
2025-03-10, 16:39slides

Page 1 of 36about:srcdoc

Deap Learning Training
CSI 5180 - Machine Learning for Bioinformatics

Marcel Turcotte

Version: Mar 10, 2025 16:38

Preamble

Quote of the Day

2025-03-10, 16:39slides

Page 2 of 36about:srcdoc

AI tools are spotting errors in research papers: inside a growing movement by

Elizabeth Gibney in Nature News, 2025-03-07.

Summary

This lecture provides an in-depth introduction to deep learning training with a

focus on its applications in bioinformatics. It covers the key models and

repositories used in genomics—such as Kipoi, Hugging Face, and DragoNN—

https://www.nature.com/articles/d41586-025-00648-5

2025-03-10, 16:39slides

Page 3 of 36about:srcdoc

while explaining the fundamental components of neural networks including layers,

activation functions, and the universal approximation theorem. The lecture then

delves into the mechanics of training neural networks, detailing the forward pass,

backpropagation, gradient descent, and techniques for overcoming challenges

like vanishing and exploding gradients through proper weight initialization,

dropout, and early stopping.

Learning Objectives

Understand the core architecture and components of deep neural networks.

Explain the role and differences among activation functions and their impact

on training.

Describe the backpropagation algorithm and its significance in updating

network weights.

Identify common challenges in training deep networks and the strategies

used to overcome them.

Recognize key genomics-specific deep learning resources and repositories.

Models for Genomics

Kipoi

Avsec et al. (2019)

2025-03-10, 16:39slides

Page 4 of 36about:srcdoc

Kipoi is an open science initiative that provides a repository for sharing and

reusing trained machine learning models in genomics. It offers over 2,000

models for tasks like predicting chromatin accessibility and transcription

factor binding. Kipoi includes standardized data handling, an API for easy

integration, and supports model adaptation through retraining or combination. It

facilitates reproducible research by automating model installation and testing.

Kipoi (Continued)
import kipoi

model = kipoi.get_model("Basset") # load the model

model.predict_on_batch(x)

or

model.pipeline.predict(dict(fasta_file="hg19.fa",
intervals_file="intervals.bed"))
kipoi.org, example notebooks, predicting transcription factor binding sites

Hugging Face, Inc.

A private company develops computational tools for machine learning

applications, known for its NLP-focused transformers library.

It provides a platform for sharing machine learning models and datasets,

featuring hundreds of resources related to DNA, RNA, protein, and biology.

Hugging Face, Inc. (Continued)

Example

AIDO.Protein-16B

AIDO.Protein-16B is a protein language model, trained on 1.2 trillion

amino acids sourced from UniRef90 and ColabFoldDB.

Mixture of Experts Enable Efficient and Effective Protein

https://kipoi.org/
https://github.com/kipoi/kipoi/tree/master/notebooks
https://github.com/kipoi/kipoi/blob/master/notebooks/tf_binding_models.ipynb
https://huggingface.co/
https://huggingface.co/genbio-ai/AIDO.Protein-16B
https://www.biorxiv.org/content/10.1101/2024.11.29.625425v1.full.pdf

2025-03-10, 16:39slides

Page 5 of 36about:srcdoc

Understanding and Design

huggingface.co

DragoNN

Toolkit to learn how to model and interpret regulatory sequence data

using deep learning.

Exploring convolutional neural network (CNN) architectures for a

homotypic motif density simulation.

CNN hyperparameter tuning via grid search.

Interpreting features induced by CNN’s across multiple types of motif

grammars.

Interpreting predictive sequence features in TF binding events within the

GM12878 cell line.

Functional variant characterization for non-coding SNPs within the SPI1

motif.

Summary - DL

Deep learning (DL) is a machine learning technique that can be applied to

supervised learning (including regression and classification),

unsupervised learning, and reinforcement learning.

Inspired from the structure and function of biological neural networks

found in animals.

Comprises interconnected neurons (or units) arranged into layers.

Summary - FNN

https://www.biorxiv.org/content/10.1101/2024.11.29.625425v1.full.pdf
https://huggingface.co/
https://colab.research.google.com/github/kundajelab/dragonn/blob/master/tutorials/Tutorial%201%20-%20Exploring%20model%20architectures%20for%20a%20homotypic%20motif%20density%20simulation.ipynb
https://colab.research.google.com/github/kundajelab/dragonn/blob/master/tutorials/Tutorial%202%20-%20Hyperparameter%20Tuning%20via%20Grid%20Search.ipynb
https://colab.research.google.com/github/kundajelab/dragonn/blob/master/tutorials/Tutorial%203%20-%20Interpreting%20features%20induced%20by%20DNN%27s%20across%20multiple%20types%20of%20motif%20grammars.ipynb
https://colab.research.google.com/github/kundajelab/dragonn/blob/master/tutorials/Tutorial%204%20-%20Interpreting%20predictive%20sequence%20features%20in%20%20TF%20binding%20events%20within%20the%20GM12878%20cell%20line.ipynb
https://colab.research.google.com/github/kundajelab/dragonn/blob/master/tutorials/Tutorial%205%20-%20Functional%20variant%20characterization%20for%20non-coding%20SNPs%20within%20the%20SPI1%20motif.ipynb

2025-03-10, 16:39slides

Page 6 of 36about:srcdoc

Information in this architecture flows unidirectionally—from left to right, moving

from input to output. Consequently, it is termed a feedforward neural network

(FNN).

Neural networks have inputs and outputs.

The network consists of three layers: input, hidden, and output. The input layer

contains two nodes, the hidden layer comprises three nodes, and the output

layer has two nodes. Additional hidden layers and nodes per layer can be added,

which will be discussed later.

