
CSI5180. Machine Learning for
Bioinformatics Applications

Ensemble Learning

by

Marcel Turcotte

Version December 5, 2019

Preamble 2/50

Preamble

Preamble

Preamble 3/50

Ensemble Learning

In this lecture, we consider several meta learning algorithms all based on the principle
that the combined opinion of a large group of individuals is often more accurate than
the opinion of a single expert — this is often referred to as the wisdom of the crowd.
Today, we tell apart the following meta-algorithms: bagging, pasting, random
patches, random subspaces, boosting, and stacking.

General objective :
Compare the specific features of various ensemble learning meta-algorithms

Learning objectives

Preamble 4/50

Discuss the intuition behind bagging and pasting methods
Explain the difference between random patches and random subspaces
Describe boosting methods
Contrast the stacking meta-algorithms from bagging

Reading:
Jaswinder Singh, Jack Hanson, Kuldip Paliwal, and Yaoqi Zhou. RNA
secondary structure prediction using an ensemble of two-dimensional deep
neural networks and transfer learning. Nature Communications 10(1):5407,
2019.

www.mims.ai

Preamble 5/50

bioinformatics.ca/job-postings

https://bit.ly/37K70t5

Plan

Preamble 6/50

1. Preamble

2. Introduction

3. Justification

4. Meta-algorithms

5. Prologue

Introduction 7/50

Introduction

Ensemble Learning - What is it?

Introduction 8/50

“Ensemble learning is a learning paradigm that, instead of trying to learn
one super-accurate model, focuses on training a large number of
low-accuracy models and then combining the predictions given by those
weak models to obtain a high-accuracy meta-model.” [Burkov, 2019] §7.5

Weak learners (low-accuracy) models are simple and fast, both for training
and prediction.
The general idea is that each learner has a vote, and these votes are
combined to establish the final decision.
Decision trees are the most commonly used weak learners.
Ensemble learning is fact an umbrella for a large family of meta-algorithms,
including bagging, pasting, random patches, random subspaces,
boosting, and stacking.

Ensemble Learning - What is it?

Introduction 8/50

“Ensemble learning is a learning paradigm that, instead of trying to learn
one super-accurate model, focuses on training a large number of
low-accuracy models and then combining the predictions given by those
weak models to obtain a high-accuracy meta-model.” [Burkov, 2019] §7.5
Weak learners (low-accuracy) models are simple and fast, both for training
and prediction.

The general idea is that each learner has a vote, and these votes are
combined to establish the final decision.
Decision trees are the most commonly used weak learners.
Ensemble learning is fact an umbrella for a large family of meta-algorithms,
including bagging, pasting, random patches, random subspaces,
boosting, and stacking.

Ensemble Learning - What is it?

Introduction 8/50

“Ensemble learning is a learning paradigm that, instead of trying to learn
one super-accurate model, focuses on training a large number of
low-accuracy models and then combining the predictions given by those
weak models to obtain a high-accuracy meta-model.” [Burkov, 2019] §7.5
Weak learners (low-accuracy) models are simple and fast, both for training
and prediction.
The general idea is that each learner has a vote, and these votes are
combined to establish the final decision.

Decision trees are the most commonly used weak learners.
Ensemble learning is fact an umbrella for a large family of meta-algorithms,
including bagging, pasting, random patches, random subspaces,
boosting, and stacking.

Ensemble Learning - What is it?

Introduction 8/50

“Ensemble learning is a learning paradigm that, instead of trying to learn
one super-accurate model, focuses on training a large number of
low-accuracy models and then combining the predictions given by those
weak models to obtain a high-accuracy meta-model.” [Burkov, 2019] §7.5
Weak learners (low-accuracy) models are simple and fast, both for training
and prediction.
The general idea is that each learner has a vote, and these votes are
combined to establish the final decision.
Decision trees are the most commonly used weak learners.

Ensemble learning is fact an umbrella for a large family of meta-algorithms,
including bagging, pasting, random patches, random subspaces,
boosting, and stacking.

Ensemble Learning - What is it?

Introduction 8/50

“Ensemble learning is a learning paradigm that, instead of trying to learn
one super-accurate model, focuses on training a large number of
low-accuracy models and then combining the predictions given by those
weak models to obtain a high-accuracy meta-model.” [Burkov, 2019] §7.5
Weak learners (low-accuracy) models are simple and fast, both for training
and prediction.
The general idea is that each learner has a vote, and these votes are
combined to establish the final decision.
Decision trees are the most commonly used weak learners.
Ensemble learning is fact an umbrella for a large family of meta-algorithms,
including bagging, pasting, random patches, random subspaces,
boosting, and stacking.

