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Abstract
Summary:

● This study proposes ENBED (Ensemble Nucleotide Byte-level 

Encoder-Decoder), a Transformer-based foundation model for genomic 

sequence analysis.

● ENBED uses byte-level tokenization and a sequence-to-sequence 

encoder–decoder architecture to analyze DNA sequences with 

single-nucleotide resolution.

● It applies masked language modeling for pretraining and a subquadratic 

attention mechanism for scalable long-range modeling.



Key Contributions of ENBED
Core Applications:

1. Identifies enhancers, promoters, and splice sites

2. Detects sequencing noise (insertions, deletions, mismatches)

3. Annotates biological functions of sequences

4. Predicts viral mutations (e.g., Influenza)

Advantages:

Outperforms encoder-only / decoder-only models

Strong generalization across species and tasks



The Role of Foundation Models in Bioinformatics
Foundation models have revolutionized natural language understanding and are now 
entering bioinformatics.

Their generalizability and adaptability allow them to perform well on unlabeled 
biological data.

Early applications include:

Protein structure prediction

Mutation effect analysis

Recent models expand to DNA and RNA:

Identifying regulatory elements

Analyzing chromatin and evolution

Predicting mutations from genomic data

Foundation models help visualize internal structure and interpret biological 
processes.



Prior Work: Encoder-only vs Decoder-only

Transformer-based models for DNA fall into two categories:

● Encoder-only models (e.g., BERT-style)

→ Good for classification, regression tasks

→ Lack generative ability

● Decoder-only models (e.g., GPT-style)

→ Can do sequence generation

→ But limited in capturing source–target relationships

Encoder-only 
Model

DNA input sequence

Encoding

Output: classification or 
regression

Decoder-only Model Start token + Generate tokens Predicts next 
token step by step



Why ENBED Uses Encoder–Decoder Architecture
Benefits of encoder–decoder structure:

Handles input and output sequences asymmetrically (more biologically realistic)

Uses cross-attention to link encoded input with generated output

Performs better on sequence-to-sequence tasks like mutation prediction

Input DNA sequence:
[ A ] [ T ] [ G ] [ C ] [ A ]

After encoding:
[ v1 ] [ v2 ] [ v3 ] [ v4 ] [ v5 ]

Decoder

Encoder

Start with a start token and 
generate each base step by 
step by using the encoder’s 

output



Limitations of Traditional Tokenization Methods 
for DNA
● DNA sequences are made of 4 symbols (A, C, T, G).

● Tokenizers are needed to convert sequences into Transformer-readable tokens.

● Traditional NLP tokenization (e.g., SentencePiece, BPE) assumes linguistic 

structure, which DNA lacks.

● DNA has no words, spaces, or punctuation → token boundaries are unclear.

● Methods like k-mer, BPE, SentencePiece:
○ Create variable-length tokens

○ Are sensitive to small changes: one base change → completely different token

● ENBED adopts byte-level tokenization:
○ Each base is a single token (A, T, C, G)

○ Sequence becomes longer, but more robust to mutations



ENBED: A Foundation Model for DNA Sequences

● ENBED = Ensemble Nucleotide Byte-level Encoder–Decoder
● Uses a Transformer with encoder–decoder architecture
● Applies byte-level tokenization (1 token per nucleotide)
● Enables sequence-to-sequence modeling for DNA

Pretrained on:

Human & maize telomere-to-telomere genomes



Key Design Choices in ENBED

● Byte-level tokenization:
○ Avoids ambiguity in defining token boundaries in DNA

○ Handles single nucleotide variants (SNVs) robustly

○ Downside: Longer token sequences → higher compute cost

● Subquadratic attention:
○ Reduces compute cost of long DNA sequence modeling

○ Maintains performance by combining sliding window + global attention



ENBED Evaluation: Benchmarks and Noise 
Detection

Performance on Genomic Benchmarks：

Outperforms State-of-the-Art on 21/25 tasks from NT & GB datasets

Tasks include: enhancer/promoter/splice site/histone mark prediction

Datasets span human, mouse, yeast, fly, worm DNA

Sequencing Noise Identification：

ENBED distinguishes noisy vs accurate sequences

Uses data from telomere-to-telomere assemblies

Achieves 97.6% accuracy on synthetic noisy data



ENBED Evaluation: Biological Function & Mutations

Biological Function Annotation

Predicts gene function classes from genomic sequences

After tuning achieves F₁ score = 74.1  on common functional classes 

Mutation Prediction (Seq2Seq)：

ENBED is also applied to simulate and predict genetic mutations.