It is often useful to include explicit input nodes that do not perform calculations,

known as input units or input neurons. These nodes act as placeholders to

introduce input features into the network, passing data directly to the next layer

without transformation. In the network diagram, these are the light blue nodes on

the left. Typically, the number of input units corresponds to the number of

features.

Summary - FNN

2025-03-10, 16:39slides

Page 7 of 36about:srcdoc

The number of layers and nodes can vary based on the specific requirements.

Neural networks can have a significantly large number of input nodes, often in the

hundreds or thousands, depending on the complexity of the data. Additionally,

they may contain numerous hidden layers. For instance, ResNet, which won the

ILSVRC 2015 image classification task, features 152 layers. The authors of ResNet

have demonstrated results for networks with 100 and even 1000 layers (He et al.

2016). However, the number of output nodes tends to be relatively small. In

regression problems, there is typically one output node, while in classification

tasks (whether multiclass or multilabel), the number of output nodes corresponds

to the number of classes.

Summary - units

2025-03-10, 16:39slides

Page 8 of 36about:srcdoc

Introducing a fictitious input $x^{(0)} = 1$ is a hack that simplifies the expression

$x^T\theta + b$.

In the diagram above, it is important to clarify that the inputs and output pertain

specifically to this individual unit, rather than to the entire network’s global inputs

and output.

The name activation originates from the function’s role in determining whether a

neuron should be “activated” or “fired” based on its input.

Historically, the concept was inspired by biological neurons, where a neuron

activates and transmits a signal to other neurons if its input exceeds a certain

threshold. In artificial neural networks, the activation function serves a similar

purpose by introducing non-linearity into the model. This non-linearity is crucial

because it enables the network to learn complex patterns and representations in

the data.

Common Activation Functions

Attribution: https://github.com/ageron/handson-ml3/blob/main/10_neural_nets_with_keras.ipynb

import numpy as np
import matplotlib.pyplot as plt

from scipy.special import expit as sigmoid

def relu(z):
 return np.maximum(0, z)

def derivative(f, z, eps=0.000001):
 return (f(z + eps) - f(z - eps))/(2 * eps)

In [2]:

2025-03-10, 16:39slides

Page 9 of 36about:srcdoc

max_z = 4.5
z = np.linspace(-max_z, max_z, 200)

plt.figure(figsize=(11, 3.1))

plt.subplot(121)
plt.plot(z, relu(z), "m-.", linewidth=2, label="ReLU")
plt.plot(z, sigmoid(z), "g--", linewidth=2, label="Sigmoid")
plt.plot(z, np.tanh(z), "b-", linewidth=1, label="Tanh")
plt.grid(True)
plt.title("Activation functions")
plt.axis([-max_z, max_z, -1.65, 2.4])
plt.gca().set_yticks([-1, 0, 1, 2])
plt.legend(loc="lower right", fontsize=13)

plt.subplot(122)
plt.plot(z, derivative(sigmoid, z), "g--", linewidth=2, label="Sigmoid")
plt.plot(z, derivative(np.tanh, z), "b-", linewidth=1, label="Tanh")
plt.plot([-max_z, 0], [0, 0], "m-.", linewidth=2)
plt.plot([0, max_z], [1, 1], "m-.", linewidth=2)
plt.plot([0, 0], [0, 1], "m-.", linewidth=1.2)
plt.plot(0, 1, "mo", markersize=5)
plt.plot(0, 1, "mx", markersize=10)
plt.grid(True)
plt.title("Derivatives")
plt.axis([-max_z, max_z, -0.2, 1.2])

plt.show()

Géron (2022) – 10_neural_nets_with_keras.ipynb

Consider the following observations:

The sigmoid function produces outputs within the open interval $(0, 1)$.

The hyperbolic tangent function (\tanh) has an image spanning the open

interval $(-1, 1)$.

The Rectified Linear Unit (ReLU) function outputs values in the interval $[0,

\infty)$.

https://github.com/ageron/handson-ml3/blob/main/10_neural_nets_with_keras.ipynb

2025-03-10, 16:39slides

Page 10 of 36about:srcdoc

Additionally, note:

The maximum derivative value of the sigmoid function is 0.25.

The maximum derivative value of the \tanh function is 1.

The derivative of the ReLU function is 0 for negative inputs and 1 for positive

inputs.

Furthermore:

A node employing ReLU as its activation function generates outputs within

the range $[0, \infty)$. However, its derivative, utilized in gradient descent

during backpropagation, is constant, taking values of either 0 or 1.

Universal Approximation

The universal approximation theorem states that a feedforward neural network

with a single hidden layer containing a finite number of neurons can approximate

any continuous function on a compact subset of \mathbb{R}^n, given

appropriate weights and activation functions.

Cybenko (1989); Hornik, Stinchcombe, and White (1989)

Notation

Notation

A two-layer perceptron computes:

$$ y = \phi_2(\phi_1(X)) $$

where

$$ \phi_l(Z) = \phi(W_lZ_l + b_l) $$

2025-03-10, 16:39slides

Page 11 of 36about:srcdoc

Where ϕ is an activation function, W a weight matrix, X an input matrix,

and b a bias vector.

Notation

A 3-layer perceptron computes:

$$ y = \phi_3(\phi_2(\phi_1(X))) $$

where

$$ \phi_l(Z) = \phi(W_lZ_l + b_l) $$

2025-03-10, 16:39slides

Page 12 of 36about:srcdoc

Notation

A k-layer perceptron computes:

$$ y = \phi_k(\ldots \phi_2(\phi_1(X)) \ldots) $$

where

$$ \phi_l(Z) = \phi(W_lZ_l + b_l) $$

A feedforward network exhibits a consistent structure, where each layer executes

the same type of computation on varying inputs. Specifically, the input to layer

l is the output from layer $l-1$.

