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Deep learning — architectures

In this lecture, we focus our attention on the architecture of deep learning networks.
On the back cover of their book “Deep Learning”, Goodfellow, Bengio and Courville
present deep learning as a form of machine learning that enables computers to
“understand the world in terms of a hierarchy of concepts”. This idea was
implicit when we looked at the model behind feed forward networks:
hW ,b(X ) = fk(. . . f2(f1(X )) . . .), where fl(Z ) = ϕ(WlZ + bl) for l = 1 . . . k. This idea
becomes much more concrete when examining the various architectures; namely,
convolution neural networks and recurrent neural networks.

General objective :
Discuss the relationships between the nature of the problems to be solved
and the architecture of deep networks.
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Discuss the relationships between the nature of the problems to be solved
and the architecture of deep networks.
Explain convolution neural networks (CNN).
Describe recurrent neural networks (RNN).

Reading:
Vanessa Isabell Jurtz, Alexander Rosenberg Johansen, Morten Nielsen, Jose
Juan Almagro Armenteros, Henrik Nielsen, Casper Kaae Sønderby, Ole
Winther, and Søren Kaae Sønderby, An introduction to deep learning on
biological sequence data: examples and solutions, Bioinformatics 33:22,
36853690, 2017.
Seonwoo Min, Byunghan Lee, and Sungroh Yoon, Deep learning in
bioinformatics, Brief Bioinform 18:5, 851869, 2017.
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Vanessa Isabell Jurtz, Alexander Rosenberg Johansen, Morten Nielsen, Jose
Juan Almagro Armenteros, Henrik Nielsen, Casper Kaae Sønderby, Ole
Winther, and Søren Kaae Sønderby, An introduction to deep learning on
biological sequence data: examples and solutions, Bioinformatics 33:22,
36853690, 2017.

The authors solve three (3) bioinformatics problems using deep networks:
Subcellular localization
Protein secondary structure
Peptide binding to MHCII molecules

For each problem, they discuss the pros and cons of convolutional
networks and recurrent networks.
https://github.com/vanessajurtz/lasagne4bio

https://github.com/vanessajurtz/lasagne4bio


Plan

Preamble 6/39

1. Preamble

2. Introduction

3. Convolutional Neural Network

4. Pooling

5. Recurrent Neural Network

6. Dropout

7. Further considerations

8. Prologue



Introduction 7/39

Introduction



Hierarchy of concepts

Introduction 8/39

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep learning, Nature
521:7553, 43644, 2015.
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Each layer detects patterns from the output of the layer preceding it.

In other words, proceeding from the input to the output of the network, the
network uncovers “patterns of patterns”.

Analyzing an image, the networks first detect simple patterns, such as vertical,
horizontal, diagonal lines, arcs, etc.
These are then combined to form corners, crosses, etc.

This explains how transfer learning works and why selecting the bottom
layers only.
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“An MLP with just one hidden layer can theoretically model even the
most complex functions,

provided it has enough neurons. But for complex
problems, deep networks have a much higher parameter efficiency than
shallow ones: they can model complex functions using exponentially fewer
neurons than shallow nets, allowing them to reach much better performance
with the same amount of training data.” [4] §10
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Start with one layer, then increase the number of layers until the model
starts overfitting the training data.
Finetune the model adding regularization (dropout layers, regularization
terms, etc.).

The number of neurons and other hyperparameters are determined using a grid search.



Remarks

Introduction 12/39

Consider a feed-forward network (FFN) and its model:

hW ,b(X ) = fk(. . . f2(f1(X )) . . .)

where
fl(Z ) = ϕ(WlZ + bl)

for l = 1 . . . k .

The number of parameters in grows rapidly:

(size of layerl−1 + 1) × size of layerl

Two layers 1,000-unit implies 1,000,000 parameters!
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Convolutional Neural Network (CNN)
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In many applications, the important information to detect patterns is
local - the pixels forming an eye or the nucleotides forming a transcription
factor binding site, etc.

