CSI5180. Machine Learning for Bioinformatics Applications

Regularized Linear Models

by
 Marcel Turcotte

Preamble

Preamble

Regularized Linear Models

In this lecture, we introduce the concept of regularization. We consider the specific context of linear models: Ridge Regression, Lasso Regression, and Elastic Net. Finally, we discuss a simple technique called early stopping.

General objective :

-- Explain the concept of regularization in the context of linear regression and logistic

Learning objectives

:- Explain the concept of regularization in the context of linear regression and logistic

Reading:

:- Simon Dirmeier, Christiane Fuchs, Nikola S Mueller, and Fabian J Theis, netReg: network-regularized linear models for biological association studies, Bioinformatics 34 (2018), no. 5, 896898.

Plan

1. Preamble
2. Introduction
3. Polynomial Regression
4. Regularization
5. Logistic Regression
6. Prologue

Introduction

Supervised learning

:- The data set is a collection of labelled examples.
$\therefore\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$
: Each x_{i} is a feature vector with D dimensions.
: $x_{k}^{(j)}$ is the value of the feature j of the example k, for $j \in 1 \ldots D$ and $k \in 1 \ldots N$.
:The label y_{i} is either a class, taken from a finite list of classes, $\{1,2, \ldots, C\}$, or a real number, or a more complex object (vector, matrix, tree, graph, etc).
"- Problem: given the data set as input, create a "model" that can be used to predict the value of y for an unseen x.
Classification: $y_{i} \in\{$ Positive, Negative $\}$, a binary classification problem.
\Rightarrow Regression: y_{i} is a real number.

Linear Regression

:- A linear model assumes that the value of the label, \hat{y}_{i}, can be expressed as a linear combination of the feature values, $x_{i}^{(j)}$:

$$
\hat{y}_{i}=h\left(x_{i}\right)=\theta_{0}+\theta_{1} x_{i}^{(1)}+\theta_{2} x_{i}^{(2)}+\ldots+\theta_{D} x_{i}^{(D)}
$$

Linear Regression

:- A linear model assumes that the value of the label, \hat{y}_{i}, can be expressed as a linear combination of the feature values, $x_{i}^{(j)}$:

$$
\hat{y}_{i}=h\left(x_{i}\right)=\theta_{0}+\theta_{1} x_{i}^{(1)}+\theta_{2} x_{i}^{(2)}+\ldots+\theta_{D} x_{i}^{(D)}
$$

: Here, θ_{j} is the j the parameter of the (linear) model, with θ_{0} being the bias term/parameter, $\theta_{1} \ldots \theta_{D}$ being the feature weights.

Linear Regression

:- A linear model assumes that the value of the label, \hat{y}_{i}, can be expressed as a linear combination of the feature values, $x_{i}^{(j)}$:

$$
\hat{y}_{i}=h\left(x_{i}\right)=\theta_{0}+\theta_{1} x_{i}^{(1)}+\theta_{2} x_{i}^{(2)}+\ldots+\theta_{D} x_{i}^{(D)}
$$

: Here, θ_{j} is the j the parameter of the (linear) model, with θ_{0} being the bias term/parameter, $\theta_{1} \ldots \theta_{D}$ being the feature weights.
:- Problem: find values for all the model parameters so that the model "best fit" the training data.

Linear Regression

:- A linear model assumes that the value of the label, \hat{y}_{i}, can be expressed as a linear combination of the feature values, $x_{i}^{(j)}$:

$$
\hat{y}_{i}=h\left(x_{i}\right)=\theta_{0}+\theta_{1} x_{i}^{(1)}+\theta_{2} x_{i}^{(2)}+\ldots+\theta_{D} x_{i}^{(D)}
$$

:- Here, θ_{j} is the j the parameter of the (linear) model, with θ_{0} being the bias term/parameter, $\theta_{1} \ldots \theta_{D}$ being the feature weights.
"- Problem: find values for all the model parameters so that the model "best fit" the training data.
:" The Root Mean Square Error is a common performance measure for regression problems.

$$
\sqrt{\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}}
$$

Polynomial Regression

Polynomial Regression

:- What if the data is more complex?

