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Rule Learning

Chances are that you have never heard the term rule learning despite the fact that it
is one of the oldest paradigms in machine learning. Particularly now, the emphasis
is on developing machine learning algorithms with exceptionally high “accuracy”. We
have deep learning algorithms with superhuman powers classifying images, detecting
cancer from medical images, or defeating the world champions of Go, one of the most
challenging games. In this lecture, we focus on a set of methods putting the emphasis
on interpretability rather than numerical performance.

General objective :
Explain rule learning in your own words
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Justify the need (or not) for interpretability
Explain rule learning in your own words

Reading:
Fürnkranz, D. Gamberger, and N. Lavrač. Foundations of Rule Learning.
Cognitive Technologies. Springer Berlin Heidelberg, 2012.
King, R. D. et al. The automation of science. Science 324, 8589 (2009).
Sparkes, A. et al. Towards Robot Scientists for autonomous scientific
discovery. Autom Exp 2, 1 (2010).
King, R. D., Schuler Costa, V., Mellingwood, C. & Soldatova, L. N.
Automating Sciences: Philosophical and Social Dimensions. IEEE
Technology and Society Magazine 37, 4046 (2018).
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Make this the last lecture of the term.
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Rule Learning,
a vast and diverse continent

that you may never have heard of.
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f o l d ( ’ G lob in − l i k e ’ , X) :−
a d j a c e n t (X, A, B, 1 , h , h ) ,
has_pro (B ) .



Flavodoxin, Rossman-fold, TIM-barrel
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f o l d ( ’ F l avodox in − l i k e ’ ,A) :−
nb_alpha (A, B) , nb_beta (A, B) , i n t e r v a l _ l (B ≤ 6 ) .

f o l d ( ’NAD(P)− b i n d i n g Rossmann−f o l d domains ’ ,A) :−
nb_alpha (A, B) , nb_beta (A, B) , i n t e r v a l (5 ≤ B ≤ 7 ) .

f o l d ( ’ beta / a lpha (TIM)− b a r r e l ’ ,A) :−
nb_alpha (A, B) , nb_beta (A, B) , i n t e r v a l (8 ≤ B ≤ 16 ) .

The number of strands is the same as the number of helices, however, that
number is variable.



Beta-grasp
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f o l d ( ’ beta−Grasp ’ ,A) :−
a d j a c e n t (A, B, C ,2 , e , h ) ,
a d j a c e n t (A, C ,D, 1 , h , e ) ,
c o i l (C ,D, 3 ) .

This rule effectively describes a relation involving three secondary structure
elements, β2-α1-β3, although no triple relationship was explicitly
encoded in the background knowledge.



SH3
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f o l d (A, ’SH3− l i k e b a r r e l ’ ) :−
number_strands (4 =< A =< 7) ,
s h e e t (A, B, a n t i ) ,
has_n_strands (B, 5) ,
s t r a n d (A, C , B, 1 ) ,
s t r a n d (A, D, B, −1) ,
a n t i p a r a l l e l (C , D) .

The first and the last are anti-parallel!



SH3
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(1bia) (d1bb)

(d1pht) (2ahj)



“Inductive” Logic Programming
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Examples:
Phycocyanin adopts a globin fold.
Hemoglobin adopts a globin fold.
Oct-1 POU Homeodomain is not a globin.

+
Background:
The second helix in phycocyanin contains a proline.
To calculate the hydrophobic moment . . .

⇓
Hypothesis:
The first helix is followed by another one that contains a
proline.
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Knowledge discovery

Can expert-like knowledge be discovered automatically?
Background knowledge

How can we make effective use of accumulated knowledge?

Relational information

Can we learn complex interactions between sub-structures?

Interpretability

How can we make hypotheses easily amenable to human interpretation?
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These algorithms are based on formal logic, a sub-branch of mathematics.

Propositional (zero-order) logic

“If it’s raining then it’s cloudy”

First-order (predicate) logic

“there exists x such that x is Socrates and x is a man”

J.W. Lloyd, Logic for learning: Learning comprehensible theories from
structured data, Cognitive Technologies, Springer Berlin Heidelberg, 2003.
Fürnkranz, D. Gamberger, and N. Lavrač. Foundations of Rule Learning.
Cognitive Technologies. Springer Berlin Heidelberg, 2012.
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Given:
A data description language
A target concept
A hypothesis description language
A coverage function, covered(r, e)
A class attribute, C
A set of positive examples, P
A set of negative examples, N

Find:
A hypothesis which is:

complete, covers all the examples, and
consistent, predicts the correct class for all the examples.