A convolution layer significantly decreases the number of parameters.

Unlike a dense layer, a neuron (unit) in a convolution layer is not
connected to all the units of the previous layer.

Each unit is connected to neurons in its receptive fields (a rectangular region).

Convolutional networks come from the field of machine vision. Hence their close
connection to grid-like inputs.
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Source: [4] Figure 14.2

Each unit is connected to neurons in its receptive fields.
Unit i , j in layer l is connected to the units i to i + fh − 1, j to j + fw − 1 of
the layer l − 1, where fh and fw are respectively the height and width of the
receptive field.
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Zero padding. In order to have layers of the same size, the grid can be
padded with zeros.

Stride. It is possible to connect a large larger (l − 1) to a smaller one (l) by
skipping units. The number of units skipped is called stride, sh and sw .

Unit i , j in layer l is connected to the units i × sh to i × sh + fh − 1, j × sw to
j × sw + fw − 1 of the layer l − 1, where fh and fw are respectively the height
and width of the receptive field, sh and sw are respectively the height and
width strides.
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Source: [3] Figure 4.3

A window of size fh × fw is moved over the output of the layers l − 1 (this is
called the input feature map) position by position.

For each location, it calculates the product between the extracted patch
and a matrix of the same size, called a convolution kernel or filter. The
sum of the values of the resulting matrix is the output for that location.
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Source: [4] Figure 14.6

zi ,j,k = bk +
fh−1∑
u=0

+
fw −1∑
v=0

+
fn′ −1∑
k′=0

xi ′,j′,k′ · wu,v ,k′,k

where i ′ = i × sh + u and j ′ = j × sw + v ; see [4] §14.
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[4] §14:

“Thus, a layer full of neurons using the same filter outputs a feature map.”

“Of course, you do not have to define the filters manually: instead, during
training the convolutional layer will automatically learn the most
useful filters for its task,”
“(. . . ) and the layers above will learn to combine them into more
complex patterns.”
“The fact that all neurons in a feature map share the same
parameters dramatically reduces the number of parameters in the model.”
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A guide to convolution arithmetic for deep learning
Vincent Dumoulin and Francesco Visin
Last revised 11 Jan 2018

https://arxiv.org/abs/1603.07285
https://github.com/vdumoulin/conv_arithmetic/

https://arxiv.org/abs/1603.07285
https://github.com/vdumoulin/conv_arithmetic/
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A pooling layer has similar characteristics to a convolutional layer.

In particular, each neuron is connected to neurons in a receptive field.
However, a pooling layer has no weights.

It returns the result of an aggregating function. Typically max or mean.

This (subsampling) has the effect of shrinking the network, each window
of size fh × fw is reduced to a single value, max or mean of that window.
“[A] max pooling layer also introduces some level of invariance to small
translations.” [4] §14
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Recurrent neural networks (RNN) take as input sequence data (time
series, text, speech, and biological sequence data).

Unlike feed forward networks, RNN contain loops.
Furthermore, whereas feed forward networks are memory less
(stateless), RNN store information.
Each unit stores information about its own state.

Let hu,l be the state of the unit u in layer l .

Each unit has two inputs, as before the output of the units from the
previous layer (l − 1), but also the vector of states for this layer (l) at the
previous time step.



Recurrent Neural Network (RNN)

Recurrent Neural Network 24/39

Recurrent neural networks (RNN) take as input sequence data (time
series, text, speech, and biological sequence data).
Unlike feed forward networks, RNN contain loops.

Furthermore, whereas feed forward networks are memory less
(stateless), RNN store information.
Each unit stores information about its own state.

Let hu,l be the state of the unit u in layer l .

Each unit has two inputs, as before the output of the units from the
previous layer (l − 1), but also the vector of states for this layer (l) at the
previous time step.



Recurrent Neural Network (RNN)

Recurrent Neural Network 24/39

Recurrent neural networks (RNN) take as input sequence data (time
series, text, speech, and biological sequence data).
Unlike feed forward networks, RNN contain loops.
Furthermore, whereas feed forward networks are memory less
(stateless), RNN store information.