Polynomial Regression

:- What if the data is more complex?
:- In our discussion on underfitting and overfitting the training data, we did look at polynomial models, but did not discuss how to learn them.

Polynomial Regression

:- What if the data is more complex?
:- In our discussion on underfitting and overfitting the training data, we did look at polynomial models, but did not discuss how to learn them.
:" Can we use our linear model to "fit" non linear data, and specifically data would have been generated by a polynomial "process"?

Polynomial Regression

:- What if the data is more complex?
:- In our discussion on underfitting and overfitting the training data, we did look at polynomial models, but did not discuss how to learn them.
:" Can we use our linear model to "fit" non linear data, and specifically data would have been generated by a polynomial "process"?
: How?

sklearn.preprocessing.PolynomialFeatures

:- A surprisingly simple solution consists of generating new features that are powers of existing ones!

sklearn.preprocessing.PolynomialFeatures

:- A surprisingly simple solution consists of generating new features that are powers of existing ones!

sklearn.preprocessing.PolynomialFeatures

:- A surprisingly simple solution consists of generating new features that are powers of existing ones!

```
from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform(X)
```


sklearn.preprocessing.PolynomialFeatures

F. A surprisingly simple solution consists of generating new features that are powers of existing ones!

```
from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform(X)
```

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)
print(lin_reg.intercept_, lin_reg.coef_)
```


Example fitting a linear model

```
import numpy as np
X = 2 * np.random.rand (100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
lin_reg.intercept_, lin_reg.coef_
# [4.07916603] [[2.90173949]]
```

? $y=4+3 x+$ noise
: $\hat{y}=4.07916603+2.90173949 x$

Example fitting a polynomial model