2025-03-10, 16:39slides

Page 13 of 36about:srcdoc

Backpropagation

3Blue1Brown

https://youtu.be/Ilg3gGewQ5U

Backpropagation

Learning representations by back-propagating errors

David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams

We describe a new learning procedure, back-propagation, for networks of

neurone-like units. The procedure repeatedly adjusts the weights of the

connections in the network so as to minimize a measure of the difference

between the actual output vector of the net and the desired output vector.

As a result of the weight adjustments, internal ‘hidden’ units which are not part of

the input or output come to represent important features of the task domain,

and the regularities in the task are captured by the interactions of these units.

The ability to create useful new features distinguishes back-propagation from

earlier, simpler methods such as the perceptron-convergence procedure.

Rumelhart, Hinton, and Williams (1986)

I am presenting here the abstract from the seminal Nature publication where

Hinton and colleagues introduced the backpropagation algorithm. This abstract is

both elegant and informative, effectively capturing the core principles of modern

neural networks: the concept of a loss function, the iterative adjustment of

weights through the gradient descent algorithm, and the critical role of hidden

layers in generating useful task-dependent features.

Nature is a prestigious journal, and it only occasionally publishes content related

to computer science.

At the time of this publication, Hinton was affiliated with Carnegie Mellon

University. As a reminder, Hinton received the Nobel Prize in Physics in 2024 for

his contributions to developing foundational methods in modern machine

learning.

The abstract highlights the rationale for using hidden layers in neural networks.

The initial hidden layers learn simple representations directly from the input data,

while subsequent layers identify associations among these representations. Each

https://youtu.be/Ilg3gGewQ5U

2025-03-10, 16:39slides

Page 14 of 36about:srcdoc

layer builds upon the knowledge of previous layers, culminating in the network’s

final output.

Before the Backpropagation

Limitations, such as the inability to solve the XOR classification task,

essentially stalled research on neural networks.

The perceptron was limited to a single layer, and there was no known

method for training a multi-layer perceptron.

Single-layer perceptrons are limited to solving classification tasks that are

linearly separable.

Backpropagation: Contributions

The model employs mean squared error as its loss function.

Gradient descent is used to minimize loss.

A sigmoid activation function is used instead of a step function, as its

derivative provides valuable information for gradient descent.

Shows how updating internal weights using a two-pass algorithm

consisting of a forward pass and a backward pass.

Enables training multi-layer perceptrons.

Backpropagation: Top Level

1. Initialization

2. Forward Pass

3. Compute Loss

4. Backward Pass (Backpropagation)

5. Repeat 2 to 5.

The algorithm stops either after a predefined number of epochs or when

convergence criteria are satisfied.

2025-03-10, 16:39slides

Page 15 of 36about:srcdoc

Backpropagation: 1. Initialization

Initialize the weights and biases of the neural network.

1. Zero Initialization

All weights are initialized to zero.

Symmetry problems, all neurons produce identical outputs, preventing

effective learning.

2. Random Initialization

Weights are initialized randomly, often using a uniform or normal

distribution.

Breaks the symmetry between neurons, allowing them to learn.

If not scaled properly, leads to slow convergence or

vanishing/exploding gradients.

See also: Xavier/Glorot and He initialization (later)

Initializing weights and biases to zero works for logistic regression because it is a

linear model with a single layer. In logistic regression, each feature’s weight is

independently adjusted during training, and the optimization process can

converge correctly regardless of the initial weights, provided the data is linearly

separable.

However, zero initialization does not work well for neural networks due to their

multi-layered structure. Here’s why:

1. Symmetry Breaking: Neural networks require breaking symmetry between

neurons in each layer so that they can learn different features. If all weights

are initialized to zero, each neuron in a layer will compute the same output

and receive the same gradient during backpropagation. This results in the

neurons updating identically, preventing them from learning distinct features

and effectively rendering multiple neurons redundant.

2. Non-Linearity: Neural networks rely on non-linear transformations between

layers to model complex relationships in the data. Zero initialization inhibits

the ability of neurons to activate differently, impeding the network’s capacity

to capture non-linear patterns.

Backpropagation: 2. Forward Pass

For each example in the training set (or in a mini-batch):

2025-03-10, 16:39slides

Page 16 of 36about:srcdoc

Input Layer: Pass input features to first layer.

Hidden Layers: For each hidden layer, compute the activations (output) by

applying the weighted sum of inputs plus bias, followed by an activation

function (e.g., sigmoid, ReLU).

Output Layer: Same process as hidden layers. Output layer activations

represent the predicted values.

The forward pass is almost identical to applying the network for prediction

(.predict()), with the exception that intermediate (activation) results are

saved, as they are needed for the backward pass.

In practice, it is the mini-batch version of this algorithm that is being used.

Backpropagation: 3. Compute Loss

Calculate the loss (error) using a suitable loss function by comparing the

predicted values to the actual target values.

More on the various loss functions coming later: mean squared error for

regression tasks or cross-entropy loss for classification tasks.

A smaller loss indicates that the predicted values are closer to the actual target

values.

The value of the loss function can serve as a stopping criterion, with

backpropagation halting when the loss is sufficiently small.

Crucially, the derivative of the loss function provides essential information for

adjusting the network’s weights and bias terms.

Backpropagation: 4. Backward Pass

Output Layer: Compute the gradient of the loss with respect to the output

layer’s weights and biases using the chain rule of calculus.

Hidden Layers: Propagate the error backward through the network, layer

by layer. For each layer, compute the gradient of the loss with respect to the

weights and biases. Use the derivative of the activation function to help

calculate these gradients.

