CSI5180. Machine Learning for Bioinformatics Applications

Regularized Linear Models

Marcel Turcotte

Version November 6, 2019

Preamble

Regularized Linear Models

In this lecture, we introduce the concept of regularization. We consider the specific context of linear models: Ridge Regression, Lasso Regression, and Elastic Net. Finally, we discuss a simple technique called early stopping.

General objective :

Explain the concept of regularization in the context of linear regression and logistic

Explain the concept of regularization in the context of linear regression and logistic

Reading:

 Simon Dirmeier, Christiane Fuchs, Nikola S Mueller, and Fabian J Theis, netReg: network-regularized linear models for biological association studies, Bioinformatics 34 (2018), no. 5, 896898.

1. Preamble

2. Introduction

- 3. Polynomial Regression
- 4. Regularization
- 5. Logistic Regression
- 6. Prologue

Introduction

Supervised learning

- The **data set** is a collection of **labelled** examples.
 - $\{(x_i, y_i)\}_{i=1}^N$
 - Each x_i is a **feature vector** with D dimensions.
 - $x_k^{(j)}$ is the value of the **feature** *j* of the example *k*, for $j \in 1...D$ and $k \in 1...N$.
 - The label y_i is either a class, taken from a finite list of classes, {1, 2, ..., C}, or a real number, or a more complex object (vector, matrix, tree, graph, etc).
- Problem: given the data set as input, create a "model" that can be used to predict the value of y for an unseen x.
 - **Classification**: $y_i \in \{\text{Positive}, \text{Negative}\}$, a binary classification problem.
 - **Regression**: *y_i* is a real number.

A linear model assumes that the value of the label, \hat{y}_i , can be expressed as a linear combination of the feature values, $x_i^{(j)}$:

$$\hat{y}_i = h(x_i) = \theta_0 + \theta_1 x_i^{(1)} + \theta_2 x_i^{(2)} + \ldots + \theta_D x_i^{(D)}$$

A linear model assumes that the value of the label, \hat{y}_i , can be expressed as a linear combination of the feature values, $x_i^{(j)}$:

$$\hat{y}_i = h(x_i) = heta_0 + heta_1 x_i^{(1)} + heta_2 x_i^{(2)} + \ldots + heta_D x_i^{(D)}$$

Here, θ_j is the *j*the parameter of the (linear) model, with θ_0 being the **bias** term/parameter, $\theta_1 \dots \theta_D$ being the **feature weights**.

A linear model assumes that the value of the label, \hat{y}_i , can be expressed as a linear combination of the feature values, $x_i^{(j)}$:

$$\hat{y}_i = h(x_i) = heta_0 + heta_1 x_i^{(1)} + heta_2 x_i^{(2)} + \ldots + heta_D x_i^{(D)}$$

- Here, θ_j is the *j*the parameter of the (linear) model, with θ_0 being the **bias** term/parameter, $\theta_1 \dots \theta_D$ being the **feature weights**.
- Problem: find values for all the model parameters so that the model "best fit" the training data.

A linear model assumes that the value of the label, \hat{y}_i , can be expressed as a linear combination of the feature values, $x_i^{(j)}$:

$$\hat{y}_i = h(x_i) = \theta_0 + \theta_1 x_i^{(1)} + \theta_2 x_i^{(2)} + \ldots + \theta_D x_i^{(D)}$$

- Here, θ_j is the *j*the parameter of the (linear) model, with θ_0 being the **bias** term/parameter, $\theta_1 \dots \theta_D$ being the **feature weights**.
- Problem: find values for all the model parameters so that the model "best fit" the training data.
 - The Root Mean Square Error is a common performance measure for regression problems.

$$\sqrt{\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2}$$

Polynomial Regression

What if the data is more complex?

- What if the data is more complex?
- In our discussion on underfitting and overfitting the training data, we did look at polynomial models, but did not discuss how to learn them.

- What if the data is more complex?
- In our discussion on underfitting and overfitting the training data, we did look at polynomial models, but did not discuss how to learn them.
- Can we use our linear model to "fit" non linear data, and specifically data would have been generated by a polynomial "process"?

- What if the data is more complex?
- In our discussion on underfitting and overfitting the training data, we did look at polynomial models, but did not discuss how to learn them.
- Can we use our linear model to "fit" non linear data, and specifically data would have been generated by a polynomial "process"?
 - How?

A surprisingly simple solution consists of generating new features that are powers of existing ones!

