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Preamble

Quote of the Day

Consens et al. (2025)

Summary

In this lecture, we will explore the fundamentals of Convolutional Neural



2025-03-14, 11:51slides

Page 2 of 46about:srcdoc

Networks (CNNs) and their role in deep learning. We will begin by discussing the

hierarchical structure of deep learning models and the advantages of deep

networks over shallow ones. The lecture will cover convolutional operations,

including kernels, receptive fields, padding, and stride, and explain their

significance in feature extraction. Additionally, we will examine the importance of

pooling layers in reducing dimensionality and improving computational

efficiency. By the end of the session, students will gain a solid understanding of

CNN architectures and their applications in bioinformatics and beyond.

Learning Objectives

Upon completing this lecture, students will be able to:

Explain the hierarchical representation of concepts in deep learning.

Compare deep and shallow neural networks in terms of efficiency and

expressiveness.

Describe the structure and function of Convolutional Neural Networks

(CNNs).

Understand convolution operations, including kernels and feature extraction.

Explain the concepts of receptive fields, padding, and stride in CNNs.

Discuss the role and benefits of pooling layers in CNN architectures.

Apply CNNs in bioinformatics and recognize their impact on genomic

analysis.

Today, we have a particularly dense agenda. The study of convolutional networks

involves multiple levels of complexity. Please feel free to ask questions if you

need clarification.

Detailed learning objectives.

1. Explain the Hierarchy of Concepts in Deep Learning

Understand how deep learning models build hierarchical representations

of data.

Recognize how this hierarchy reduces the need for manual feature

engineering.

2. Compare Deep and Shallow Neural Networks

Discuss why deep networks are more parameter-efficient than shallow

networks.

Explain the benefits of depth in neural network architectures.

3. Describe the Structure and Function of Convolutional Neural Networks

(CNNs)
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Understand how CNNs detect local patterns in data.

Explain how convolutional layers reduce the number of parameters

through weight sharing.

4. Understand Convolution Operations Using Kernels

Describe how kernels (filters) are applied over input data to perform

convolutions.

Explain how feature maps are generated from convolution operations.

5. Explain Receptive Fields, Padding, and Stride in CNNs

Define the concept of a receptive field in convolutional layers.

Understand how padding and stride affect the output dimensions and

computation.

6. Discuss the Role and Benefits of Pooling Layers

Explain how pooling layers reduce spatial dimensions and control

overfitting.

Describe how pooling introduces translation invariance in CNNs.

Foreword

Convolutional Neural Networks (CNNs) have significantly contributed to the

advancement and integration of deep learning technologies.

They are extensively applied in numerous life science domains, as

evidenced in research such as Zeng et al. (2016) and He et al. (2020).

CNN architectures are categorized into 1D, 2D, and 3D models.

Although 1D convolutions offer simplicity, this discussion will commence with

2D convolutions due to their prevalent use and to illustrate the conceptual

hierarchy inherent in these models.

Introduction

Convolutional Neural Networks

Yann LeCun, recognized as one of the three pioneers of deep learning and the

inventor of Convolutional Neural Networks (CNNs), frequently engages in

discussions with Elon Musk on the social media platform X (previously known as

Twitter).

Who Holds the Truth?

https://x.com/ylecun
https://x.com/elonmusk
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Grok Interaction on March 13, 2025

Hierarchy of Concepts

Attribution: LeCun, Bengio, and Hinton (2015)

In the book “Deep Learning” (Goodfellow, Bengio, and Courville 2016), authors

Goodfellow, Bengio, and Courville define deep learning as a subset of machine

learning that enables computers to “understand the world in terms of a hierarchy

of concepts.”

This hierarchical approach is one of deep learning’s most significant

contributions. It reduces the need for manual feature engineering and redirects



2025-03-14, 11:51slides

Page 5 of 46about:srcdoc

the focus toward the engineering of neural network architectures.

Convolutional Neural Networks (CNNs) have had a profound impact on the field of

machine learning, particularly in areas involving image and video processing.

1. Revolutionizing Image Recognition: CNNs have significantly advanced the

state of the art in image recognition and classification, achieving high

accuracy across various datasets. This has led to breakthroughs in fields

such as medical imaging, autonomous vehicles, and facial recognition.

2. Feature Extraction: CNNs automatically learn to extract features from raw

data, eliminating the need for manual feature engineering. This capability has

been crucial in handling complex data patterns and has expanded the

applicability of machine learning to diverse domains.

3. Transfer Learning: CNNs facilitate transfer learning, where pre-trained

networks on large datasets can be fine-tuned for specific tasks with limited

data. This has made CNNs accessible and effective for a wide range of

applications beyond their original training scope.

4. Advancements in Deep Learning: The success of CNNs has spurred further

research in deep learning architectures, inspiring the development of more

sophisticated models like recurrent neural networks (RNNs), long short-term

memory networks (LSTMs), and transformer models.

5. Broader Application Areas: Beyond image processing, CNNs have been

adapted for natural language processing, audio processing, and even in

bioinformatics for tasks such as protein structure prediction and genomics.