It uses an encoder–decoder architecture, enabling the model to generate mutated sequences step 
by step, similar to language translation.

The experiments use Influenza virus data from the NCBI Influenza Virus Resource, where 
parent–child pairs of mutated sequences are constructed based on a phylogenetic tree.

ENBED demonstrates strong performance in modeling genomic mutations.



2 Method

1. model architecture

2. Input sequence Tokenization

3. Attention layer

4. Application of foundation model

5. Benchmarks and tasks



2.1 Model architecture

- ENBED consists of encoder and decoder blocks.

- Both encoder and decoder blocks contain attention layers and feed-forward neural 
networks

- Attention layers: process a sequence by replacing each element with a weighted sum of 
input embeddings

- Feed-forward neural network: normalize and pass-through the input sequence,  dropout 

applied



The model is encoder-heavy

- encoder-to-decoder ratio to 2:1, 1% performance increase in Ma ked Language Modeling 

accuracy for ByT5(another architecture which is 3:1 encoder-to-decoder ratio)

- The reason why encoder-heavy: tokens are better encoded,  because a larger  share of 

parameters to the se block s(encoder and decoder).



2.2 Input sequence tokenization

- Sequence  are tokenized, by breaking down the input into token. Each token cons i sts of s 

ingle nucleotide

- Even though Alphabet only contains A,T,C,G, authors still keep whole set of ASCII chars, 

because it can aid future tasks like sequence-to-sequence transformation

- This tokenization method require more operations ,since it increases tokenized sequence 

length for DNA sequence

- Therefore we need to reduce memory by reducing the complexity of attention layers



2.3 Attention layer

- It can be seen as a soft-lookup of a query Q in a dictionary(Key value pairs K V).

- The attention score: the similarity between Q and K, each has dimension d.

However, there is a challenge regarding attention !!!



Challenge about Attention

-  It is hard to increase the sequence length L, since the complexity is O(L^2), L<512 is a 

limit

- In order to reduce the complexity, author modified the architecture by replacing the 

dense attention with two subquadratic variants of attention: 

-                  (i) sliding-window attention 

-                  (ii) global attention.



Types of Attention

Sliding-window attention

- Tokens within a sliding window of radius r are used to calculate the attention scores, 

bringing the complexity down to O(L × r).

Global attention

- Divide the input sequence into k blocks and calculate a global token by  summing the 

embedding  for every token in the block

- Scores  are computed for every input token by letting it add to the neighboring token, the 

complexity is O(L x (r+k))



2.4 Applications of foundation models using 
transfer learning

- Our first step is to pretrain it on high-quality reference  sequence s, this step uses Masked 

Language Modeling

- MLM objective: 

Recons truct tokens  that have been deleted and replaced with a MASK token

Identify the correct element  that belong in the ma sked s egment 

- Optimizer: AdamW

- Learning rate: 1e-5.

- Loss function: Cross-entropy.

- Activation function: Softmax.



Fine-tuning for downstream tasks

- The model is fine-tuned by adding a final layer into a task-specific configuration.

- This final layer is called ‘head’ and is attached to final layer

- Layers are gradually unfrozen in reverse order during fine-tuning.

- Unfrozen: Tran sformer to integrate with the attached head while remaining frozen the 

initial layer 

- There are two types of heads:

   Classification head

                  Language modeling head



Classification head

- A fully connected (dense) layer is added to the output of the base model, called 

classification head

- A softmax activation is applied to the output layer, to produce class probabilities.

- Commonly used for sequence-level classification tasks.



Language modeling head

- Consists of a single feed forward neural network layer, followed by a softmax activation 

function.

- Takes hidden representations from previous layers as input, and outputs a probability 

distribution over the vocabulary.

- The softmax function converts raw scores into probabilities, representing the likelihood 

of each token at a specific position.



2.5   Application domains

Use GB(Genomic benchmarks) and NT(Nucleotide transformer) Benchmarks:Evaluate performance 

on fundamental sequence classification tasks.

Noise Identification Task:Measures ENBED’s ability to distinguish genuine sequences from artifacts.

Biological Function Annotation Task:Tests ENBED’s ability to associate sequence patterns

Mutation Generation Task: Focuses on predicting viral mutations through sequence-to-sequence 

modeling.