Adapted from [Fürnkranz et al., 2012] Figure 2.2.



Completeness and consistency
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Source: [Fürnkranz et al., 2012] Figure 2.3.
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An instance is covered by a rule, if the description of the instance
satisfies the conditions of the rule.

An example is correctly covered by a rule, if it is covered and the class
of the rule is the same as the class of the example.
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Propositional (attribute-value) rules.

The rules have the form:

IF Conditions THEN c
where Conditions is a conjunction (and) of simple tests (properties of the
instance) and c is a class.

Corresponds to the implication in propositional logic, c ← Conditions.

SportsCar← HasChildren = No ∧ Sex = Male

Alternatively, first-order logic can be used to represent the data, the
background knowledge, and the hypotheses.

first-order learning, relational learning or inductive logic programming
daughte r (X,Y) :− f ema l e (X) , pa r en t (Y,X ) .
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Overfitting
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Rule learning systems are also susceptible to overfitting.
Completeness and consistency are too strong requirements in the presence
of noise.

The systems are then forced to learn too specific rules.
These criteria are relaxed, allowing the systems to tolerate a small number of
errors.



Progol
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Given. The logic programs B and E
where,

B is the background knowledge, and
E is a set of examples (E+ and E−)

Find. Hypothesis H, from a predefined language L, such that,

B ∧ H |= E

and
|B ∧ H | < |B ∧ E |

Where || is some measure of complexity (simplicity)



Progol’s algorithm
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1. If E = ∅ return B
2. Select the first positive example in E
3. Construct the “most specific” clause (⊥)

4. General to specific search
5. Add the “best” clause to B
6. Remove all examples entailed (covered) by B
7. Goto 1



Step 3 - Constructing⊥
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[ G e n e r a l i z i n g f o l d ( ’ G l ob i n ’ , d1scta_ ) . ]
[ Most s p e c i f i c c lause i s ]

f o l d ( ’ G lob in − l i k e ’ ,A) :−
a d j a c e n t (A, B, C , 1 , h , h ) ,
a d j a c e n t (A, C ,D, 2 , h , h ) ,
a d j a c e n t (A,D, E , 3 , h , h ) ,
a d j a c e n t (A, E , F , 4 , h , h ) ,
a d j a c e n t (A, F , G, 5 , h , h ) ,
l e n _ i n t e r v a l ( ’ $sk0 ’=<A=<’ $sk2 ’ ) ,
n b _ a l p h a _ i n t e r v a l ( ’ $sk0 ’=<A=<’ $sk2 ’ ) ,
n b _ b e t a _ i n t e r v a l ( ’ $sk0 ’=<A=<’ $sk2 ’ ) ,
c o i l (B, C , 1 ) , c o i l (C ,D, 3 ) , c o i l (D, E , 2 ) ,
c o i l (E , F , 2 ) , c o i l (F , G, 1 ) ,
u n i t _ l e n (B, h i ) , u n i t _ l e n (D, h i ) ,
u n i t _ l e n (F , l o ) , u n i t _ l e n (G, h i ) ,
un i t_aveh (F , h i ) ,
unit_hmom (F , l o ) , unit_hmom (G, l o ) ,
has_pro (C) , has_pro (G ) .



Step 4 - General to Specific Search
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The search starts with the most general clause: “everything is a Globin”.

[C: −8 ,13 ,20 ,0 f o l d ( ’ G l ob i n ’ , X ) . ]

The clause is specialized: “every domain such that the first helix is followed by another helix”.

[C: −6 ,13 ,17 ,0 f o l d ( ’ G l ob i n ’ , X) :− a d j a c e n t (X, A, B, 1 , h , h ) . ]

The clause is specialized again: “every domain such that the first helix is followed by another
helix and another helix”.