6. Implications for Real-World Applications: CNNs have enabled practical

applications in fields such as healthcare, where they assist in diagnostic

imaging, and in security, where they enhance surveillance systems. They

have also contributed to advancements in virtual reality, gaming, and

augmented reality.

Hierarchy of Concepts

Each layer detects patterns from the output of the layer preceding it.

In other words, proceeding from the input to the output of the network,

the network uncovers “patterns of patterns”.

Analyzing an image, the networks first detect simple patterns, such

as vertical, horizontal, diagonal lines, arcs, etc.
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These are then combined to form corners, crosses, etc.

(This illustrates how transfer learning works and why retaining the bottom

layers only.)

But Also …

“An MLP with just one hidden layer can theoretically model even

the most complex functions, provided it has enough neurons. But

for complex problems, deep networks have a much higher

parameter efficiency than shallow ones: they can model complex

functions using exponentially fewer neurons than shallow nets,

allowing them to reach much better performance with the same

amount of training data.”

Géron (2019) § 10

During the lecture, attempt to discern why convolutional neural networks possess

fewer parameters compared to fully connected feedforward networks.

How Many Layers?

Start with one layer, then increase the number of layers until the model

starts overfitting the training data.

Finetune the model adding regularization (dropout layers, regularization

terms, etc.).

The number of neurons and other hyperparameters are determined using a grid

search.

Observations

Consider a feed-forward network (FFN) and its model:

$$ h_{W,b}(X) = \phi_k(\ldots \phi_2(\phi_1(X)) \ldots) $$

where

$$ \phi_l(Z) = \sigma(W_l Z + b_l) $$

for $l=1 \ldots k$. - The number of parameters in grows rapidly:

$$ (\text{size of layer}_{l-1} + 1) \times \text{size of layer}_{l} $$
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Image Classification Task

Consider an RGB image with dimensions $224 \times 224$, which is

relatively small by contemporary benchmarks.

The image consists of $224 \times 224 \times 3 = 150,528$ input features.

A neural network with merely a single hidden dense layer would require

over 22,658,678,784 (22 billion) parameters, highlighting the computational

complexity involved.

Observations (Continued)

Crucial pattern information is often local.

e.g., edges, corners, crosses.

Convolutional layers reduce parameters significantly.

Unlike dense layers, neurons in a convolutional layer are not fully

connected to the preceding layer.

Neurons connect only within their receptive fields (rectangular regions).

Convolutional networks originate from the domain of machine vision, which

explains their intrinsic compatibility with grid-structured inputs.

The original publication by Yann Lecun has been cited nearly 35,000 times (Lecun

et al. 1998).

Kernel

Kernel

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches

def plot_matrix(ax, matrix, title="Matrix", edge_color='black', face_color='white', highlight_region=None):
    ax.matshow(matrix, cmap='gray', alpha=0.2)
    for (i, j), val in np.ndenumerate(matrix):
        ax.text(j, i, f'{val}', ha='center', va='center', color='black')
        
        # Highlight specific region if provided
        if highlight_region and (i, j) in highlight_region:
            rect_face_color = 'yellow'

In [2]:
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        else:
            rect_face_color = face_color
            
        ax.add_patch(patches.Rectangle((j-0.5, i-0.5), 1, 1, fill=True, edgecolor=edge_color, facecolor=rect_face_color, lw=2))
    
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_title(title)

def apply_kernel(matrix, kernel):
    kernel_size = kernel.shape[0]
    output_size = matrix.shape[0] - kernel_size + 1
    output = np.zeros((output_size, output_size), dtype=int)
    
    for i in range(output_size):
        for j in range(output_size):
            sub_matrix = matrix[i:i+kernel_size, j:j+kernel_size]
            output[i, j] = np.sum(sub_matrix * kernel)
    return output

# Define a 6x6 matrix and a 3x3 kernel
matrix = np.array([
    [1, 2, 3, 4, 5, 6],
    [6, 5, 4, 3, 2, 1],
    [1, 2, 3, 4, 5, 6],
    [6, 5, 4, 3, 2, 1],
    [1, 2, 3, 4, 5, 6],
    [6, 5, 4, 3, 2, 1]
])

kernel = np.array([
    [1, 0, -1],
    [1, 0, -1],
    [1, 0, -1]
])

# Apply the kernel to the matrix
output = apply_kernel(matrix, kernel)

# Plot the original matrix, kernel, and the result
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
plot_matrix(axes[0], matrix, "6x6 Input Matrix")
plot_matrix(axes[1], kernel, "3x3 Kernel", edge_color='blue')
# plot_matrix(axes[2], output, "Output Matrix", edge_color='green')

plt.tight_layout()
plt.show()
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A kernel is a small matrix, usually $3 \times 3$, $5 \times 5$, or similar in size,

that slides over the input data (such as an image) to perform convolution.

