of projecting up the two-dimensional data into a four-dimensional
space.
Then projecting from the four-dimensional space down to a two-dimensional
space (the curved line).



Errors/soft margin/kernel function
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“It is possible to prove that, for any given data set with consistent labels
(where consistent simply means that the data set does not contain two
identical objects with opposite labels) there exists a kernel function that
will allow the data to be linearly separated.” [1]

The above suggest that we do not actually need the concept of soft
margin!
Simply project the data into higher a higher dimensionality space where it
will be separable!
Sadly, it is not that simple!



Errors/soft margin/kernel function

Introduction 29/42

“It is possible to prove that, for any given data set with consistent labels
(where consistent simply means that the data set does not contain two
identical objects with opposite labels) there exists a kernel function that
will allow the data to be linearly separated.” [1]
The above suggest that we do not actually need the concept of soft
margin!

Simply project the data into higher a higher dimensionality space where it
will be separable!
Sadly, it is not that simple!



Errors/soft margin/kernel function

Introduction 29/42

“It is possible to prove that, for any given data set with consistent labels
(where consistent simply means that the data set does not contain two
identical objects with opposite labels) there exists a kernel function that
will allow the data to be linearly separated.” [1]
The above suggest that we do not actually need the concept of soft
margin!
Simply project the data into higher a higher dimensionality space where it
will be separable!

Sadly, it is not that simple!



Errors/soft margin/kernel function

Introduction 29/42

“It is possible to prove that, for any given data set with consistent labels
(where consistent simply means that the data set does not contain two
identical objects with opposite labels) there exists a kernel function that
will allow the data to be linearly separated.” [1]
The above suggest that we do not actually need the concept of soft
margin!
Simply project the data into higher a higher dimensionality space where it
will be separable!
Sadly, it is not that simple!



Overfitting
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Source: [1] Figure 1l

The mapping to higher-dimensional space can create a complex
decision boundary and overfitting.



Summary
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Just like logistic regression, support vector machines are learning the
parameters of a linear decision boundary separating the data in two
classes.

However, SVM algorithms also rely on the concept of maximum margin
hyperplane as a mechanism to lower generalization errors.
In order to handle a small number of classification errors, the algorithms
introduce the concept of soft margin.
Finally, because the data is not always linearly separable, these algorithms
project the data to higher dimensions using a kernel function.
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Multiclass SVM
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One of the simplest ways to transform a binary classification problem into
multiclass is to solve K binary classification problems in the following
way:

Build a classifier to distinguish between class 1 against the rest.
Build a classifier to distinguish between class 2 against the rest.
. . .
Build a classifier to distinguish between Class K against the best.

In other words, examples of class k (label = 1) are the positive examples
and all the other examples are the negative examples (label = -1),
∀k ∈ 1 . . . K .



Multiclass SVM

Introduction 32/42

One of the simplest ways to transform a binary classification problem into
multiclass is to solve K binary classification problems in the following
way:

Build a classifier to distinguish between class 1 against the rest.

Build a classifier to distinguish between class 2 against the rest.
. . .
Build a classifier to distinguish between Class K against the best.

In other words, examples of class k (label = 1) are the positive examples
and all the other examples are the negative examples (label = -1),
∀k ∈ 1 . . . K .



Multiclass SVM

Introduction 32/42

One of the simplest ways to transform a binary classification problem into
multiclass is to solve K binary classification problems in the following
way:

Build a classifier to distinguish between class 1 against the rest.
Build a classifier to distinguish between class 2 against the rest.

. . .
Build a classifier to distinguish between Class K against the best.

In other words, examples of class k (label = 1) are the positive examples
and all the other examples are the negative examples (label = -1),
∀k ∈ 1 . . . K .



Multiclass SVM

Introduction 32/42

One of the simplest ways to transform a binary classification problem into
multiclass is to solve K binary classification problems in the following
way:

Build a classifier to distinguish between class 1 against the rest.
Build a classifier to distinguish between class 2 against the rest.
. . .

Build a classifier to distinguish between Class K against the best.
In other words, examples of class k (label = 1) are the positive examples
and all the other examples are the negative examples (label = -1),
∀k ∈ 1 . . . K .



Multiclass SVM

Introduction 32/42

One of the simplest ways to transform a binary classification problem into
multiclass is to solve K binary classification problems in the following
way:

Build a classifier to distinguish between class 1 against the rest.
Build a classifier to distinguish between class 2 against the rest.
. . .
Build a classifier to distinguish between Class K against the best.

In other words, examples of class k (label = 1) are the positive examples
and all the other examples are the negative examples (label = -1),
∀k ∈ 1 . . . K .



Multiclass SVM

Introduction 32/42

One of the simplest ways to transform a binary classification problem into
multiclass is to solve K binary classification problems in the following
way:

Build a classifier to distinguish between class 1 against the rest.
Build a classifier to distinguish between class 2 against the rest.
. . .
Build a classifier to distinguish between Class K against the best.

In other words, examples of class k (label = 1) are the positive examples
and all the other examples are the negative examples (label = -1),
∀k ∈ 1 . . . K .



Implementation 33/42

Implementation



Worked example on kaggle
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https://www.kaggle.com/crawford/gene-expression
https://www.kaggle.com/varimp/gene-expression-classification

https://www.kaggle.com/crawford/gene-expression
https://www.kaggle.com/varimp/gene-expression-classification


sklearn.svm.SVC

Implementation 35/42

scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

svm_param_grid = { ’C ’ : [ 0 . 1 , 1 , 10 , 100 ] ,
’ k e r n e l ’ : [ ’ l i n e a r ’ , ’ r b f ’ , ’ p o l y ’ ] }

svm_grid = GridSearchCV (SVC( ) , svm_param_grid , cv=3)

svm_grid . f i t ( X_tra in , y _ t r a i n )

p r i n t ( " Best Parameter s : \ n" , svm_grid . best_params_ )

bes t_svc = svm_grid . be s t_es t imato r_

svm_pred = bes t_svc . p r e d i c t ( X_test )

Source: https://www.kaggle.com/varimp/gene-expression-classification

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://www.kaggle.com/varimp/gene-expression-classification
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Grows quadratically with the number of examples.
Linear time approximations exist.
Handles millions of examples.
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Kernel methods
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As we will see in the next lecture, kernels can be defined for inputs that are
not vectors.



Summary
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Just like logistic regression, support vector machines are learning the
parameters of a linear decision boundary separating the data in two classes.

However, SVM algorithms also rely on the concept of maximum margin
hyperplane as a mechanism to lower generalization errors.
In order to handle a small number of classification errors, the algorithms
introduce the concept of soft margin.
Finally, because the data is not always linearly separable, these algorithms
project the data to higher dimensions using a kernel function.
Support vector machines have a strong foundation.
Empirical results show that their performance is excellent.
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Kernel Methods
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