A surprisingly simple solution consists of generating new features that are powers of existing ones!

A surprisingly simple solution consists of generating new features that are powers of existing ones!

from sklearn.preprocessing import PolynomialFeatures

poly_features = PolynomialFeatures(degree=2, include_bias=False)

X_poly = poly_features.fit_transform(X)

A surprisingly simple solution consists of generating new features that are powers of existing ones!

from sklearn preprocessing import PolynomialFeatures

```
poly_features = PolynomialFeatures(degree=2, include_bias=False)
```

X_poly = poly_features.fit_transform(X)

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)
print(lin_reg.intercept_, lin_reg.coef_)
```

Example fitting a linear model

import numpy as np

```
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
```

from sklearn.linear_model import LinearRegression

```
lin_reg = LinearRegression()
```

```
lin_reg.fit(X, y)
```

```
lin_reg intercept_ , lin_reg coef_
```

[4.07916603] [[2.90173949]]

$$y = 4 + 3x + \text{noise}$$

$$\hat{y} = 4.07916603 + 2.90173949x$$

Example fitting a polynomial model

import numpy as np

from sklearn.preprocessing import PolynomialFeatures

```
poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform(X)
```

```
lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)
lin_reg.intercept_, lin_reg.coef_
```

[1.701144] [[1.02118676 0.55725864]]

$$y = 2.0 + 0.5x^{2} + 1.0x + \text{noise}$$

$$\hat{y} = 1.701144 + 0.55725864x^{2} + 1.02118676x$$

 For higher degrees, PolynomialFeatures adds all the combination of features.

- For higher degrees, PolynomialFeatures adds all the combination of features.
 - Given two features a and b, PolynomialFeatures generates, a², a³, b², b³, but also ab, a²b, ab².

- For higher degrees, PolynomialFeatures adds all the combination of features.
 - Given two features a and b, PolynomialFeatures generates, a², a³, b², b³, but also ab, a²b, ab².
- Given *n* features and degree *d*, PolynomialFeatures produces (*n*+*d*)!/*d*!*n*! combinations!

Regularization

Bias/Variance trade-off

From [2] §4:

"(...) a models generalization error can be expressed as the sum of three very different errors:"

Bias/Variance trade-off

- "(...) a models generalization error can be expressed as the sum of three very different errors:"
 - Bias: "is due to wrong assumptions", "A high-bias model is most likely to underfit the training data"

- "(...) a models generalization error can be expressed as the sum of three very different errors:"
 - Bias: "is due to wrong assumptions", "A high-bias model is most likely to underfit the training data"
 - Variance: "the model's excessive sensitivity to small variations in the training data". A model with many parameters "is likely to have high variance and thus overfit the training data."

- "(...) a models generalization error can be expressed as the sum of three very different errors:"
 - Bias: "is due to wrong assumptions", "A high-bias model is most likely to underfit the training data"
 - Variance: "the model's excessive sensitivity to small variations in the training data". A model with many parameters "is likely to have high variance and thus overfit the training data."
 - Irreducible error: "noisiness of the data itself"

- "(...) a models generalization error can be expressed as the sum of three very different errors:"
 - Bias: "is due to wrong assumptions", "A high-bias model is most likely to underfit the training data"
 - Variance: "the model's excessive sensitivity to small variations in the training data". A model with many parameters "is likely to have high variance and thus overfit the training data."
 - Fireducible error: "noisiness of the data itself"