Firstly, we will examine the technical components of convolution, focusing on the

interaction between the input matrix and the kernel. Subsequently, we will explore

the computational process involved in performing a convolution. Lastly, we will

analyze the significance and implications of convolution.

Kernel

# Apply the kernel to the matrix
output = apply_kernel(matrix, kernel)

# Define the region to highlight (top-left 3x3 cells)
highlight_region = [(i, j) for i in range(3) for j in range(3)]

# Plot the original matrix, kernel, and the result
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
plot_matrix(axes[0], matrix, "6x6 Input Matrix", highlight_region=highlight_region)
plot_matrix(axes[1], kernel, "3x3 Kernel", edge_color='blue')

plt.tight_layout()
plt.show()

In [3]:
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Beginning with the kernel positioned to overlap the upper-left corner of the input

matrix.

Kernel

# Apply the kernel to the matrix
output = apply_kernel(matrix, kernel)

# Define the region to highlight (top-left 3x3 cells)
highlight_region = [(i, j) for i in range(3) for j in range(1,4)]

# Plot the original matrix, kernel, and the result
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
plot_matrix(axes[0], matrix, "6x6 Input Matrix", highlight_region=highlight_region)
plot_matrix(axes[1], kernel, "3x3 Kernel", edge_color='blue')

plt.tight_layout()
plt.show()

It can be moved to the right three times.

In [4]:
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Kernel

# Apply the kernel to the matrix
output = apply_kernel(matrix, kernel)

# Define the region to highlight (top-left 3x3 cells)
highlight_region = [(i, j) for i in range(3) for j in range(2,5)]

# Plot the original matrix, kernel, and the result
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
plot_matrix(axes[0], matrix, "6x6 Input Matrix", highlight_region=highlight_region)
plot_matrix(axes[1], kernel, "3x3 Kernel", edge_color='blue')

plt.tight_layout()
plt.show()

Kernel

# Apply the kernel to the matrix
output = apply_kernel(matrix, kernel)

# Define the region to highlight (top-left 3x3 cells)
highlight_region = [(i, j) for i in range(3) for j in range(3,6)]

# Plot the original matrix, kernel, and the result
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
plot_matrix(axes[0], matrix, "6x6 Input Matrix", highlight_region=highlight_region)
plot_matrix(axes[1], kernel, "3x3 Kernel", edge_color='blue')

plt.tight_layout()
plt.show()

In [5]:

In [6]:
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Kernel

# Apply the kernel to the matrix
output = apply_kernel(matrix, kernel)

# Define the region to highlight (top-left 3x3 cells)
highlight_region = [(i, j) for i in range(1,4) for j in range(3)]

# Plot the original matrix, kernel, and the result
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
plot_matrix(axes[0], matrix, "6x6 Input Matrix", highlight_region=highlight_region)
plot_matrix(axes[1], kernel, "3x3 Kernel", edge_color='blue')

plt.tight_layout()
plt.show()

The kernel can then be moved to the second row of the input matrix, and moved

to the right three times.

How many placements of the kernel over the input matrix are there? $4 \times 4 =

In [7]:
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16$.

Kernel Placements

# Apply the kernel to the matrix
output = apply_kernel(matrix, kernel)

fig, axes = plt.subplots(4, 4, figsize=(12, 12))

for row in range(4):

  for col in range(4):

    # Define the region to highlight (top-left 3x3 cells)
    highlight_region = [(i, j) for i in range(row, row+3) for j in range(col, col+3)]

    # Plot the original matrix, kernel, and the result

    plot_matrix(axes[row,col], matrix, "6x6 Input Matrix", highlight_region=highlight_region)

plt.tight_layout()
plt.show()

In [8]:
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Kernel

 In [9]:
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With the kernel placed over a specific region of the input matrix, the convolution

is element-wise multiplication (each element of the kernel is multiplied by the

corresponding element of the input matrix region it overlaps) followed by a

summation of the results to produce a single scalar value.

Kernel

# Apply the kernel to the matrix
output = apply_kernel(matrix, kernel)

# Define the region to highlight (top-left 3x3 cells)
highlight_region = [(i, j) for i in range(3) for j in range(3)]

# Plot the original matrix, kernel, and the result
fig, axes = plt.subplots(1, 2, figsize=(12, 4))
plot_matrix(axes[0], matrix, "6x6 Input Matrix", highlight_region=highlight_region)
plot_matrix(axes[1], kernel, "3x3 Kernel", edge_color='blue')

plt.tight_layout()
plt.show()

In [10]:
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$1 \times 1 + 2 \times 0 + 3 \times (-1) + 6 \times 1 + 5 \times 0 + 4 \times (-1) + 1

\times 1 + 2 \times 0 + 3 \times (-1) = -2$

Kernel

 

The 16 resulting values can be organized into an output matrix. The element at

position (0,0) in this output matrix represents the result of applying the

convolution operation with the kernel at the initial position on the input matrix. In

convolutional neural networks, the output matrix is referred to as a feature map.