Justification 9/50

Justification

Weak learners/high accuracy

Justification 10/50

10 experiments

Each experiment consists of tossing a loaded coin

51 % head, 49 % tail

As the number of toss increases, the proportion of heads will approach 51%

See: [Géron, 2019] §7

Weak learners/high accuracy

Justification 10/50

10 experiments
Each experiment consists of tossing a loaded coin

51 % head, 49 % tail
As the number of toss increases, the proportion of heads will approach 51%

See: [Géron, 2019] §7

Weak learners/high accuracy

Justification 10/50

10 experiments
Each experiment consists of tossing a loaded coin

51 % head, 49 % tail

As the number of toss increases, the proportion of heads will approach 51%

See: [Géron, 2019] §7

Weak learners/high accuracy

Justification 10/50

10 experiments
Each experiment consists of tossing a loaded coin

51 % head, 49 % tail
As the number of toss increases, the proportion of heads will approach 51%

See: [Géron, 2019] §7

Source code

Justification 11/50

t o s s e s = (np . random . rand (10000 , 10) < 0 . 5 1) . a s t ype (np . i n t 8)
cumsum = np . cumsum(t o s s e s , a x i s =0) / np . a range (1 , 10001) . r e shape (−1 , 1)

w i th p l t . xkcd () :
p l t . f i g u r e (f i g s i z e =(8 ,3 .5))
p l t . p l o t (cumsum)
p l t . p l o t ([0 , 10000] , [0 . 5 1 , 0 . 5 1] , "k−−" , l i n e w i d t h =2, l a b e l="51%")
p l t . p l o t ([0 , 10000] , [0 . 5 , 0 . 5] , "k−" , l a b e l="50%")
p l t . x l a b e l ("Number o f c o i n t o s s e s ")
p l t . y l a b e l (" Heads r a t i o ")
p l t . l e g end (l o c=" lowe r r i g h t ")
p l t . a x i s ([0 , 10000 , 0 . 42 , 0 . 5 8])
p l t . t i g h t _ l a y o u t ()
p l t . s a v e f i g (" weak_ lea rne r . pdf " , format=" pdf " , dp i =264)

See: [Géron, 2019] §7

Weak learners/high accuracy

Justification 12/50

Adapted from [Géron, 2019] §7

Independent learners

Justification 13/50

Clearly, the learners are using the same input, they are not independent.

Ensemble learning works best when the learners are as independent one
from another as possible.

Different algorithms
Different sets of features
Different data sets

Independent learners

Justification 13/50

Clearly, the learners are using the same input, they are not independent.
Ensemble learning works best when the learners are as independent one
from another as possible.

Different algorithms
Different sets of features
Different data sets

Independent learners

Justification 13/50

Clearly, the learners are using the same input, they are not independent.
Ensemble learning works best when the learners are as independent one
from another as possible.

Different algorithms

Different sets of features
Different data sets

Independent learners

Justification 13/50

Clearly, the learners are using the same input, they are not independent.
Ensemble learning works best when the learners are as independent one
from another as possible.

Different algorithms
Different sets of features

Different data sets

Independent learners

Justification 13/50

Clearly, the learners are using the same input, they are not independent.
Ensemble learning works best when the learners are as independent one
from another as possible.

Different algorithms
Different sets of features
Different data sets

Data set - moons

Justification 14/50

import m a t p l o t l i b . p y p l o t as p l t

from s k l e a r n . d a t a s e t s import make_moons

X, y = make_moons (n_samples =100 , n o i s e =0.15)

w i th p l t . xkcd () :
p l t . p l o t (X [: , 0] [y==0] , X [: , 1] [y==0] , " bs ")
p l t . p l o t (X [: , 0] [y==1] , X [: , 1] [y==1] , "g^")
p l t . a x i s ([−1 .5 , 2 . 5 , −1, 1 . 5])
p l t . g r i d (True , which=’ both ’)
p l t . x l a b e l (r " x_1 " , f o n t s i z e =20)
p l t . y l a b e l (r " x_2 " , f o n t s i z e =20, r o t a t i o n =0)
p l t . t i g h t _ l a y o u t ()
p l t . s a v e f i g ("make_moons . pdf " , format=" pdf " , dp i =264)