```
import numpy as np
X = 6 * np.random.rand (100, 1) - 3
y = 2 + 0.5 * X**2 + X + np.random.randn(100, 1)
from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform(X)
Iin_reg = LinearRegression()
lin_reg.fit(X_poly, y)
lin_reg.intercept_, lin_reg.coef_
# [1.701144] [[1.02118676 0.55725864]]
```

: $y=2.0+0.5 x^{2}+1.0 x+$ noise
$\hat{y}=1.701144+0.55725864 x^{2}+1.02118676 x$

Remarks

:- For higher degrees, PolynomialFeatures adds all the combination of features.

Remarks

"- For higher degrees, PolynomialFeatures adds all the combination of features.
: Given two features a and b, PolynomialFeatures generates, $a^{2}, a^{3}, b^{2}, b^{3}$, but also $a b, a^{2} b, a b^{2}$.

Remarks

:- For higher degrees, PolynomialFeatures adds all the combination of features.
: Given two features a and b, PolynomialFeatures generates, $a^{2}, a^{3}, b^{2}, b^{3}$, but also $a b, a^{2} b, a b^{2}$.
:- Given n features and degree d, PolynomialFeatures produces $\frac{(n+d)!}{d!n!}$ combinations!

Regularization

Bias/Variance trade-off

From [2] §4:
:" "...) a models generalization error can be expressed as the sum of three very different errors:"

Bias/Variance trade-off

From [2] §4:
:" "(...) a models generalization error can be expressed as the sum of three very different errors:"
". Bias: "is due to wrong assumptions", "A high-bias model is most likely to underfit the training data"

Bias/Variance trade-off

From [2] §4:
:" "(...) a models generalization error can be expressed as the sum of three very different errors:"
". Bias: "is due to wrong assumptions", "A high-bias model is most likely to underfit the training data"
". Variance: "the model's excessive sensitivity to small variations in the training data". A model with many parameters "is likely to have high variance and thus overfit the training data."

Bias/Variance trade-off

From [2] §4:
-" "(...) a models generalization error can be expressed as the sum of three very different errors:"
". Bias: "is due to wrong assumptions", "A high-bias model is most likely to underfit the training data"
". Variance: "the model's excessive sensitivity to small variations in the training data". A model with many parameters "is likely to have high variance and thus overfit the training data."
:" Irreducible error: "noisiness of the data itself"

Bias/Variance trade-off

From [2] §4:
-" "(...) a models generalization error can be expressed as the sum of three very different errors:"
". Bias: "is due to wrong assumptions", "A high-bias model is most likely to underfit the training data"
". Variance: "the model's excessive sensitivity to small variations in the training data". A model with many parameters "is likely to have high variance and thus overfit the training data."
" Irreducible error: "noisiness of the data itself"
". "Increasing a models complexity will typically increase its variance and reduce its bias. Conversely, reducing a models complexity increases its bias and reduces its variance."

Overfitting and underfitting

Figure 4-14. High-degree Polynomial Regression

Source: Géron 2019

Linear model - underfitting

Figure 4-15. Learning curves

Source: Géron 2019

Polynomial of degree 10 - overfitting

Figure 4-16. Learning curves for the 10th-degree polynomial model

Source: Géron 2019

Regularization

:- "Constraining a model to make it simpler and reduce the risk of overfitting is called regularization." [2]

Regularization

:- "Constraining a model to make it simpler and reduce the risk of overfitting is called regularization." [2]
:- One way to regularized a polynomial model is to restrict its degree.

Regularization

:- "Constraining a model to make it simpler and reduce the risk of overfitting is called regularization." [2]
:- One way to regularized a polynomial model is to restrict its degree. : How would you do that?

Regularization

"- "Constraining a model to make it simpler and reduce the risk of overfitting is called regularization." [2]
". One way to regularized a polynomial model is to restrict its degree.
: How would you do that?
:" Make the degree a hyperpamater, use a holding set or cross-validation.

Regularization

"- "Constraining a model to make it simpler and reduce the risk of overfitting is called regularization." [2]
". One way to regularized a polynomial model is to restrict its degree. : How would you do that?
:" Make the degree a hyperpamater, use a holding set or cross-validation.
:- Alternatively, we can constraint the weights of the model.
:- A norm is a function that assigns a number (length, size) to a vector.

- $\quad \ell_{p}$-norm

$$
\ell_{p} \text {-norm }=\|\theta\|_{p}=\left(\sum_{j=1}^{D}\left|\theta^{(j)}\right|^{p}\right)^{\frac{1}{\rho}}
$$

: ℓ_{1}-norm

$$
\ell_{l} \text {-norm }=\|\theta\|_{1}=\sum_{j=1}^{D}\left|\theta^{(j)}\right|
$$

: $\quad \ell_{2}$-norm

$$
\ell_{2} \text {-norm }=\|\theta\|_{2}=\sqrt{\sum_{j=1}^{D}\left|\theta^{(j)}\right|^{2}}
$$

Ridge Regression

-. You will remember the objective function, Mean Squared Error (MSE), used by our gradient descent.

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}
$$

Ridge Regression

:- You will remember the objective function, Mean Squared Error (MSE), used by our gradient descent.

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}
$$

"- In the case Ridge Regression, the objective function becomes:

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+\frac{1}{2} \alpha \sum_{1}^{D} \theta^{(j) 2}
$$

Ridge Regression

:- You will remember the objective function, Mean Squared Error (MSE), used by our gradient descent.

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}
$$

?- In the case Ridge Regression, the objective function becomes:

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+\frac{1}{2} \alpha \sum_{1}^{D} \theta^{(j) 2}
$$

:- The regularization is applying at learning time only.

Ridge Regression

:- You will remember the objective function, Mean Squared Error (MSE), used by our gradient descent.

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}
$$

?- In the case Ridge Regression, the objective function becomes:

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+\frac{1}{2} \alpha \sum_{1}^{D} \theta^{(j) 2}
$$

:- The regularization is applying at learning time only.

- $\quad \alpha$ is a hyperparameter, with $\alpha=0$, Ridge Regression is equivalent to a Linear Regression.

Ridge Regression

:- You will remember the objective function, Mean Squared Error (MSE), used by our gradient descent.

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}
$$

?- In the case Ridge Regression, the objective function becomes:

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+\frac{1}{2} \alpha \sum_{1}^{D} \theta^{(j) 2}
$$

:- The regularization is applying at learning time only.
:- α is a hyperparameter, with $\alpha=0$, Ridge Regression is equivalent to a Linear Regression.
=- $\frac{1}{2} \alpha \sum_{1}^{D} \theta^{(j) 2}$ is the ℓ_{2}-norm of the weight vector.

sklearn.linear_model.Ridge