It is referred to as a feature map because these outputs serve as features for the

subsequent layer. In CNNs, the term “feature map” refers to the output of a

convolutional layer after applying filters to the input data. These feature maps

capture various patterns or features from the input, such as edges or textures in

image data.

The output feature maps of one layer become the input for the next layer,

effectively serving as features that the subsequent layer can use to learn more

In [11]:
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complex patterns. This hierarchical feature extraction process is a key

characteristic of CNNs, allowing them to build progressively more abstract and

high-level representations of the input data as the network depth increases.

Blurring

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from scipy.ndimage import convolve

def apply_kernel_to_image(image_path, kernel):

    # Load the image and convert it to grayscale
    image = Image.open(image_path).convert('L')
    image_array = np.array(image)

    # Apply the convolution using the provided kernel
    convolved_array = convolve(image_array, kernel, mode='reflect')

    # Convert the convolved array back to an image
    convolved_image = Image.fromarray(convolved_array)

    # Display the original and convolved images
    plt.figure(figsize=(10, 4))

    plt.subplot(1, 2, 1)
    plt.title('Original Image')
    plt.imshow(image_array, cmap='gray')
    plt.axis('off')

    plt.subplot(1, 2, 2)
    plt.title('Convolved Image')
    plt.imshow(convolved_image, cmap='gray')
    plt.axis('off')

    plt.tight_layout()
    plt.show()

# Define the 7x7 averaging kernel

kernel = np.array([
    [1/49, 1/49, 1/49, 1/49, 1/49, 1/49, 1/49],
    [1/49, 1/49, 1/49, 1/49, 1/49, 1/49, 1/49],
    [1/49, 1/49, 1/49, 1/49, 1/49, 1/49, 1/49],
    [1/49, 1/49, 1/49, 1/49, 1/49, 1/49, 1/49],
    [1/49, 1/49, 1/49, 1/49, 1/49, 1/49, 1/49],
    [1/49, 1/49, 1/49, 1/49, 1/49, 1/49, 1/49],
    [1/49, 1/49, 1/49, 1/49, 1/49, 1/49, 1/49]
])

In [12]:
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# Apply the kernel to the image (provide your image path here)

image_path = '../../assets/images/uottawa_hor_black.png'
apply_kernel_to_image(image_path, kernel)

A pixel is transformed into the average of itself and its eight surrounding

neighbors, resulting in a blurred effect on the image.

The application of kernels to images has been a longstanding practice in the field

of image processing.

Vertical Edge detection

# Define the 3x3 vertical edge detection kernel

kernel = np.array([
    [-1, 0, 1],
    [-2, 0, 2],
    [-1, 0, 1]
])

# Apply the kernel to the image (provide your image path here)

image_path = '../../assets/images/uottawa_hor_black.png'
apply_kernel_to_image(image_path, kernel)

This kernel detects vertical edges by emphasizing differences in intensity

between adjacent columns. It subtracts pixel values on the left from those on

the right, enhancing vertical transitions and suppressing uniform regions.

This is a type of edge detection kernel, specifically a horizontal gradient filter or

a Sobel operator. It’s designed to detect changes in intensity along the horizontal

axis, emphasizing vertical edges in an image.

When this kernel is convolved with an image:

In [13]:



2025-03-14, 11:51slides

Page 19 of 46about:srcdoc

It highlights vertical edges by calculating the difference in pixel intensity

between the left and right sides of a point.

The negative values (-1) on the left subtract intensity, while the positive

values (1) on the right add intensity, effectively measuring the horizontal

gradient.

The zeros in the middle ignore the central pixel’s contribution, focusing only

on the contrast between left and right neighbors.

The result is an image where:

Vertical edges (e.g., the boundary between a dark object and a light

background) appear bright or dark, depending on the direction of the

intensity change.

Horizontal edges or uniform areas tend to be suppressed (close to zero).

Imagine sliding this kernel over an image like a scanner. For each pixel:

It looks at the pixels to its left (subtracting their value with -1) and to its right

(adding their value with 1).

If the left and right sides are similar (e.g., same color), the result is near zero

(no edge).

If the left is dark and the right is light (or vice versa), the result is a strong

positive or negative value, showing a vertical edge.

This is useful in computer vision (like in Tesla’s CNNs) to help detect object

boundaries or lane lines by emphasizing where pixel values change sharply in the

horizontal direction.

Horizontal Edge detection

# Define the 3x3 horizontal edge detection kernel

kernel = np.array([
    [1, 2, 1],   # Top row (positive)
    [0, 0, 0],   # Middle row (neutral)
    [-1, -2, -1] # Bottom row (negative)
])
# Apply the kernel to the image (provide your image path here)

image_path = '../../assets/images/uottawa_hor_black.png'
apply_kernel_to_image(image_path, kernel)

In [14]:
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This kernel detects horizontal edges by highlighting differences in intensity

between adjacent rows. It subtracts pixel values in the upper row from those in

the lower row, accentuating horizontal transitions while minimizing uniform areas.

Kernels

In contrast to image processing, where kernels are manually defined by the user,
in convolutional networks, the kernels are automatically learned by the

network.