Adapted from: [Géron, 2019] §5

Data set - moons

Justification 15/50

Adapted from [Géron, 2019] §5

Source code - VotingClassifier - hard

Justification 16/50

from s k l e a r n . ensemble import V o t i n g C l a s s i f i e r
from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r
from s k l e a r n . l i n e a r _ m od e l import L o g i s t i c R e g r e s s i o n
from s k l e a r n . svm import SVC

l o g _ c l f = L o g i s t i c R e g r e s s i o n ()
r n d _ c l f = R a n d o m F o r e s t C l a s s i f i e r ()
svm_cl f = SVC()

e s t i m a t o r s =[(’ l r ’ , l o g _ c l f) ,
(’ r f ’ , r n d _ c l f) ,
(’ s vc ’ , svm_cl f)]

v o t i n g _ c l f = V o t i n g C l a s s i f i e r (e s t i m a t o r s=e s t i m a t o r s , v o t i n g=’ hard ’)

v o t i n g _ c l f . f i t (X_tra in , y _ t r a i n)

Source: [Géron, 2019] §7

Source code - accuracy

Justification 17/50

from s k l e a r n . m e t r i c s import accu ra cy_sco r e

f o r c l f i n (l o g _ c l f , r nd_c l f , svm_clf , v o t i n g _ c l f) :
c l f . f i t (X_tra in , y _ t r a i n)
y_pred = c l f . p r e d i c t (X_test)
p r i n t (c l f . __class__ . __name__ , accu ra cy_sco r e (y_test , y_pred))

LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.888
VotingClassifier 0.904

[Géron, 2019] §7

Source code - accuracy

Justification 17/50

from s k l e a r n . m e t r i c s import accu ra cy_sco r e

f o r c l f i n (l o g _ c l f , r nd_c l f , svm_clf , v o t i n g _ c l f) :
c l f . f i t (X_tra in , y _ t r a i n)
y_pred = c l f . p r e d i c t (X_test)
p r i n t (c l f . __class__ . __name__ , accu ra cy_sco r e (y_test , y_pred))

LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.888
VotingClassifier 0.904

[Géron, 2019] §7

Source code - accuracy

Justification 17/50

from s k l e a r n . m e t r i c s import accu ra cy_sco r e

f o r c l f i n (l o g _ c l f , r nd_c l f , svm_clf , v o t i n g _ c l f) :
c l f . f i t (X_tra in , y _ t r a i n)
y_pred = c l f . p r e d i c t (X_test)
p r i n t (c l f . __class__ . __name__ , accu ra cy_sco r e (y_test , y_pred))

LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.888
VotingClassifier 0.904

[Géron, 2019] §7

Source code - VotingClassifier - soft

Justification 18/50

from s k l e a r n . ensemble import V o t i n g C l a s s i f i e r
from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r
from s k l e a r n . l i n e a r _ m od e l import L o g i s t i c R e g r e s s i o n
from s k l e a r n . svm import SVC

l o g _ c l f = L o g i s t i c R e g r e s s i o n ()
r n d _ c l f = R a n d o m F o r e s t C l a s s i f i e r ()
svm_cl f = SVC(p r o b a b i l i t y=True)

e s t i m a t o r s =[(’ l r ’ , l o g _ c l f) ,
(’ r f ’ , r n d _ c l f) ,
(’ s vc ’ , svm_cl f)]

v o t i n g _ c l f = V o t i n g C l a s s i f i e r (e s t i m a t o r s=e s t i m a t o r s , v o t i n g=’ s o f t ’)

v o t i n g _ c l f . f i t (X_tra in , y _ t r a i n)

Source: [Géron, 2019] §7

Source code - accuracy

Justification 19/50

from s k l e a r n . m e t r i c s import accu ra cy_sco r e

f o r c l f i n (l o g _ c l f , r nd_c l f , svm_clf , v o t i n g _ c l f) :
c l f . f i t (X_tra in , y _ t r a i n)
y_pred = c l f . p r e d i c t (X_test)
p r i n t (c l f . __class__ . __name__ , accu ra cy_sco r e (y_test , y_pred))

LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.896
VotingClassifier 0.92

Soft uses the average probability score, rather than hard voting.
[Géron, 2019] §7

Source code - accuracy

Justification 19/50

from s k l e a r n . m e t r i c s import accu ra cy_sco r e

f o r c l f i n (l o g _ c l f , r nd_c l f , svm_clf , v o t i n g _ c l f) :
c l f . f i t (X_tra in , y _ t r a i n)
y_pred = c l f . p r e d i c t (X_test)
p r i n t (c l f . __class__ . __name__ , accu ra cy_sco r e (y_test , y_pred))

LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.896
VotingClassifier 0.92

Soft uses the average probability score, rather than hard voting.
[Géron, 2019] §7

Source code - accuracy

Justification 19/50

from s k l e a r n . m e t r i c s import accu ra cy_sco r e

f o r c l f i n (l o g _ c l f , r nd_c l f , svm_clf , v o t i n g _ c l f) :
c l f . f i t (X_tra in , y _ t r a i n)
y_pred = c l f . p r e d i c t (X_test)
p r i n t (c l f . __class__ . __name__ , accu ra cy_sco r e (y_test , y_pred))

LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.896
VotingClassifier 0.92

Soft uses the average probability score, rather than hard voting.
[Géron, 2019] §7

Meta-algorithms 20/50

Meta-algorithms

Bagging and pasting

Meta-algorithms 21/50

Ensemble learning works best when the learners are independent.

One way to achieve this is to train the learners on (slightly) different data
sets.

Bagging: sampling with replacement (bootstrap aggregating);
Pasting: sampling without replacement.

As an added bonus, the learns can be trained in parallel!
Literature suggests that bagging outperforms pasting [Géron, 2019].

Bagging and pasting

Meta-algorithms 21/50

Ensemble learning works best when the learners are independent.
One way to achieve this is to train the learners on (slightly) different data
sets.

Bagging: sampling with replacement (bootstrap aggregating);
Pasting: sampling without replacement.

As an added bonus, the learns can be trained in parallel!
Literature suggests that bagging outperforms pasting [Géron, 2019].

Bagging and pasting

Meta-algorithms 21/50

Ensemble learning works best when the learners are independent.
One way to achieve this is to train the learners on (slightly) different data
sets.

Bagging: sampling with replacement (bootstrap aggregating);

Pasting: sampling without replacement.
As an added bonus, the learns can be trained in parallel!
Literature suggests that bagging outperforms pasting [Géron, 2019].

Bagging and pasting

Meta-algorithms 21/50

Ensemble learning works best when the learners are independent.
One way to achieve this is to train the learners on (slightly) different data
sets.

Bagging: sampling with replacement (bootstrap aggregating);
Pasting: sampling without replacement.

As an added bonus, the learns can be trained in parallel!
Literature suggests that bagging outperforms pasting [Géron, 2019].

Bagging and pasting

Meta-algorithms 21/50

Ensemble learning works best when the learners are independent.
One way to achieve this is to train the learners on (slightly) different data
sets.

Bagging: sampling with replacement (bootstrap aggregating);
Pasting: sampling without replacement.

As an added bonus, the learns can be trained in parallel!

Literature suggests that bagging outperforms pasting [Géron, 2019].

Bagging and pasting

Meta-algorithms 21/50

Ensemble learning works best when the learners are independent.
One way to achieve this is to train the learners on (slightly) different data
sets.

Bagging: sampling with replacement (bootstrap aggregating);
Pasting: sampling without replacement.

As an added bonus, the learns can be trained in parallel!
Literature suggests that bagging outperforms pasting [Géron, 2019].

sklearn.ensemble.BaggingClassifier

Meta-algorithms 22/50

from s k l e a r n . ensemble import B a g g i n g C l a s s i f i e r
from s k l e a r n . t r e e import D e c i s i o n T r e e C l a s s i f i e r

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () ,
n_e s t ima to r s =500 , max_samples =100 ,
b o o t s t r a p=True , n_jobs=8

)

bag_c l f . f i t (nX_train , y _ t r a i n)

y_pred = bag_c l f . p r e d i c t (X_test)

Soft voting by default
bootstrap=False implies pasting

Adapted from: [Géron, 2019] §7

Not just for classification

Meta-algorithms 23/50

Bagging and pasting apply for regression tasks as well.
BaggingRegressor in Keras
Voting is replaced the average

Claim

Meta-algorithms 24/50

Claim:

On average 37 % of the training examples are not used when bagging!
By default, bagging samples N examples with replacement, where N is the
size of the training set.

Claim

Meta-algorithms 24/50

Claim:
On average 37 % of the training examples are not used when bagging!

By default, bagging samples N examples with replacement, where N is the
size of the training set.

Claim

Meta-algorithms 24/50

Claim:
On average 37 % of the training examples are not used when bagging!