- Increasing a models complexity will typically increase its variance and reduce its bias. Conversely, reducing a models complexity increases its bias and reduces its variance."

Overfitting and underfitting

Figure 4-14. High-degree Polynomial Regression

Source: Géron 2019

Linear model - underfitting

Source: Géron 2019

Polynomial of degree 10 - overfitting

Source: Géron 2019

"Constraining a model to make it simpler and reduce the risk of overfitting is called regularization." [2]

- Constraining a model to make it simpler and reduce the risk of overfitting is called regularization." [2]
- One way to **regularized** a **polynomial model** is to restrict its degree.
- "Constraining a model to make it simpler and reduce the risk of overfitting is called regularization." [2]
- One way to **regularized** a **polynomial model** is to restrict its degree.
 - **How** would you do that?

- "Constraining a model to make it simpler and reduce the risk of overfitting is called regularization." [2]
- One way to **regularized** a **polynomial model** is to restrict its degree.
 - **How** would you do that?
 - Make the degree a hyperpamater, use a holding set or cross-validation.

- "Constraining a model to make it simpler and reduce the risk of overfitting is called regularization." [2]
- One way to **regularized** a **polynomial model** is to restrict its degree.
 - **How** would you do that?
 - Make the degree a hyperpamater, use a holding set or cross-validation.
- Alternatively, we can constraint the weights of the model.

Norm

A norm is a function that assigns a number (length, size) to a vector.
 ℓ_p-norm

$$\ell_p$$
-norm = $||\theta||_p = \left(\sum_{j=1}^D |\theta^{(j)}|^p\right)^{\frac{1}{p}}$

 ℓ_1 -norm

$$\ell_{I}$$
-norm = $||\theta||_{1} = \sum_{j=1}^{D} |\theta^{(j)}|_{j}$

• ℓ_2 -norm

$$\ell_2$$
-norm = $||\theta||_2 = \sqrt{\sum_{j=1}^{D} |\theta^{(j)}|^2}$

You will remember the objective function, Mean Squared Error (MSE), used by our gradient descent.

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2$$

You will remember the objective function, Mean Squared Error (MSE), used by our gradient descent.

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2$$

In the case Ridge Regression, the objective function becomes:

$$\frac{1}{N}\sum_{1}^{N}[h(x_{i})-y_{i}]^{2}+\frac{1}{2}\alpha\sum_{1}^{D}\theta^{(j)2}$$

You will remember the objective function, Mean Squared Error (MSE), used by our gradient descent.

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2$$

In the case Ridge Regression, the objective function becomes:

$$\frac{1}{N}\sum_{1}^{N}[h(x_{i})-y_{i}]^{2}+\frac{1}{2}\alpha\sum_{1}^{D}\theta^{(j)2}$$

The regularization is applying at learning time only.

You will remember the objective function, Mean Squared Error (MSE), used by our gradient descent.

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2$$

In the case Ridge Regression, the objective function becomes:

$$\frac{1}{N}\sum_{1}^{N}[h(x_{i})-y_{i}]^{2}+\frac{1}{2}\alpha\sum_{1}^{D}\theta^{(j)2}$$

- The regularization is applying at learning time only.
- α is a hyperparameter, with α = 0, Ridge Regression is equivalent to a Linear Regression.

You will remember the objective function, Mean Squared Error (MSE), used by our gradient descent.

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2$$

In the case Ridge Regression, the objective function becomes:

$$\frac{1}{N}\sum_{1}^{N}[h(x_{i})-y_{i}]^{2}+\frac{1}{2}\alpha\sum_{1}^{D}\theta^{(j)2}$$

- The regularization is applying at learning time only.
- α is a hyperparameter, with $\alpha = 0$, Ridge Regression is equivalent to a Linear Regression.
- $\frac{1}{2} \alpha \sum_{1}^{D} \theta^{(j)2}$ is the ℓ_2 -norm of the weight vector.