```
from sklearn.linear_model import Ridge
ridge_reg = Ridge(alpha=1, solver="cholesky")
ridge_reg.fit(X, y)
```


Ridge Regression

Source: [2] Figure 4.17

Lasso Regression

:- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.

Lasso Regression

:- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.
-. Its objective function is:

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+\alpha \sum_{1}^{D} \theta^{(j)}
$$

Lasso Regression

:- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.
\#- Its objective function is:

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+\alpha \sum_{1}^{D} \theta^{(j)}
$$

- The regularization is applying at learning time only.

Lasso Regression

:- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.

- Its objective function is:

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+\alpha \sum_{1}^{D} \theta^{(j)}
$$

- The regularization is applying at learning time only.
:- α is a hyperparameter, with $\alpha=0$, Lasso Regression is equivalent to a Linear Regression.

Lasso Regression

:- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.

- Its objective function is:

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+\alpha \sum_{1}^{D} \theta^{(j)}
$$

- The regularization is applying at learning time only.
:- α is a hyperparameter, with $\alpha=0$, Lasso Regression is equivalent to a Linear Regression.
:- $\alpha \sum_{1}^{D} \theta^{(j)}$ is the ℓ_{1}-norm of the weight vector.

Lasso Regression

:- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.

- Its objective function is:

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+\alpha \sum_{1}^{D} \theta^{(j)}
$$

- The regularization is applying at learning time only.
:- α is a hyperparameter, with $\alpha=0$, Lasso Regression is equivalent to a Linear Regression.
\# $\alpha \sum_{1}^{D} \theta^{(j)}$ is the ℓ_{1}-norm of the weight vector.
:- Lasso regression favors sparse models (models with few terms with non-zero weights)

Lasso Regression

Source: [2] Figure 4.18

Ridge and Lasso regression

:- "Your role as the data analyst is to find such a value of the hyperparameter [α] that doesn't increase the bias too much but reduces the variance to a level reasonable for the problem at hand." [3]
:- In practice, ℓ_{1}-norm (Lasso) produces models that are sparse. Thus acting as a feature selection mechanism.
:- However, ℓ_{2}-norm (Ridge) usually gives better results in practice.
:- These norms are frequently used with other models/objective functions.

Elastic Net

:- Elastic Net is a mixture of Ridge Regression and Lasso Regression.

Elastic Net

:- Elastic Net is a mixture of Ridge Regression and Lasso Regression.

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+r \alpha \sum_{1}^{D} \theta^{(j)}+\frac{1-r}{2} \alpha \sum_{1}^{D} \theta^{(j) 2}
$$

Elastic Net

:- Elastic Net is a mixture of Ridge Regression and Lasso Regression.

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+r \alpha \sum_{1}^{D} \theta^{(j)}+\frac{1-r}{2} \alpha \sum_{1}^{D} \theta^{(j) 2}
$$

:- It adds a second hyperparameter r, to control ratio of ℓ_{2} and ℓ_{1} regularization.

Elastic Net

:- Elastic Net is a mixture of Ridge Regression and Lasso Regression.

$$
\frac{1}{N} \sum_{1}^{N}\left[h\left(x_{i}\right)-y_{i}\right]^{2}+r \alpha \sum_{1}^{D} \theta^{(j)}+\frac{1-r}{2} \alpha \sum_{1}^{D} \theta^{(j) 2}
$$

:- It adds a second hyperparameter r, to control ratio of ℓ_{2} and ℓ_{1} regularization.
:- In all three cases, the summation starts at 1, i.e. the bias term (here, the intercept) is excluded from the regularization.

sklearn.linear_model.ElasticNet