To be continued $\ldots$

Terminology

Receptive Field

Attribution: Géron (2019) Figure 14.2
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Receptive Field

Each unit is connected to neurons in its receptive fields.

Unit $i,j$ in layer $l$ is connected to the units $i$ to $i+f_h-1$, $j$ to

$j+f_w-1$ of the layer $l-1$, where $f_h$ and $f_w$ are respectively the

height and width of the receptive field.

Padding

Zero padding. In order to have layers of the same size, the grid can be padded

with zeros.

Padding

No padding

Half padding

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/no_padding_no_strides.gif
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Full padding

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/same_padding_no_strides.gif
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Attribution: github.com/vdumoulin/conv_arithmetic

Stride

Stride. It is possible to connect a larger layer $(l-1)$ to a smaller one $(l)$ by

skipping units. The number of units skipped is called stride, $s_h$ and $s_w$.

. . .

Unit $i,j$ in layer $l$ is connected to the units $i \times s_h$ to $i \times s_h

+ f_h - 1$, $j \times s_w$ to $j \times s_w + f_w - 1$ of the layer $l-1$, where

$f_h$ and $f_w$ are respectively the height and width of the receptive

field, $s_h$ and $s_w$ are respectively the height and width strides.

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/full_padding_no_strides.gif
https://github.com/vdumoulin/conv_arithmetic/
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Stride

No padding, strides

Padding, strides

Attribution: github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/no_padding_strides.gif
https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/padding_strides.gif
https://github.com/vdumoulin/conv_arithmetic/
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Filters

Filters

A window of size $f_h \times f_w$ is moved over the output of layers $l-1$,

referred to as the input feature map, position by position.

For each location, the product is calculated between the extracted patch

and a matrix of the same size, known as a convolution kernel or filter. The

sum of the values in the resulting matrix constitutes the output for that

location.

Model

Model

Attribution: Géron (2019) Figure 14.6

Convolutional Layer

“Thus, a layer full of neurons using the same filter outputs a feature map.”
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“Of course, you do not have to define the filters manually: instead, during

training the convolutional layer will automatically learn the most useful

filters for its task.”

Géron (2019) § 14

Convolutional Layer

“(…) and the layers above will learn to combine them into more complex

patterns.”

“The fact that all neurons in a feature map share the same parameters

dramatically reduces the number of parameters in the model.”

Géron (2019) § 14

Summmary

1. Feature Map: In convolutional neural networks (CNNs), the output of a

convolution operation is known as a feature map. It captures the features of

the input data as processed by a specific kernel.

Summmary

1. Kernel Parameters: The parameters of the kernel are learned through the

backpropagation process, allowing the network to optimize its feature

extraction capabilities based on the training data.

Summmary

1. Bias Term: A single bias term is added uniformly to all entries of the feature

map. This bias helps adjust the activation level, providing additional flexibility

for the network to better fit the data.

Summmary

1. Activation Function: Following the addition of the bias, the feature map

values are typically passed through an activation function, such as ReLU

(Rectified Linear Unit). The ReLU function introduces non-linearity by setting

negative values to zero while retaining positive values, enabling the network
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to learn more complex patterns.

Pooling

Pooling

A pooling layer exhibits similarities to a convolutional layer.

Each neuron in a pooling layer is connected to a set of neurons within a

receptive field.

However, unlike convolutional layers, pooling layers do not possess weights.

Instead, they produce an output by applying an aggregating function,

commonly max or mean.

Similar to convolutional layers, pooling layers allow specification of the receptive

field size, padding, and stride. For the MaxPool2D  function, the default

receptive field size is $2 \times 2$.

In a pooling layer, specifically max pooling, the max function is inherently

nondifferentiable because it involves selecting the maximum value from a set of

inputs. However, in the context of backpropagation in neural networks, we can

work around this by using a concept known as the “gradient of the max function.”

Here’s how it is done:

1. Forward Pass: During the forward pass, the max pooling layer selects the

maximum value from each pooling region (e.g., a 2x2 window) and passes

these values to the next layer.

2. Backward Pass: During backpropagation, the gradient is propagated only to

the input that was the maximum value in the forward pass. This means that

the derivative is 1 for the position that held the maximum value and 0 for all

other positions within the pooling window.

This approach effectively allows the max operation to participate in gradient-

based optimization processes like backpropagation, even though the max

function itself is nondifferentiable. By assigning the gradient to the position of the

maximum value, the network can learn which features are most important for the

task at hand.

Pooling
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This subsampling process leads to a reduction in network size; each

window of dimensions $f_h \times f_w$ is condensed to a single value,

typically the maximum or mean of that window.

A max pooling layer provides a degree of invariance to small translations

(Géron (2019), § 14).

Pooling

1. Dimensionality Reduction: Pooling layers reduce the spatial dimensions

(width and height) of the input feature maps. This reduction decreases the

number of parameters and computational load in the network, which can help

prevent overfitting.