Each unit stores information about its own state.

Let hu,l be the state of the unit u in layer l .

Each unit has two inputs, as before the output of the units from the
previous layer (l − 1), but also the vector of states for this layer (l) at the
previous time step.



Recurrent Neural Network (RNN)

Recurrent Neural Network 24/39

Recurrent neural networks (RNN) take as input sequence data (time
series, text, speech, and biological sequence data).
Unlike feed forward networks, RNN contain loops.
Furthermore, whereas feed forward networks are memory less
(stateless), RNN store information.
Each unit stores information about its own state.

Let hu,l be the state of the unit u in layer l .
Each unit has two inputs, as before the output of the units from the
previous layer (l − 1), but also the vector of states for this layer (l) at the
previous time step.



Recurrent Neural Network (RNN)

Recurrent Neural Network 24/39

Recurrent neural networks (RNN) take as input sequence data (time
series, text, speech, and biological sequence data).
Unlike feed forward networks, RNN contain loops.
Furthermore, whereas feed forward networks are memory less
(stateless), RNN store information.
Each unit stores information about its own state.

Let hu,l be the state of the unit u in layer l .

Each unit has two inputs, as before the output of the units from the
previous layer (l − 1), but also the vector of states for this layer (l) at the
previous time step.



Recurrent Neural Network (RNN)

Recurrent Neural Network 24/39

Recurrent neural networks (RNN) take as input sequence data (time
series, text, speech, and biological sequence data).
Unlike feed forward networks, RNN contain loops.
Furthermore, whereas feed forward networks are memory less
(stateless), RNN store information.
Each unit stores information about its own state.

Let hu,l be the state of the unit u in layer l .
Each unit has two inputs, as before the output of the units from the
previous layer (l − 1), but also the vector of states for this layer (l) at the
previous time step.



Recurrent Neural Network

Recurrent Neural Network 25/39

…

input

output

Recurrent
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…

x (0)

y (0)

…

x (1)

y (1)

…

x (2)

y (2)

…

x (3)

y (3)

time

Y (t) = ϕ(X (t)WX + Y (t−1)WY + b)
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The backpropagation algorithm is adapted and becomes a backpropagation
through time (BPTT).

With time, information from a distant pass is forgotten.
Long Short-Term Memory (LSTM) are networks with long-term memory.
model = k e r a s . models . S e q u e n t i a l ( [

k e r a s . l a y e r s .LSTM(20 , r e t u rn_sequence s=True , input_shape =[None , 1 ] ) ,
k e r a s . l a y e r s .LSTM(20 , r e t u rn_sequence s=True ) ,
k e r a s . l a y e r s . T i m e D i s t r i b u t e d ( k e r a s . l a y e r s . Dense ( 1 0 ) )

] )

Bidirectional LSTM cells also exist.
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Dropout layers are regularization mechanisms.

During training, each unit in a dropout layer has probability p of being
ignored.

According to [4] §11:

20-30% is a typical value of p convolution networks;
whereas, 40-50% is a typical of p for recurrent networks.

Hinton and colleagues say that they are “preventing co-adaptation”.
Dropout layers can make the network converging more slowly. However,
the resulting network is expected to make fewer generalization errors.
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Convolutional Neural Network are able to detect patterns irrespective
of their location in the input.

Pooling makes the network less sensitive to small translations.
In bioinformatics, CNN networks are ideally suited to detect local (sequence)
motifs, independent of their position within the input (sequence).