Update Weights and Biases: Adjust the weights and biases using the

2025-03-10, 16:39slides

Page 17 of 36about:srcdoc

calculated gradients and a learning rate, which determines the step size for

each update.

Common optimization techniques like gradient descent or its variants (e.g.,

Adam) are employed.

At the end of the presentation, links are provided to a series of videos by Herman

Kamper. These videos elucidate the intricacies of the backpropagation algorithm

across various architectures, both with and without forks, utilizing function

composition and graph computation approaches.

While the algorithm is complex due to the numerous cases it entails, its regular

structure makes it suitable for automation. Specifically, algorithms like automatic

differentiation (autodiff) facilitate this process.

In 1970, Seppo Ilmari Linnainmaa introduced the algorithm known as reverse

mode automatic differentiation in his MSc thesis. Although he did not apply this

algorithm to neural networks, it is more general than backpropagation.

Key Concepts

Activation Functions: Functions like sigmoid, ReLU, and tanh introduce non-

linearity, which allows the network to learn complex patterns.

Learning Rate: A hyperparameter that controls how much to change the

model in response to the estimated error each time the model weights are

updated.

Gradient Descent: An optimization algorithm used to minimize the loss

function by iteratively moving towards the steepest descent as defined by

the negative of the gradient.

Summary

https://en.wikipedia.org/wiki/Seppo_Linnainmaa

2025-03-10, 16:39slides

Page 18 of 36about:srcdoc

Attribution: Angermueller et al. (2016)

Training

Vanishing Gradients

Vanishing gradient problem: Gradients become too small, hindering

weight updates.

Stalled neural network research (again) in early 2000s.

Sigmoid and its derivative (range: 0 to 0.25) were key factors.

Common initialization: Weights/biases from $\mathcal{N}(0, 1)$ contributed

to the issue.

Glorot and Bengio (2010) shed light on the problems.

The vanishing gradient problem often occurs with activation functions like the

sigmoid and hyperbolic tangent (tanh), leading to difficulties in training deep

neural networks due to diminishing gradients that slow down learning.

In contrast, the exploding gradient problem, which involves gradients growing

excessively large, is typically observed in architectures such as recurrent neural

networks (RNNs).

Both issues can significantly affect the stability and convergence of gradient-

based optimization techniques, thereby hindering the effective training of deep

2025-03-10, 16:39slides

Page 19 of 36about:srcdoc

models.

Vanishing Gradients: Solutions

Alternative activation functions: Rectified Linear Unit (ReLU) and its

variants (e.g., Leaky ReLU, Parametric ReLU, and Exponential Linear Unit).

Weight Initialization: Xavier (Glorot) or He initialization.

Other techniques exists to mitigate the problem, including those:

Batch Normalization: Implement batch normalization to standardize the

inputs to each layer, which can help stabilize and accelerate training by

reducing internal covariate shift and maintaining effective gradient flow.

Residual Networks: Use residual connections, as seen in ResNet

architectures, which allow gradients to flow more easily through the network

by providing shortcut paths that bypass one or more layers.

He Initialization

A similar but slightly different initialization method design to work with ReLU, as

well as Leaky ReLU, ELU, GELU, Swish, and Mish.

. . .

Ensure that the initialization method matches the chosen activation function.

import tensorflow as tf
from tensorflow.python.keras.layers import Dense

dense = Dense(50, activation="relu", kernel_initializer="he_normal")

AKA Kaiming initialization.

Glorot Initialization (Xavier Initialization): This method sets the initial

weights based on the number of input and output units for each layer, aiming

to keep the variance of activations consistent across layers. It is particularly

effective for activation functions like sigmoid and tanh.

He Initialization: This approach adjusts the weight initialization to be

suitable for layers using ReLU and its variants, by scaling the variance

according to the number of input units only.

In [3]:

2025-03-10, 16:39slides

Page 20 of 36about:srcdoc

Note

Randomly initializing the weights[1] is sufficient to break symmetry in a neural

network, allowing the bias terms to be set to zero without impacting the

network’s ability to learn effectively.

Activation Function: Leaky ReLU

[1] Proper initialization of weights, such as using Xavier/Glorot or He initialization,

is crucial and should be aligned with the choice of activation function to ensure

optimal network performance.

import numpy as np
import matplotlib.pyplot as plt

Define the Leaky ReLU function
def leaky_relu(x, alpha=0.21):
 return np.where(x > 0, x, alpha * x)

Define the derivative of the Leaky ReLU function
def leaky_relu_derivative(x, alpha=0.2):
 return np.where(x > 0, 1, alpha)

Generate a range of input values
x_values = np.linspace(-4, 4, 400)

Compute the Leaky ReLU and its derivative
leaky_relu_values = leaky_relu(x_values)
leaky_relu_derivative_values = leaky_relu_derivative(x_values)

Create the plot
plt.figure(figsize=(10, 5))

Plot the Leaky ReLU
plt.subplot(1, 2, 1)
plt.plot(x_values, leaky_relu_values, label='Leaky ReLU', color='blue')
plt.title('Leaky ReLU Activation Function')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.axhline(0, color='black',linewidth=0.5)
plt.axvline(0, color='black',linewidth=0.5)
plt.legend()

Plot the derivative of the Leaky ReLU
plt.subplot(1, 2, 2)
plt.plot(x_values, leaky_relu_derivative_values, label='Derivative of Leaky ReLU', color='red')
plt.title('Derivative of Leaky ReLU')

In [4]:

2025-03-10, 16:39slides

Page 21 of 36about:srcdoc

plt.xlabel('x')
plt.ylabel("f'(x)")
plt.grid(True)
plt.axhline(0, color='black',linewidth=0.5)
plt.axvline(0, color='black',linewidth=0.5)
plt.legend()

Show the plots
plt.tight_layout()
plt.show()

The Leaky ReLU, a variant of the standard ReLU activation function, effectively

mitigates the issue of dying ReLU nodes. For negative input values, it introduces

a linear component with a slope governed by the parameter negative_slope .