Pooling

1. Feature Extraction: By summarizing the presence of features in a region,

pooling layers help retain the most critical information while discarding less

important details. This process enables the network to focus on the most

salient features.

Pooling

1. Translation Invariance: Pooling introduces a degree of invariance to

translations and distortions in the input. For instance, max pooling captures

the most prominent feature in a local region, making the network less

sensitive to small shifts or variations in the input.

Pooling

1. Noise Reduction: Pooling can help smooth out noise in the input by

aggregating information over a region, thus emphasizing consistent features

over random variations.

Pooling

1. Hierarchical Feature Learning: By reducing the spatial dimensions

progressively through the layers, pooling layers allow the network to build a

hierarchical representation of the input data, capturing increasingly abstract



2025-03-14, 11:51slides

Page 29 of 46about:srcdoc

and complex features at deeper layers.

Keras

import tensorflow as tf
from functools import partial  

DefaultConv2D = partial(tf.keras.layers.Conv2D, kernel_size=3, padding="same", activation="relu", kernel_initializer="he_normal") 

model = tf.keras.Sequential([     
  DefaultConv2D(filters=64, kernel_size=7, input_shape=[28, 28, 1]), 
  tf.keras.layers.MaxPool2D(),     
  DefaultConv2D(filters=128),
  DefaultConv2D(filters=128),
  tf.keras.layers.MaxPool2D(),
  DefaultConv2D(filters=256),
  DefaultConv2D(filters=256),
  tf.keras.layers.MaxPool2D(),
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(units=128, activation="relu", kernel_initializer="he_normal"),     
  tf.keras.layers.Dropout(0.5),
  tf.keras.layers.Dense(units=64, activation="relu", kernel_initializer="he_normal"),
  tf.keras.layers.Dropout(0.5),
  tf.keras.layers.Dense(units=10, activation="softmax") ])  

model.summary()

/Users/turcotte/opt/micromamba/envs/ml4bio/lib/python3.10/site-package
s/keras/src/layers/convolutional/base_conv.py:107: UserWarning:

Do not pass an `input_shape`/`input_dim` argument to a layer. When usin
g Sequential models, prefer using an `Input(shape)` object as the first 
layer in the model instead.
Model: "sequential"

In [15]:
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 Total params: 1,413,834 (5.39 MB)
 Trainable params: 1,413,834 (5.39 MB)
 Non-trainable params: 0 (0.00 B)

Géron (2022) Chapter 11, test accuracy of 92% on the Fashion-MNIST dataset

The previously discussed model, which comprised fully connected (Dense)

layers, attained a test accuracy of 88%.

We will look at pooling next.

Convolutional Neural Networks

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ conv2d (Conv2D)                 │ (None, 28, 28, 64)     │         3,200 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d (MaxPooling2D)    │ (None, 14, 14, 64)     │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d_1 (Conv2D)               │ (None, 14, 14, 128)    │        73,856 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d_2 (Conv2D)               │ (None, 14, 14, 128)    │       147,584 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d_1 (MaxPooling2D)  │ (None, 7, 7, 128)      │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d_3 (Conv2D)               │ (None, 7, 7, 256)      │       295,168 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ conv2d_4 (Conv2D)               │ (None, 7, 7, 256)      │       590,080 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling2d_2 (MaxPooling2D)  │ (None, 3, 3, 256)      │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ flatten (Flatten)               │ (None, 2304)           │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense (Dense)                   │ (None, 128)            │       295,040 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout (Dropout)               │ (None, 128)            │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_1 (Dense)                 │ (None, 64)             │         8,256 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dropout_1 (Dropout)             │ (None, 64)             │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_2 (Dense)                 │ (None, 10)             │           650 │
└─────────────────────────────────┴────────────────────────┴───────────────┘
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The architecture involves sequentially stacking several convolutional layers, each

followed by a ReLU activation layer, and then a pooling layer. As this process

continues, the spatial dimensions of the image representation decrease.

Concurrently, the number of feature maps increases, as illustrated in our Keras

example. At the top of this stack, a standard feedforward neural network is

incorporated.

AlexNet
......

... ...

Krizhevsky, Sutskever, and Hinton (2012)

Attribution: Prince (2023)

AlexNet consists of eight layers with learnable parameters: five convolutional

layers followed by three fully connected layers. The architecture also includes

max-pooling layers, ReLU activation functions, and dropout to improve training

performance and reduce overfitting.

VGG
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......

... ...

Simonyan and Zisserman (2015)

Attribution: Prince (2023)

Complementary information can be found here.

Convolutional networks (ConvNets) currently set the state of the art

in visual recognition. The aim of this project is to investigate how

the ConvNet depth affects their accuracy in the large-scale image

recognition setting.

Our main contribution is a rigorous evaluation of networks of

increasing depth, which shows that a significant improvement on

the prior-art configurations can be achieved by increasing the

depth to 16-19 weight layers, which is substantially deeper than

what has been used in the prior art. To reduce the number of

parameters in such very deep networks, we use very small 3×3

filters in all convolutional layers (the convolution stride is set to 1).