```
from sklearn.linear_model import ElasticNet
elastic_net = ElasticNet(alpha= 0.1, I1_ratio = 0.5)
elastic_net.fit(X, y)
```

Source: [2] §4

Early stopping

Geoffrey Hinton called this the "beautiful free lunch"
Source: [2] Figure 4.20

Remarks

:- The criteria used to drive the optimization (training) can be different than the criteria used for the hyper parameter selection procedure.
:- Regularized models are known to be sensitive to the scale of features, thus the data should be "normalized".
:- "(...) the fewer degrees of freedom it has, the harder it will be for it to overfit the data."

Logistic Regression

Logistic (Logit) Regression

:- Despite its name, Logistic Regression is a classification algorithm.

Logistic (Logit) Regression

:- Despite its name, Logistic Regression is a classification algorithm.
:- The labels are binary values, $y_{i} \in\{0,1\}$.

Logistic (Logit) Regression

:- Despite its name, Logistic Regression is a classification algorithm.
-. The labels are binary values, $y_{i} \in\{0,1\}$.
:- It is formulated to answer the question, "what is the probability that x_{i} is a positive example, i.e. $y_{i}=1$?"

Logistic (Logit) Regression

:- Despite its name, Logistic Regression is a classification algorithm.
-. The labels are binary values, $y_{i} \in\{0,1\}$.
:- It is formulated to answer the question, "what is the probability that x_{i} is a positive example, i.e. $y_{i}=1$?"
-- Just like the Linear Regression, the Logistic Regression computes a weighted sum of the input features:

$$
\theta_{0}+\theta_{1} x_{i}^{(1)}+\theta_{2} x_{i}^{(2)}+\ldots+\theta_{D} x_{i}^{(D)}
$$

Logistic (Logit) Regression

:- Despite its name, Logistic Regression is a classification algorithm.
:- The labels are binary values, $y_{i} \in\{0,1\}$.
:- It is formulated to answer the question, "what is the probability that x_{i} is a positive example, i.e. $y_{i}=1$?"
". Just like the Linear Regression, the Logistic Regression computes a weighted sum of the input features:

$$
\theta_{0}+\theta_{1} x_{i}^{(1)}+\theta_{2} x_{i}^{(2)}+\ldots+\theta_{D} x_{i}^{(D)}
$$

:- The image of this function is $-\infty$ to ∞ !

Logistic Regression

:- In mathematics, a standard logistic function maps a real value (\mathbb{R}) to the interval $(0,1)$:

Source: Wikipedia

$$
\sigma(t)=\frac{1}{1+e^{-t}}
$$

Logistic Regression

: The Logistic Regression model, in its vectorized form is:

$$
h_{\theta}\left(x_{i}\right)=\sigma\left(\theta x_{i}\right)=\frac{1}{1+e^{-\theta x_{i}}}
$$

Logistic Regression

:- The Logistic Regression model, in its vectorized form is:

$$
h_{\theta}\left(x_{i}\right)=\sigma\left(\theta x_{i}\right)=\frac{1}{1+e^{-\theta x_{i}}}
$$

:- Predictions are made as follows:

Logistic Regression

: The Logistic Regression model, in its vectorized form is:

$$
h_{\theta}\left(x_{i}\right)=\sigma\left(\theta x_{i}\right)=\frac{1}{1+e^{-\theta x_{i}}}
$$

:- Predictions are made as follows:
$3 y_{i}=0$, if $h_{\theta}\left(x_{i}\right)<0.5$

Logistic Regression

: The Logistic Regression model, in its vectorized form is:

$$
h_{\theta}\left(x_{i}\right)=\sigma\left(\theta x_{i}\right)=\frac{1}{1+e^{-\theta x_{i}}}
$$

:- Predictions are made as follows:

$$
\begin{aligned}
& y_{i}=0, \text { if } h_{\theta}\left(x_{i}\right)<0.5 \\
& y_{i}=1, \text { if } h_{\theta}\left(x_{i}\right) \geq 0.5
\end{aligned}
$$

Logistic Regression

:- The Logistic Regression model, in its vectorized form is:

$$
h_{\theta}\left(x_{i}\right)=\sigma\left(\theta x_{i}\right)=\frac{1}{1+e^{-\theta x_{i}}}
$$

: Predictions are made as follows:
$\therefore y_{i}=0$, if $h_{\theta}\left(x_{i}\right)<0.5$
$3 y_{i}=1$, if $h_{\theta}\left(x_{i}\right) \geq 0.5$
:- The values of θ are learnt using gradient descent.

2020

:- Include the derivation of the loss (objective) function.

sklearn.linear_model.LogisticRegression