When the input to the ReLU activation function, the weighted sum plus bias, is

negative for all the training examples, the output value of ReLU is zero. But also,

its derivative is 0, which effectively deactivates the neuron. Leaky ReLU, or other

variants, effectively mitigates the issue.

import tensorflow as tf
from tensorflow.python.keras.layers import Dense

leaky_relu = tf.keras.layers.LeakyReLU(negative_slope=0.2)
dense = tf.keras.layers.Dense(50, activation=leaky_relu,
kernel_initializer="he_normal")
Keras proposes 18 layer activation functions at the time of writing.

Output Layer

https://keras.io/api/layers/activations/#available-activations

2025-03-10, 16:39slides

Page 22 of 36about:srcdoc

Output Layer: Regression Task

of output neurons:

1 per dimension

Output layer activation function:

None, ReLU/softplus, if positive, sigmoid/tanh, if bounded

Loss function:

MeanSquaredError

In an object detection problem, determining the bounding box exemplifies a

regression task where the output is multidimensional.

Output Layer: Classification Task

of output neurons:

1 if binary, 1 per class, if multi-label or multiclass.

Output layer activation function:

sigmoid, if binary or multi-label, softmax if multi-class.

Loss function:

cross-entropy

Softmax

https://www.tensorflow.org/api_docs/python/tf/keras/losses/MeanSquaredError
https://keras.io/guides/keras_cv/object_detection_keras_cv/

2025-03-10, 16:39slides

Page 23 of 36about:srcdoc

Softmax ensures that all activation outputs fall between 0 and 1 and collectively

sum to 1.

Observe that I have revised the representation of the output nodes to indicate

that the softmax function is applied to the entire layer, rather than to individual

nodes. This function transforms the raw output values of the layer into

probabilities that sum to 1, facilitating multi-class classification. This

characteristic distinguishes it from activation functions like ReLU or sigmoid,

which are typically applied independently to each node’s output.

The argmax function is not suitable for optimization via gradient-based methods

because its derivative is zero in all cases, similar to step functions. In contrast,

the softmax function offers both a probabilistic interpretation and a computable

derivative, making it more effective for such applications.

The argmax function can be applied a posteriori to trained networks for class

prediction.

Softmax

The softmax function is an activation function used in multi-class

2025-03-10, 16:39slides

Page 24 of 36about:srcdoc

classification problems to convert a vector of raw scores into probabilities that

sum to 1.

Given a vector $\mathbf{z} = [z_1, z_2, \ldots, z_n]$:

$$ \sigma(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^{n} e^{z_j}} $$

where $\sigma(\mathbf{z})_i$ is the probability of the i-th class, and n is the

number of classes.

Softmax emphasizes higher scores while suppressing lower ones, enabling a

probabilistic interpretation of the outputs.

We clearly see that such an activation applies for an entire layer since the

denomination depends on the values of all the z_j, for $j in 1 \ldots n$.

Softmax

z_1 z_2 z_3 $\sigma(z_1)$ $\sigma(z_2)$ $\sigma(z_3)$ \sum

1.47 -0.39 0.22 0.69 0.11 0.20 1.00

5.00 6.00 4.00 0.24 0.67 0.09 1.00

0.90 0.80 1.10 0.32 0.29 0.39 1.00

-2.00 2.00 -3.00 0.02 0.98 0.01 1.00

Softmax values for a vector of length 3.

1. Maintains Relative Order: The softmax function preserves the relative order

of the input values. If one input is greater than another, its corresponding

output will also be greater.

2. Interpreted as probabilities: Each value is in the range 0 to 1. The output

values from the softmax function are normalized to sum to one, which allows

them to be interpreted as probabilities.

3. Relative Differences: When the relative differences among the input values

are small, the differences in the output probabilities remain small, reflecting

the input distribution. When the input values are identical, the output values

will be $\frac{1}{n}$, where n is the number of classes.

4. Wide Range of Values: The softmax function can effectively handle a wide

range of input values, thanks to the exponential function and normalization,

which scale the inputs to a probabilistic range.

2025-03-10, 16:39slides

Page 25 of 36about:srcdoc

These properties make the softmax function particularly useful for multi-class

classification tasks in machine learning.

Softmax

https://www.youtube.com/watch?v=KpKog-L9veg

Cross-entropy loss function

The cross-entropy in a multi-class classification task for one example:

$$ J(W) = -\sum_{k=1}^{K} y_k \log(\hat{y}_k) $$

Where:

K is the number of classes.

y_k is the true distribution for the class k.

\hat{y}_k is the predicted probability of class k from the model.

The target vector y is expressed as a one-hot encoded vector of length

K, where the element corresponding to the true class is set to 1, and all

other elements are 0.

Consequently, in the summation over classes, only the term associated with

the true class contributes a non-zero value.

Therefore, the cross-entropy loss for a single example is given by $-

\log(\hat{y}_k)$, where \hat{y}_k is the predicted probability for the true

class.

The predicted probability \hat{y}_k is derived from the softmax function

applied in the output layer of the neural network.

Cross-entropy loss function

Classification Problem: 3 classes

Versicolour, Setosa, Virginica.

One-Hot Encoding:

Setosa = $[0, 1, 0]$.