Please see our publication for more details.

ConvNets Performance

https://www.robots.ox.ac.uk/~vgg/research/very_deep/
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Five Base + Five HiResFive Base + Five HiRes

Inception V2Inception V2

PNASNet-5PNASNet-5AmoebaNet-AAmoebaNet-AResNeXt-101 32x48dResNeXt-101 32x48d
FixE!cientNet-L2FixE!cientNet-L2

Attribution: Prince (2023)

Final Word

As you might expect, the number of layers and filters are hyperparameters that

are optimized through the process of hyperparameter tuning.
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Attribution: @stefaan_cotteni

Case Study

Conv1D

https://emojis.sh/emoji/desperate-and-discouraged-emoji-xiBgGFCW51
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Zeng et al. (2016)

This study examines nine architectural variants of neural networks by altering

their width, depth, and pooling configurations. The networks’ performance is

assessed across 690 distinct ChIP-seq experiments.

Conclusion: “We found for both tasks, classification performance increases with

the number of convolution kernels, and the use of local pooling or more

convolutional layers has little, if not negative, effect on the performance”

PSSM
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He et al. (2020)

Primer on Deep Learning in Genomics

Imports and variable definitions.

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

import requests

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

np.set_printoptions(threshold=40)

# Define the base URL for accessing genomic sequence data

BASE_URL = 'https://raw.githubusercontent.com/abidlabs/deep-learning-genomics-primer/master/'
SEQUENCES_URL = BASE_URL + 'sequences.txt'

Reproduced from Zou et al. (2019) and its accompanying Google Colab Tutorial.

Downloading Sequences

In [16]:

https://colab.research.google.com/drive/17E4h5aAOioh5DiTo7MZg4hpL6Z_0FyWr
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try:
    # Fetch the sequences from the URL
    response = requests.get(SEQUENCES_URL)
    response.raise_for_status()  # Raise an error if the request was unsuccessful
    
    # Split the text data into a list of sequences, removing any empty lines
    sequences = response.text.split('\n')
    sequences = list(filter(None, sequences))  # Removes empty strings from the list
    
    # Convert sequences into a pandas DataFrame for easy viewing
    df = pd.DataFrame(sequences, index=np.arange(1, len(sequences) + 1), columns=['Sequences'])
    
    # Display the first few rows of the dataset
    print(df.head())

except requests.RequestException as e:
    print(f"Error fetching sequences: {e}")

                                           Sequences
1  CCGAGGGCTATGGTTTGGAAGTTAGAACCCTGGGGCTTCTCGCGGA...
2  GAGTTTATATGGCGCGAGCCTAGTGGTTTTTGTACTTGTTTGTCGC...
3  GATCAGTAGGGAAACAAACAGAGGGCCCAGCCACATCTAGCAGGTA...
4  GTCCACGACCGAACTCCCACCTTGACCGCAGAGGTACCACCAGAGC...
5  GGCGACCGAACTCCAACTAGAACCTGCATAACTGGCCTGGGAGATA...

Encoding

# Define fixed DNA bases
bases = ['A', 'C', 'G', 'T']

# Pre-fit the LabelEncoder with fixed bases
integer_encoder = LabelEncoder()  
integer_encoder.fit(bases)

# Use the fixed integer mapping to define OneHotEncoder categories
categories = [integer_encoder.transform(bases)]
one_hot_encoder = OneHotEncoder(categories=categories)   

Encoding

input_features = []

for sequence in sequences:
  integer_encoded = integer_encoder.fit_transform(list(sequence))
  integer_encoded = np.array(integer_encoded).reshape(-1, 1)
  one_hot_encoded = one_hot_encoder.fit_transform(integer_encoded)
  input_features.append(one_hot_encoded.toarray())

X = np.stack(input_features)

In [17]:

In [18]:

In [19]:
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print("Example sequence\n-----------------------")
print('DNA Sequence #1:\n',sequences[0][:10],'...',sequences[0][-10:])
print('One hot encoding of Sequence #1:\n',X[0].T)

Example sequence
-----------------------
DNA Sequence #1:
 CCGAGGGCTA ... CGCGGACACC
One hot encoding of Sequence #1:
 [[0. 0. 0. ... 1. 0. 0.]
 [1. 1. 0. ... 0. 1. 1.]
 [0. 0. 1. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]

Downloading Responses

LABELS_URL = BASE_URL + 'labels.txt'

labels = requests.get(LABELS_URL).text.split('\n')
labels = list(filter(None, labels))  # removes empty sequences
labels = np.array(labels).reshape(-1, 1)

one_hot_encoder = OneHotEncoder(categories='auto')

y = one_hot_encoder.fit_transform(labels).toarray()

print('Labels:\n', labels.T)
print('One-hot encoded labels:\n', y.T)

Labels:
 [['0' '0' '0' ... '0' '1' '1']]
One-hot encoded labels:
 [[1. 1. 1. ... 1. 0. 0.]
 [0. 0. 0. ... 0. 1. 1.]]