[C: −2 ,13 ,12 ,0 f o l d ( ’ G l ob i n ’ , X) :− a d j a c e n t (X, A, B, 1 , h , h ) ,
a d j a c e n t (X, B, C , 2 , h , h ) . ]

. . .
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Step 4 - General to Specific Search

Building blocks 27/49

The hypothesis which has the highest score is reported.
f =8,p=13,n=1,h=0
[ R e s u l t o f s e a r c h i s ]

f o l d ( ’ G l ob i n ’ , X) :−
a d j a c e n t (X, A, B, 1 , h , h ) ,
a d j a c e n t (X, B, C , 2 , h , h ) ,
l e n (135 =< X =< 1 6 6 ) .



Applications in bioformatics
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Drug structure-activity
Mutagenesis
Predicting protein secondary structure
Protein fold
Gene function
Sorting peptides
Many more



Implementations
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Propositional (zero-order) logic
CN2, RIPPER, PRIM, Opus, Apriori

First-order (predicate) logic
Foil, Duce, Cigol, Progol, Aleph



Summary
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Rule learning systems are based on formal logic
Expressive - they have the ability to learn complex relationships
Human readable representations
Can make use of accumulated knowledge
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In a series of publications, Ross King and colleagues have described the
Robot scientist:

Ross D. King, Vlad Schuler Costa, Chris Mellingwood, and Larisa N.
Soldatova, Automating sciences: Philosophical and social dimensions, IEEE
Technol. Soc. Mag. 37;1, 4046, 2018.
Sparkes, A. et al. Towards Robot Scientists for autonomous scientific
discovery. Autom Exp 2:1, 2010.
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“The question of whether it is possible to automate the scientific process
is of both great theoretical interest and increasing practical importance
because, in many scientific areas, data are being generated much faster
than they can be effectively analysed.”

Ross D King, Kenneth E Whelan, Ffion M Jones, Philip G K Reiser,
Christopher H Bryant, Stephen H Muggleton, Douglas B Kell, and Stephen
G Oliver, Functional genomic hypothesis generation and experimentation by
a robot scientist, Nature 427:6971, 24752, 2004.
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Source: [Sparkes et al., 2010] Figure 1



Robot scientist

Science (fiction) 35/49

“The system automatically originates hypotheses to explain
observations,”

“devises experiments to test these hypotheses,”
“physically runs the experiments using a laboratory robot,”
“interprets the results to falsify hypotheses inconsistent with the data,”
“and then repeats the cycle.”

Source: [King et al., 2004]
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Prototype
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Source: [Sparkes et al., 2010] Figure 2



Experiment

Science (fiction) 37/49

“[T]he determination of gene function using deletion mutants of yeast
(Saccharomyces cerevisiae) and auxotrophic growth experiments.”

At the time, 30% of the genes in Saccharomyces cerevisiae had no known
function.

Source: [King et al., 2004]



Experiment

Science (fiction) 37/49

“[T]he determination of gene function using deletion mutants of yeast
(Saccharomyces cerevisiae) and auxotrophic growth experiments.”
At the time, 30% of the genes in Saccharomyces cerevisiae had no known
function.

Source: [King et al., 2004]



Mechanisms
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“The model infers (deduces) that a knockout mutant will grow if, and
only if, a path can be found from the input metabolites to the three
aromatic amino acids. This allows the model to compute the phenotype
of a particular knockout or to be used to infer missing reactions that could
explain an observed phenotype (abduction).”

Abduction “starts with an observation or set of observations then seeks to
find the simplest and most likely explanation for the observations.”
[Wikipedia,2019-11-21]
ASE-Progol, where ASE = Active Selection of Experiments.

Source: [King et al., 2004]

https://en.wikipedia.org/wiki/Abductive_reasoning
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“We show that an intelligent experiment selection strategy is competitive
with human performance and significantly outperforms, with a cost
decrease of 3-fold and 100-fold (respectively), both cheapest and
random-experiment selection.”

“The model correctly predicted at least 98.5% of the experiments (. . . )”
“Nevertheless, the Robot Scientist has currently only been demonstrated to
rediscover the role of genes of known function;”
“Moreover, the application of the Robot Scientist to functional genomics
provides further evidence that some aspects of scientific reasoning can be
formalized and efficiently automated.”

Source: [King et al., 2004]
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Stochastic logic programs
Predicate invention
Deep Relational Machines (DRM)
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The resulting rules are easily understandable by humans.
But also, these systems are ideally suited for reasoning, thus providing a
foundation for automated scientific discovery.
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Graph Learning
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