Softmax Outputs & Loss:

$[0.22,\mathbf{0.7}, 0.08]$: Loss = $-\log(0.7) = 0.3567$.

https://www.youtube.com/watch?v=KpKog-L9veg

2025-03-10, 16:39slides

Page 26 of 36about:srcdoc

$[0.7, \mathbf{0.22}, 0.08]$: Loss = $-\log(0.22) = 1.5141$.

$[0.7, \mathbf{0.08}, 0.22]$: Loss = $-\log(0.08) = 2.5257$.

Among the softmax outputs, cross-entropy evaluates only the component

corresponding to $k=1$ (Setosa), as the other entries in the one-hot encoded

vector are zero. This relevant element is highlighted in bold. When the softmax

prediction aligns closely with the expected value, the resulting loss is minimal

(0.3567). Conversely, as the prediction deviates further from the expected value,

the loss increases (1.5141 and 2.5257).

Case: one example

import numpy as np
import matplotlib.pyplot as plt

Generate an array of p values from just above 0 to 1
p_values = np.linspace(0.001, 1, 1000)

Compute the natural logarithm of each p value
ln_p_values = - np.log(p_values)

Plot the graph
plt.figure(figsize=(8, 6))
plt.plot(p_values, ln_p_values, label=r'$-\log(\hat{y}_k)$', color='b')

Add labels and title
plt.xlabel(r'\hat{y}_k')
plt.ylabel(r'loss')
plt.title(r'Graph of $-\log(\hat{y}_k)$ for \hat{y}_k from 0 to 1')
plt.grid(True)
plt.axhline(0, color='gray', lw=0.5) # Add horizontal line at y=0
plt.axvline(0, color='gray', lw=0.5) # Add vertical line at x=0

Display the plot
plt.legend()
plt.show()

In [6]:

2025-03-10, 16:39slides

Page 27 of 36about:srcdoc

In the summation, only the term where $y_k = 1$ contributes a non-zero

value.

Due to the negative sign preceding the summation, the value of the function

is $-\log(\hat{y}_k$.

If the predicted probability \hat{y}_k is near 1, the loss approaches zero,

indicating minimal penalty.

Conversely, as \hat{y}_k nears 0, indicating an incorrect prediction, the

loss approaches infinity. This substantial penalty allows cross-entropy loss to

converge more quickly than mean squared error.

Case: Dataset

For a dataset with N examples, the average cross-entropy loss over all

examples is computed as:

$$ L = -\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} y_{i,k} \log(\hat{y}_{i,k}) $$

2025-03-10, 16:39slides

Page 28 of 36about:srcdoc

Where:

i indexes over the different examples in the dataset.

$y_{i,k}$ and $\hat{y}_{i,k}$ are the true and predicted probabilities for

class k of example i, respectively.

Regularization

Definition

Regularization comprises a set of techniques designed to enhance a model’s

ability to generalize by mitigating overfitting. By discouraging excessive

model complexity, these methods improve the model’s robustness and

performance on unseen data.

Adding penalty terms to the loss

In numerical optimization, it is standard practice to incorporate additional

terms into the objective function to deter undesirable model

characteristics.

For a minimization problem, the optimization process aims to circumvent

the substantial costs associated with these penalty terms.

Loss Function

Consider the mean absolute error loss function:

$$ \mathrm{MAE}(X,W) = \frac{1}{N} \sum_{i=1}^N | h_W(x_i) - y_i | $$

Where:

W are the weights of our network.

$h_W(x_i)$ is the output of the network for example i.

y_i is the true label for example i.

Penalty Term(s)

One or more terms can be added to the loss:

2025-03-10, 16:39slides

Page 29 of 36about:srcdoc

$$ \mathrm{MAE}(X,W) = \frac{1}{N} \sum_{i=1}^N | h_W(x_i) - y_i | +

\mathrm{penalty} $$

Norm

A norm is assigns a non-negative length to a vector.

The ℓ_p norm of a vector $\mathbf{z} = [z_1, z_2, \ldots, z_n]$ is defined

as:

$$ \|\mathbf{z}\|_p = \left(\sum_{i=1}^{n} |z_i|^p \right)^{1/p} $$

With larger p, the ℓ_p norm increasingly highlights larger z_i values due

to exponentiation.

A norm is a function that assigns a non-negative length or size to each vector in

a vector space, satisfying certain properties: positivity, scalar multiplication, the

triangle inequality, and the property that the norm is zero if and only if the vector

is zero.

ℓ_1 and ℓ_2 norms

The ℓ_1 norm (Manhattan norm) is:

$$ \|\mathbf{z}\|_1 = \sum_{i=1}^{n} |z_i| $$

The ℓ_2 norm (Euclidean norm) is:

$$ \|\mathbf{z}\|_2 = \sqrt{\sum_{i=1}^{n} z_i^2} $$

ℓ_1 and ℓ_2 regularization

Below, α and β determine the degree of regularization applied;

setting these values to zero effectively disables the regularization term.

$$ \mathrm{MAE}(X,W) = \frac{1}{N} \sum_{i=1}^N | h_W(x_i) - y_i | + \alpha \ell_1

+ \beta \ell_2 $$

Guidelines

ℓ_1 Regularization:

Promotes sparsity, setting many weights to zero.

2025-03-10, 16:39slides

Page 30 of 36about:srcdoc

Useful for feature selection by reducing feature reliance.

ℓ_2 Regularization:

Promotes small, distributed weights for stability.

Ideal when all features contribute and reducing complexity is key.

Keras Example

import tensorflow as tf
from tensorflow.python.keras.layers import Dense

regularizer = tf.keras.regularizers.l2(0.001)

dense = Dense(50, kernel_regularizer=regularizer)

This layer specifically utilizes ℓ_2 regularization, in contrast to the prior

discussion where regularization was applied globally across the entire model.