Recurrent networks (RNN) and LSTM can input sequences of varying
length.
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model = k e r a s . models . S e q u e n t i a l ( [
k e r a s . l a y e r s . Conv2D (64 , 7 , . . . , i nput_shape =[28 , 28 , 1 ] ) ,
k e r a s . l a y e r s . MaxPooling2D ( 2 ) ,
k e r a s . l a y e r s . Conv2D (128 , 3 , a c t i v a t i o n=" r e l u " , padd ing=" same " ) ,
k e r a s . l a y e r s . Conv2D (128 , 3 , a c t i v a t i o n=" r e l u " , padd ing=" same " ) ,
k e r a s . l a y e r s . MaxPooling2D ( 2 ) ,
k e r a s . l a y e r s . Conv2D (256 , 3 , a c t i v a t i o n=" r e l u " , padd ing=" same " ) ,
k e r a s . l a y e r s . Conv2D (256 , 3 , a c t i v a t i o n=" r e l u " , padd ing=" same " ) ,
k e r a s . l a y e r s . MaxPooling2D ( 2 ) ,
k e r a s . l a y e r s . F l a t t e n ( ) ,
k e r a s . l a y e r s . Dense (128 , a c t i v a t i o n=" r e l u " ) ,
k e r a s . l a y e r s . Dropout ( 0 . 5 ) ,
k e r a s . l a y e r s . Dense (64 , a c t i v a t i o n=" r e l u " ) ,
k e r a s . l a y e r s . Dropout ( 0 . 5 ) ,
k e r a s . l a y e r s . Dense (10 , a c t i v a t i o n=" sof tmax " )

] )

[4] §14:
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We obviously barely scratched the surface of deep learning. Here are some important
concept that we did not consider:

The vanishing and exploding gradient.
Initialization.
Data augmentation.
Attention layer.
Understanding what the network has learnt.
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Deep networks consisting only of dense layers become computationally
intractable as the number of parameters grows exponentially with each
additional layer.

Convolutional layers considerably reduce the number of parameters since
each unit is connected to a limited number of neurons from the previous
layer, its receptive field.
CNN is able to detect patterns in a positon independent manner.
RNN and LSTM handle sequence information, where the input sequences
can be of different lengths. They can detect patterns along the sequence.
Dropout layers are an effective regularization mechanism.



Summary

Prologue 35/39

Deep networks consisting only of dense layers become computationally
intractable as the number of parameters grows exponentially with each
additional layer.
Convolutional layers considerably reduce the number of parameters since
each unit is connected to a limited number of neurons from the previous
layer, its receptive field.

CNN is able to detect patterns in a positon independent manner.
RNN and LSTM handle sequence information, where the input sequences
can be of different lengths. They can detect patterns along the sequence.
Dropout layers are an effective regularization mechanism.



Summary

Prologue 35/39

Deep networks consisting only of dense layers become computationally
intractable as the number of parameters grows exponentially with each
additional layer.
Convolutional layers considerably reduce the number of parameters since
each unit is connected to a limited number of neurons from the previous
layer, its receptive field.
CNN is able to detect patterns in a positon independent manner.

RNN and LSTM handle sequence information, where the input sequences
can be of different lengths. They can detect patterns along the sequence.
Dropout layers are an effective regularization mechanism.



Summary

Prologue 35/39

Deep networks consisting only of dense layers become computationally
intractable as the number of parameters grows exponentially with each
additional layer.
Convolutional layers considerably reduce the number of parameters since
each unit is connected to a limited number of neurons from the previous
layer, its receptive field.
CNN is able to detect patterns in a positon independent manner.
RNN and LSTM handle sequence information, where the input sequences
can be of different lengths. They can detect patterns along the sequence.

Dropout layers are an effective regularization mechanism.



Summary

Prologue 35/39

Deep networks consisting only of dense layers become computationally
intractable as the number of parameters grows exponentially with each
additional layer.
Convolutional layers considerably reduce the number of parameters since
each unit is connected to a limited number of neurons from the previous
layer, its receptive field.
CNN is able to detect patterns in a positon independent manner.
RNN and LSTM handle sequence information, where the input sequences
can be of different lengths. They can detect patterns along the sequence.
Dropout layers are an effective regularization mechanism.



Next module

Prologue 36/39

Concept- and rule-based
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