```
from sklearn.linear_model import Ridge
```

```
ridge_reg = Ridge(alpha=1, solver="cholesky")
ridge_reg.fit(X, y)
```


Source: [2] Figure 4.17

Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.

- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.
- Its objective function is:

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2+\alpha\sum_{1}^{D}\theta^{(j)}$$

- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.
- Its objective function is:

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2+\alpha\sum_{1}^{D}\theta^{(j)}$$

The regularization is applying at learning time only.

- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.
- Its objective function is:

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2+\alpha\sum_{1}^{D}\theta^{(j)}$$

- The regularization is applying at learning time only.
- α is a hyperparameter, with α = 0, Lasso Regression is equivalent to a Linear Regression.

- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.
- Its objective function is:

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2+\alpha\sum_{1}^{D}\theta^{(j)}$$

- The regularization is applying at learning time only.
- α is a hyperparameter, with α = 0, Lasso Regression is equivalent to a Linear Regression.
- $\alpha \sum_{1}^{D} \theta^{(j)}$ is the ℓ_1 -norm of the weight vector.

- Another popular regularization is the Least Absolute Shrinkage and Selection Operator Regression, Lasso Regression.
- Its objective function is:

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2+\alpha\sum_{1}^{D}\theta^{(j)}$$

- The regularization is applying at learning time only.
- α is a hyperparameter, with α = 0, Lasso Regression is equivalent to a Linear Regression.
- $\alpha \sum_{1}^{D} \theta^{(j)}$ is the ℓ_1 -norm of the weight vector.
- Lasso regression favors sparse models (models with few terms with non-zero weights)

Source: [2] Figure 4.18

- "Your role as the data analyst is to find such a value of the hyperparameter [α] that doesn't increase the bias too much but reduces the variance to a level reasonable for the problem at hand." [3]
- In practice, l₁-norm (Lasso) produces models that are sparse. Thus acting as a feature selection mechanism.
- However, ℓ_2 -norm (Ridge) usually gives better results in practice.
- These norms are frequently used with other models/objective functions.

Elastic Net is a mixture of Ridge Regression and Lasso Regression.

Elastic Net is a mixture of Ridge Regression and Lasso Regression.

$$\frac{1}{N}\sum_{1}^{N}[h(x_{i})-y_{i}]^{2}+r\alpha\sum_{1}^{D}\theta^{(j)}+\frac{1-r}{2}\alpha\sum_{1}^{D}\theta^{(j)2}$$

Elastic Net is a mixture of Ridge Regression and Lasso Regression. $1 \quad P \qquad 1 = r \quad P$

$$\frac{1}{N}\sum_{1}^{N}[h(x_i)-y_i]^2+r\alpha\sum_{1}^{D}\theta^{(j)}+\frac{1-r}{2}\alpha\sum_{1}^{D}\theta^{(j)2}$$

It adds a second hyperparameter r, to control ratio of l₂ and l₁ regularization.

Elastic Net is a mixture of Ridge Regression and Lasso Regression.

$$\frac{1}{N}\sum_{1}^{N}[h(x_{i})-y_{i}]^{2}+r\alpha\sum_{1}^{D}\theta^{(j)}+\frac{1-r}{2}\alpha\sum_{1}^{D}\theta^{(j)2}$$

- It adds a second hyperparameter r, to control ratio of l₂ and l₁ regularization.
- In all three cases, the summation starts at 1, i.e. the bias term (here, the intercept) is excluded from the regularization.

sklearn.linear_model.ElasticNet

```
from sklearn.linear_model import ElasticNet
```

```
elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
elastic_net.fit(X, y)
```

Source: [2] §4

Early stopping

Geoffrey Hinton called this the "beautiful free lunch" Source: [2] Figure 4.20

- The criteria used to drive the **optimization** (training) can be different than the criteria used for the **hyper parameter** selection procedure.
- Regularized models are known to be sensitive to the scale of features, thus the data should be "normalized".
- "(...) the fewer degrees of freedom it has, the harder it will be for it to overfit the data."

Logistic Regression

Despite its name, **Logistic Regression** is a **classification** algorithm.

- Despite its name, **Logistic Regression** is a **classification** algorithm.
- The **labels** are binary values, $y_i \in \{0, 1\}$.

- Despite its name, Logistic Regression is a classification algorithm.
- The **labels** are binary values, $y_i \in \{0, 1\}$.
- It is formulated to answer the question, "what is the probability that x_i is a positive example, i.e. $y_i = 1$?"

- Despite its name, Logistic Regression is a classification algorithm.
- The **labels** are binary values, $y_i \in \{0, 1\}$.
- It is formulated to answer the question, "what is the probability that x_i is a positive example, i.e. $y_i = 1$?"
- Just like the Linear Regression, the Logistic Regression computes a weighted sum of the input features:

$$\theta_0 + \theta_1 x_i^{(1)} + \theta_2 x_i^{(2)} + \ldots + \theta_D x_i^{(D)}$$

- Despite its name, Logistic Regression is a classification algorithm.
- The **labels** are binary values, $y_i \in \{0, 1\}$.
- It is formulated to answer the question, "what is the probability that x_i is a positive example, i.e. $y_i = 1$?"
- Just like the Linear Regression, the Logistic Regression computes a weighted sum of the input features:

$$\theta_0 + \theta_1 x_i^{(1)} + \theta_2 x_i^{(2)} + \ldots + \theta_D x_i^{(D)}$$

The image of this function is $-\infty$ to ∞ !

Logistic Regression

In mathematics, a standard logistic function maps a real value (R) to the interval (0, 1):

$$\sigma(t)=rac{1}{1+e^{-t}}$$

The **Logistic Regression** model, in its vectorized form is:

$$h_{ heta}(x_i) = \sigma(heta x_i) = rac{1}{1 + e^{- heta x_i}}$$

The **Logistic Regression** model, in its vectorized form is:

$$h_{ heta}(x_i) = \sigma(heta x_i) = rac{1}{1 + e^{- heta x_i}}$$

Predictions are made as follows:

The **Logistic Regression** model, in its vectorized form is:

$$h_{ heta}(x_i) = \sigma(heta x_i) = rac{1}{1 + e^{- heta x_i}}$$

Predictions are made as follows:

> $y_i = 0$, if $h_{\theta}(x_i) < 0.5$
The **Logistic Regression** model, in its vectorized form is:

$$h_{ heta}(x_i) = \sigma(heta x_i) = rac{1}{1 + e^{- heta x_i}}$$

Predictions are made as follows:

The **Logistic Regression** model, in its vectorized form is:

$$h_{ heta}(x_i) = \sigma(heta x_i) = rac{1}{1 + e^{- heta x_i}}$$

Predictions are made as follows:

•
$$y_i = 0$$
, if $h_{\theta}(x_i) < 0.5$

$$\quad \textbf{y}_i = 1, \text{ if } h_\theta(x_i) \geq 0.5$$

The values of θ are learnt using gradient descent.

Include the derivation of the loss (objective) function.

sklearn.linear_model.LogisticRegression