```
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X, y)
# ...
y_proba = log_reg.predict_proba(X_new)
```


Prologue

Summary

". Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.

Summary

". Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
:- Limiting the complexity of the model is one way to add regularization.

Summary

". Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
:- Limiting the complexity of the model is one way to add regularization.
$\%$ Limiting the degree of the polynomial in case of a polynomial model.

Summary

". Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
:- Limiting the complexity of the model is one way to add regularization.
$\%$ Limiting the degree of the polynomial in case of a polynomial model.
:- Often, penalty terms are added to the objective (cost) function.

Summary

". Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
:- Limiting the complexity of the model is one way to add regularization.
: Limiting the degree of the polynomial in case of a polynomial model.
:- Often, penalty terms are added to the objective (cost) function.
\% Ridge: ℓ_{2}-norm term is added to the objective function.

Summary

". Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
:- Limiting the complexity of the model is one way to add regularization.
: Limiting the degree of the polynomial in case of a polynomial model.
:- Often, penalty terms are added to the objective (cost) function.
\% Ridge: ℓ_{2}-norm term is added to the objective function.
\%Lasso: ℓ_{1}-norm term is added to the objective function.

Summary

". Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
:- Limiting the complexity of the model is one way to add regularization.
: Limiting the degree of the polynomial in case of a polynomial model.
:- Often, penalty terms are added to the objective (cost) function.
\% Ridge: ℓ_{2}-norm term is added to the objective function.
\% Lasso: ℓ_{1}-norm term is added to the objective function.
$=$ Elastic Net: both, ℓ_{2} and ℓ_{1}-norm terms are added to the objective function.

Summary

-. Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
:- Limiting the complexity of the model is one way to add regularization.
: Limiting the degree of the polynomial in case of a polynomial model.
:- Often, penalty terms are added to the objective (cost) function.
\% Ridge: ℓ_{2}-norm term is added to the objective function.
\% Lasso: ℓ_{1}-norm term is added to the objective function.
Elastic Net: both, ℓ_{2} and ℓ_{1}-norm terms are added to the objective function.
:- Early stopping criteria is an effective and fairly general regularization, it can be applied iterative learning algorithms, such as batch gradient.

Summary

". Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
:- Limiting the complexity of the model is one way to add regularization.
: Limiting the degree of the polynomial in case of a polynomial model.
:- Often, penalty terms are added to the objective (cost) function.
\% Ridge: ℓ_{2}-norm term is added to the objective function.
\% Lasso: ℓ_{1}-norm term is added to the objective function.
Elastic Net: both, ℓ_{2} and ℓ_{1}-norm terms are added to the objective function.
:- Early stopping criteria is an effective and fairly general regularization, it can be applied iterative learning algorithms, such as batch gradient.
:- Contrary to Principal Component Analysis, the above techniques are of their impact on the performance of the learning algorithms (o the validation set).

Next module

:- Models related to decision trees

References

Timon Dirmeier, Christiane Fuchs, Nikola S Mueller, and Fabian J Theis. netReg: network-regularized linear models for biological association studies. Bioinformatics, 34(5):896-898, 032018.

目 Aurélien Géron.
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, 2nd edition, 2019.

目 Andriy Burkov.
The Hundred-Page Machine Learning Book.
Andriy Burkov, 2019.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca
School of Electrical Engineering and Computer Science (EECS) University of Ottawa