Train & Test Sets

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Model

from tensorflow.keras.layers import Conv1D, Dense, MaxPooling1D, Flatten
from tensorflow.keras.models import Sequential

model = Sequential()

In [20]:

In [21]:

In [22]:
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model.add(Conv1D(filters=32, kernel_size=12, input_shape=(X_train.shape[1], 4)))
model.add(MaxPooling1D(pool_size=4))
model.add(Flatten())
model.add(Dense(16, activation='relu'))
model.add(Dense(2, activation='softmax'))

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['binary_accuracy'])

model.summary()

/Users/turcotte/opt/micromamba/envs/ml4bio/lib/python3.10/site-package
s/keras/src/layers/convolutional/base_conv.py:107: UserWarning:

Do not pass an `input_shape`/`input_dim` argument to a layer. When usin
g Sequential models, prefer using an `Input(shape)` object as the first 
layer in the model instead.
Model: "sequential_1"

 Total params: 6,226 (24.32 KB)
 Trainable params: 6,226 (24.32 KB)
 Non-trainable params: 0 (0.00 B)

Training

history = model.fit(X_train, y_train, epochs=50, verbose=0, validation_split=0.2)

plt.figure()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'])
plt.show()

┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓
┃ Layer (type)                    ┃ Output Shape           ┃       Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩
│ conv1d (Conv1D)                 │ (None, 39, 32)         │         1,568 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ max_pooling1d (MaxPooling1D)    │ (None, 9, 32)          │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ flatten_1 (Flatten)             │ (None, 288)            │             0 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_3 (Dense)                 │ (None, 16)             │         4,624 │
├─────────────────────────────────┼────────────────────────┼───────────────┤
│ dense_4 (Dense)                 │ (None, 2)              │            34 │
└─────────────────────────────────┴────────────────────────┴───────────────┘

In [23]:
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Training and Validation Accuracy

plt.figure()
plt.plot(history.history['binary_accuracy'])
plt.plot(history.history['val_binary_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'])
plt.show()

In [24]:
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Performance on Test Set

from sklearn.metrics import confusion_matrix

y_pred = model.predict(np.stack(X_test))

cm = confusion_matrix(np.argmax(y_test, axis=1), 
                      np.argmax(y_pred, axis=1))

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title(f'Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()

 1/13 ━━━━━━━━━━━━━━━━━━━━ 0s 27ms/step��������������������������������
�������13/13 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step 

In [25]:



2025-03-14, 11:51slides

Page 42 of 46about:srcdoc

Prologue

Summary

Throughout this lecture, we examined the key principles and operations of

Convolutional Neural Networks (CNNs):

1. Hierarchy of Concepts in Deep Learning

Deep learning models construct hierarchical representations of data,

reducing reliance on manual feature engineering.

Deeper networks achieve greater parameter efficiency compared to

shallow networks.

2. Convolutional Neural Networks (CNNs)

CNNs specialize in processing grid-structured data, such as images and

genomic sequences.

Weight sharing and local connectivity reduce the number of parameters

compared to fully connected networks.

3. Kernels and Convolution Operations
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Kernels extract local features by sliding over input data and performing

element-wise multiplication.

The output feature maps highlight important patterns in the data.

4. Receptive Field, Padding, and Stride

The receptive field defines the portion of input visible to a neuron in a

convolutional layer.

Padding helps maintain spatial dimensions, while stride controls the step

size of kernel movement.

5. Filters and Feature Maps

Filters are automatically learned during training to capture meaningful

patterns in data.

Shared parameters across neurons enhance efficiency and

generalization.

6. Convolutional Layers

Layers apply convolution operations followed by an activation function

like ReLU.

Non-linearity introduced by ReLU enables learning of complex

representations.

7. Pooling Layers

Pooling reduces spatial dimensions and computational costs while

preserving key features.

Max pooling provides translation invariance, improving robustness to

variations in input.

8. CNN Architectures and Applications

Stacking convolutional and pooling layers leads to feature-rich

representations.

CNNs are widely used in image processing, bioinformatics, and medical

diagnostics.

9. Hyperparameter Tuning

Key parameters include filter size, depth, stride, and padding.

Regularization techniques, such as dropout, prevent overfitting.

Further Reading



2025-03-14, 11:51slides

Page 44 of 46about:srcdoc

Understanding Deep Learning (Prince 2023) is a recently published textbook

focused on the foundational concepts of deep learning.

It begins with fundamental principles and extends to contemporary topics

such as transformers, diffusion models, graph neural networks,

autoencoders, adversarial networks, and reinforcement learning.

The textbook aims to help readers comprehend these concepts without

delving excessively into theoretical details.

It includes sixty-eight Python notebook exercises.

The book follows a “read-first, pay-later” model.

http://udlbook.com/
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Resources

A guide to convolution arithmetic for deep learning

Authors: Vincent Dumoulin and Francesco Visin

Last revised: 11 Jan 2018

arXiv:1603.07285

GitHub Repository

Next lecture

Student presentations!
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