```
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
```

```
log_reg.fit(X, y)
```

```
# ...
y_proba = log_reg.predict_proba(X_new)
```


Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.

- Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
- Limiting the **complexity of the model** is one way to add regularization.

- Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
- Limiting the **complexity of the model** is one way to add regularization.
 - Limiting the degree of the polynomial in case of a polynomial model.

- Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
- Limiting the **complexity of the model** is one way to add regularization.
 - Limiting the degree of the polynomial in case of a polynomial model.
- Often, penalty terms are added to the objective (cost) function.

- Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
- Limiting the **complexity of the model** is one way to add regularization.
 - Limiting the degree of the polynomial in case of a polynomial model.
- Often, penalty terms are added to the objective (cost) function.
 - **Fidge**: ℓ_2 -norm term is added to the objective function.

- Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
- Limiting the **complexity of the model** is one way to add regularization.
 - Limiting the degree of the polynomial in case of a polynomial model.
- Often, penalty terms are added to the objective (cost) function.
 - **Fidge**: ℓ_2 -norm term is added to the objective function.
 - **Lasso**: ℓ_1 -norm term is added to the objective function.

- Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
- Limiting the **complexity of the model** is one way to add regularization.
 - Limiting the degree of the polynomial in case of a polynomial model.
- Often, penalty terms are added to the objective (cost) function.
 - **Fidge**: ℓ_2 -norm term is added to the objective function.
 - **Lasso**: ℓ_1 -norm term is added to the objective function.
 - **Elastic Net**: both, ℓ_2 and ℓ_1 -norm terms are added to the objective function.

- Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
- Limiting the **complexity of the model** is one way to add regularization.
 - Limiting the degree of the polynomial in case of a polynomial model.
- Often, penalty terms are added to the objective (cost) function.
 - **Fidge**: ℓ_2 -norm term is added to the objective function.
 - **Lasso**: ℓ_1 -norm term is added to the objective function.
 - **Elastic Net**: both, ℓ_2 and ℓ_1 -norm terms are added to the objective function.
- **Early stopping** criteria is an effective and fairly general regularization, it can be applied iterative learning algorithms, such as batch gradient.

- Regularization is the idea to constrain a model making it simpler, thus less prone to overfitting.
- Limiting the **complexity of the model** is one way to add regularization.
 - Limiting the degree of the polynomial in case of a polynomial model.
- Often, penalty terms are added to the objective (cost) function.
 - **Fidge**: ℓ_2 -norm term is added to the objective function.
 - **Lasso**: ℓ_1 -norm term is added to the objective function.
 - **Elastic Net**: both, ℓ_2 and ℓ_1 -norm terms are added to the objective function.
- **Early stopping** criteria is an effective and fairly general regularization, it can be applied iterative learning algorithms, such as batch gradient.
- Contrary to Principal Component Analysis, the above techniques are of their impact on the performance of the learning algorithms (o the validation set).

Models related to **decision trees**

Simon Dirmeier, Christiane Fuchs, Nikola S Mueller, and Fabian J Theis. netReg: network-regularized linear models for biological association studies. *Bioinformatics*, 34(5):896–898, 03 2018.

Aurélien Géron.

Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, 2nd edition, 2019.

Andriy Burkov.

The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS) University of Ottawa