Benchmarks

2.5.1 Genomic benchmarks

The dataset consists of sequences from four organisms:Human, Mouse, Roundworm, Fruit fly

 

2.5.2 Nucleotide transformer benchmarks

The NT benchmarks consist of four datasets, Epigenetic Marks in Yeast Genome, Enhancer 

Dataset, Promoter Sequences, Splice Site Dataset



Noise identification

Synthetic dataset generated using 512-nucleotide segments randomly selected from 
TeloBase (A comprehensive database of telomere motif diversity)

Noise in shallow sequencing data is well-approximated by a negative binomial 
distribution.

Balanced dataset created with both positive (clean) and negative (noisy) samples.

Model learns to differentiate genuine genomic sequences from noisy artifacts.



Biological function annotation
Gene annotation is treated as a classification task.

Input: DNA sequence fragment (≤ 512 base pairs).

Output: Probability distribution over annotation types.

Total examples:

● Training set: 9,216 examples

● Validation set: 1,024 examples



Mutation generation

● Model Used: Sequence-to-sequence Transformer with a language modeling head.

● Input: DNA sequence

● Generation Method:

○ Beam search : Generates five candidate sequences autoregressively 

○
○ Ranking Candidates: Uses noise identification pipeline.

○ Final Selection: Picks the sequence least likely to be identified as noise.



3.Result



3.1 ENBED outperforms state-of-the-art models 
on GB datasets
The classification head is attached to the final encoder block’s embedding output for 
fine-tuning.

NT Benchmark Evaluation:

● Compared against NT (v2) (encoder-only model)

● Compared against HyenaDNA (decoder-only model)

GB Dataset Evaluation:

● Compared against HyenaDNA

● Compared against CNN model(baseline model)



3.1 ENBED outperforms state-of-the-art models 
on GB datasets

ENBED outperforms state-of-the-art models, achieving:

● Superior results in 15/17 NT benchmarks

● Higher accuracy in 6/8 GB datasets



ENBED identifies noise in genomic 
sequences

Sequence-level classification of erroneous genomic sequences using a synthetic dataset.

ENBED achieves 97.1% F1 score, outperforming existing models:

● DNABERT : 84.9%

● NT : 91.8%



ENBED identifies biological function
annotations

Classification of biological function annotations in the Human reference assembly

ENBED achieves an F1 score of 74.1, outperforming:

● DNABERT : 63.2

● NT : 67.5

● HyenaDNA : 72.8



ENBED generates mutations using sequence-to
sequence transformation

Evaluating mutation generation accuracy using an encoder–decoder Transformer.

 Mutation uses 2 Evaluation Metrics

● Top-1 and Top-5 Accuracy (%):

○ Compared with real-world mutations from the Influenza Virus Resource.

○ Exact matches only counted as correct.

● Levenshtein Distance:

Measures edit distance from real-world mutated sequences.

Mean distance: 2.3 edits per 500 bp (~99.5% similarity).



Encoder-decoder VS Decoder only

Also trained a decoder-only version of ENBED to compare sequence-to-sequence task 

performance.

Encoder–decoder architecture outperforms decoder-only due to better contextual feature 

extraction.

Higher accuracy (99.5%) due to fine-grained tokenization and better sequence representation.



Ablation Study – Encoder vs Decoder Architectures

Compared three architectures:

Decoder-only: 24 decoder layers, next-token prediction

1:1 Encoder–Decoder: 12 encoder + 12 decoder layers

ENBED: 24 encoder + 12 decoder layers (2:1 ratio)

All models have ~800M parameters

Key Findings：

Adding encoder blocks improves understanding of input

Cross-attention allows decoder to leverage encoder embeddings

ENBED’s 2:1 structure yields significant improvement in pretraining accuracy

Decoder-only models are limited to unidirectional generation → Not ideal for sequence-to-sequence 
mutation modeling



Discussion – Pretraining Data and Generalization

High-quality pretraining data contributes to ENBED’s success

Uses complete assemblies (e.g., T2T-CHM13, GRCh38)

More accurate and diverse data → better generalization

● Model trained on T2T-CHM13 outperformed GRCh38 across 
the board

● Suggests that completeness and accuracy of reference 
genomes matter



Discussion – Key Insights
Discussion – Key Insights

● ENBED achieves top performance in 21/25 tasks (NT & GB benchmarks)

● Byte-level tokenization enhances mutation robustness (97.6% accuracy)

● Encoder–decoder excels at sequence generation, ideal for mutation modeling

● Success also tied to data quality and architecture design