Dropout

Dropout is a regularization technique in neural networks where randomly
selected neurons are ignored during training, reducing overfitting by preventing

co-adaptation of features.

Hinton et al. (2012)

Dropout

During each training step, each neuron in a dropout layer has a probability

p of being excluded from the computation, typical values for p are

between 10% and 50%.

While seemingly counterintuitive, this approach prevents the network from

depending on specific neurons, promoting the distribution of learned

representations across multiple neurons.

Dropout

Dropout is one of the most popular and effective methods for reducing

overfitting.

The typical improvement in performance is modest, usually around 1 to 2%.

In [7]:

2025-03-10, 16:39slides

Page 31 of 36about:srcdoc

Keras

import keras
from keras.models import Sequential
from keras.layers import InputLayer, Dropout, Flatten, Dense

model = tf.keras.Sequential([
 InputLayer(shape=[28, 28]),
 Flatten(),
 Dropout(rate=0.2),
 Dense(300, activation="relu"),
 Dropout(rate=0.2),
 Dense(100, activation="relu"),
 Dropout(rate=0.2),
 Dense(10, activation="softmax")
])

Adding Dropout layers to the Fashion-MNIST model from last lecture.

The dropout rate may differ between layers; larger rates can be applied to larger

layers, while smaller rates are suitable for smaller layers. It is common practice in

many networks to apply dropout only after the final hidden layer.

Definition

Early stopping is a regularization technique that halts training once the model’s

performance on a validation set begins to degrade, preventing overfitting by

stopping before the model learns noise.

Geoffrey Hinton calls this the “beautiful free lunch.”

Early Stopping

from copy import deepcopy
from sklearn.metrics import root_mean_squared_error
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import SGDRegressor

extra code – creates the same quadratic dataset as earlier and splits it
np.random.seed(42)
m = 100
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X ** 2 + X + 2 + np.random.randn(m, 1)
X_train, y_train = X[: m // 2], y[: m // 2, 0]
X_valid, y_valid = X[m // 2 :], y[m // 2 :, 0]

In [8]:

In [9]:

2025-03-10, 16:39slides

Page 32 of 36about:srcdoc

preprocessing = make_pipeline(PolynomialFeatures(degree=90, include_bias=False),
 StandardScaler())
X_train_prep = preprocessing.fit_transform(X_train)
X_valid_prep = preprocessing.transform(X_valid)
sgd_reg = SGDRegressor(penalty=None, eta0=0.002, random_state=42)
n_epochs = 500
best_valid_rmse = float('inf')
train_errors, val_errors = [], [] # extra code – it's for the figure below

for epoch in range(n_epochs):
 sgd_reg.partial_fit(X_train_prep, y_train)
 y_valid_predict = sgd_reg.predict(X_valid_prep)
 val_error = root_mean_squared_error(y_valid, y_valid_predict)
 if val_error < best_valid_rmse:
 best_valid_rmse = val_error
 best_model = deepcopy(sgd_reg)

 # extra code – we evaluate the train error and save it for the figure
 y_train_predict = sgd_reg.predict(X_train_prep)
 train_error = root_mean_squared_error(y_train, y_train_predict)
 val_errors.append(val_error)
 train_errors.append(train_error)

extra code – this section generates and saves Figure 4–20
best_epoch = np.argmin(val_errors)
plt.annotate('Best model',
 xy=(best_epoch, best_valid_rmse),
 xytext=(best_epoch, best_valid_rmse + 0.5),
 ha="center",
 arrowprops=dict(facecolor='black', shrink=0.05))
plt.plot([0, n_epochs], [best_valid_rmse, best_valid_rmse], "k:", linewidth=2)
plt.plot(val_errors, "b-", linewidth=3, label="Validation set")
plt.plot(best_epoch, best_valid_rmse, "bo")
plt.plot(train_errors, "r--", linewidth=2, label="Training set")
plt.legend(loc="upper right")
plt.xlabel("Epoch")
plt.ylabel("RMSE")
plt.axis([0, n_epochs, 0, 3.5])
plt.grid()
plt.show()

2025-03-10, 16:39slides

Page 33 of 36about:srcdoc

Attribution: Géron (2022), 04_training_linear_models.ipynb.

Prologue

Summary

Introduction to Deep Learning in Bioinformatics: Overview of models and

repositories like Kipoi, Hugging Face, and DragoNN.

Neural Network Fundamentals: Discussion of network layers, activation

functions (e.g., sigmoid, tanh, ReLU, Leaky ReLU, softmax), and the universal

approximation theorem.

Notation and Architecture: Detailed explanation of how multi-layer

perceptrons and feedforward networks are structured and notated.

Training Mechanics: Step-by-step breakdown of forward propagation, loss

computation, and backpropagation using gradient descent.

Challenges and Solutions: Exploration of issues such as

vanishing/exploding gradients and methods to mitigate them (e.g., proper

initialization, dropout, early stopping).

Practical Code Examples and Visualizations: Demonstrations using Keras

and TensorFlow to illustrate the concepts in action.

https://github.com/ageron/handson-ml3/blob/main/04_training_linear_models.ipynb

2025-03-10, 16:39slides

Page 34 of 36about:srcdoc

3Blue1Brown

https://youtu.be/aircAruvnKk

In my opinion, this is an excellent and informative video.

It is highly recommended that you watch this video. While it covers the concepts

we have already explored, it presents the material in a manner that is challenging

to replicate in a classroom setting.

Provides a clear explanation of the intuition behind the effectiveness of

neural networks, detailing the hierarchy of concepts briefly mentioned in

the last lecture.

Offers a compelling rationale for the necessity of a bias term.

Similarly, elucidates the concept of activation functions and the importance

of a squashing function.

The segment beginning at 13m 26s offers a visual explanation of the linear

algebra involved: $\sigma(W X^T + b)$.

3Blue1Brown

A series of videos, with animations, providing the intuition behind the

backpropagation algorithm.

Neural networks (playlist)

What is backpropagation really doing? (12m 47s)

Backpropagation calculus (10m 18s)

Prerequisite: Gradient descent, how neural networks learn? (20m 33s)

StatQuest

Neural Networks Pt. 2: Backpropagation Main Ideas (17m 34s)

Backpropagation Details Pt. 1: Optimizing 3 parameters simultaneously

(18m 32s)

Backpropagation Details Pt. 2: Going bonkers with The Chain Rule (13m 9s)

Prerequisites: The Chain Rule (18m 24s) & Gradient Descent, Step-by-Step

(23m 54s)

Herman Kamper

https://youtu.be/aircAruvnKk
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=Ilg3gGewQ5U&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=3&t=212s
https://www.youtube.com/watch?v=tIeHLnjs5U8&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=4
https://www.youtube.com/watch?v=IHZwWFHWa-w&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2
https://youtu.be/IN2XmBhILt4
https://youtu.be/iyn2zdALii8
https://youtu.be/GKZoOHXGcLo
https://youtu.be/wl1myxrtQHQ
https://youtu.be/sDv4f4s2SB8

2025-03-10, 16:39slides

Page 35 of 36about:srcdoc

One of the most thorough series of videos on the backpropagation algorithm.

Introduction to neural networks (playlist)

Backpropagation (without forks) (31m 1s)

Backprop for a multilayer feedforward neural network (4m 2s)

Computational graphs and automatic differentiation for neural networks

(6m 56s)

Common derivatives for neural networks (7m 18s)

A general notation for derivatives (in neural networks) (7m 56s)

Forks in neural networks (13m 46s)

Backpropagation in general (now with forks) (3m 42s)

Next lecture

Deap Learning Architectures

References

Angermueller, Christof, Tanel Pärnamaa, Leopold Parts, and Oliver Stegle. 2016.

“Deep Learning for Computational Biology.” Mol Syst Biol 12 (7): 878.

https://doi.org/10.15252/msb.20156651.

Avsec, Ziga, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun Cheng, Avanti

Shrikumar, Abhimanyu Banerjee, et al. 2019. “The Kipoi Repository Accelerates

Community Exchange and Reuse of Predictive Models for Genomics.” Nature
Biotechnology 37 (6): 592–600. https://doi.org/10.1038/s41587-019-0140-0.

Cybenko, George V. 1989. “Approximation by Superpositions of a Sigmoidal

Function.” Mathematics of Control, Signals and Systems 2: 303–14.

https://api.semanticscholar.org/CorpusID:3958369.

Géron, Aurélien. 2022. Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow. 3rd ed. O’Reilly Media, Inc.

Glorot, Xavier, and Yoshua Bengio. 2010. “Understanding the Difficulty of Training

Deep Feedforward Neural Networks.” In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, edited by Yee

Whye Teh and Mike Titterington, 9:249–56. Proceedings of Machine Learning

Research. Chia Laguna Resort, Sardinia, Italy: PMLR.

https://proceedings.mlr.press/v9/glorot10a.html.

https://www.youtube.com/playlist?list=PLmZlBIcArwhMHnIrNu70mlvZOwe6MqWYn
https://www.youtube.com/watch?v=6SW1oUztmzg&list=PLmZlBIcArwhMHnIrNu70mlvZOwe6MqWYn&index=7&t=680s
https://www.youtube.com/watch?v=dTupaVdrz1k&list=PLmZlBIcArwhMHnIrNu70mlvZOwe6MqWYn&index=8
https://www.youtube.com/watch?v=fBSm5ElvJEg&list=PLmZlBIcArwhMHnIrNu70mlvZOwe6MqWYn&index=9
https://www.youtube.com/watch?v=aqnjXWxiT0o&list=PLmZlBIcArwhMHnIrNu70mlvZOwe6MqWYn&index=10
https://www.youtube.com/watch?v=Sa5_Gl_sYoI&list=PLmZlBIcArwhMHnIrNu70mlvZOwe6MqWYn&index=11
https://www.youtube.com/watch?v=6mmEw738MQo&list=PLmZlBIcArwhMHnIrNu70mlvZOwe6MqWYn&index=12
https://www.youtube.com/watch?v=aRkhgm2i4p0&list=PLmZlBIcArwhMHnIrNu70mlvZOwe6MqWYn&index=13
https://doi.org/10.15252/msb.20156651
https://doi.org/10.1038/s41587-019-0140-0
https://api.semanticscholar.org/CorpusID:3958369
https://proceedings.mlr.press/v9/glorot10a.html

2025-03-10, 16:39slides

Page 36 of 36about:srcdoc

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep Residual

Learning for Image Recognition.” In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 770–78. https://doi.org/10.1109/CVPR.2016.90.

Hinton, Geoffrey E., Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2012. “Improving Neural Networks by Preventing Co-Adaptation of

Feature Detectors.” CoRR abs/1207.0580. http://arxiv.org/abs/1207.0580.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer

Feedforward Networks Are Universal Approximators.” Neural Networks 2 (5):

359–66. https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learning

representations by back-propagating errors.” Nature 323 (6088): 533–36.

https://doi.org/10.1038/323533a0.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)

University of Ottawa

https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1207.0580
https://doi.org/
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1038/323533a0
mailto:Marcel.Turcotte@uOttawa.ca