By default, bagging samples N examples with replacement, where N is the
size of the training set.

Empirical evidence

Meta-algorithms 25/50

from random import random

def do_sample_with_replacement () :

x s = [1 f o r i i n range (100)]

f o r sample i n range (1 0 0) :
i n d e x = i n t (100 ∗ random ())
xs [i n d e x] = 0

p r i n t (sum(xs))

f o r run i n range (1 0) :
do_sample_with_replacement ()

Empirical evidence

Meta-algorithms 26/50

38
33
34
37
37
37
44
37
35
37

Out-of-bag evaluation (oob)

Meta-algorithms 27/50

By default, bagging samples N examples with replacement, where N is the
size of the training set.
This means that on average, for each learner, 37% of the examples are not
used.
These unseen, out-of-bag, examples can be used for validation!
OOB (possibly) eliminates the need for a separate validation set.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , n_jobs=−1, oob_score=True)

bag_c l f . f i t (X_tra in , y _ t r a i n)
p r i n t (bag_c l f . oob_score_)

0.90133333333333332

Out-of-bag evaluation (oob)

Meta-algorithms 27/50

By default, bagging samples N examples with replacement, where N is the
size of the training set.

This means that on average, for each learner, 37% of the examples are not
used.
These unseen, out-of-bag, examples can be used for validation!
OOB (possibly) eliminates the need for a separate validation set.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , n_jobs=−1, oob_score=True)

bag_c l f . f i t (X_tra in , y _ t r a i n)
p r i n t (bag_c l f . oob_score_)

0.90133333333333332

Out-of-bag evaluation (oob)

Meta-algorithms 27/50

By default, bagging samples N examples with replacement, where N is the
size of the training set.
This means that on average, for each learner, 37% of the examples are not
used.

These unseen, out-of-bag, examples can be used for validation!
OOB (possibly) eliminates the need for a separate validation set.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , n_jobs=−1, oob_score=True)

bag_c l f . f i t (X_tra in , y _ t r a i n)
p r i n t (bag_c l f . oob_score_)

0.90133333333333332

Out-of-bag evaluation (oob)

Meta-algorithms 27/50

By default, bagging samples N examples with replacement, where N is the
size of the training set.
This means that on average, for each learner, 37% of the examples are not
used.
These unseen, out-of-bag, examples can be used for validation!

OOB (possibly) eliminates the need for a separate validation set.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , n_jobs=−1, oob_score=True)

bag_c l f . f i t (X_tra in , y _ t r a i n)
p r i n t (bag_c l f . oob_score_)

0.90133333333333332

Out-of-bag evaluation (oob)

Meta-algorithms 27/50

By default, bagging samples N examples with replacement, where N is the
size of the training set.
This means that on average, for each learner, 37% of the examples are not
used.
These unseen, out-of-bag, examples can be used for validation!
OOB (possibly) eliminates the need for a separate validation set.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , n_jobs=−1, oob_score=True)

bag_c l f . f i t (X_tra in , y _ t r a i n)
p r i n t (bag_c l f . oob_score_)

0.90133333333333332

Out-of-bag evaluation (oob)

Meta-algorithms 27/50

By default, bagging samples N examples with replacement, where N is the
size of the training set.
This means that on average, for each learner, 37% of the examples are not
used.
These unseen, out-of-bag, examples can be used for validation!
OOB (possibly) eliminates the need for a separate validation set.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , n_jobs=−1, oob_score=True)

bag_c l f . f i t (X_tra in , y _ t r a i n)
p r i n t (bag_c l f . oob_score_)

0.90133333333333332

Out-of-bag evaluation (oob)

Meta-algorithms 27/50

By default, bagging samples N examples with replacement, where N is the
size of the training set.
This means that on average, for each learner, 37% of the examples are not
used.
These unseen, out-of-bag, examples can be used for validation!
OOB (possibly) eliminates the need for a separate validation set.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , n_jobs=−1, oob_score=True)

bag_c l f . f i t (X_tra in , y _ t r a i n)
p r i n t (bag_c l f . oob_score_)

0.90133333333333332

Random patches and subspaces

Meta-algorithms 28/50

BaggingClassifier also supports sampling features.

This is controlled by the parameters bootstrap_features and
max_features.

Random patches: sampling both instances and features.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , max_samples =1.0 ,
b o o t s t r a p _ f e a t u r e s=True , max_features =0.4 ,
n_jobs=−1, oob_score=True)

Random subspaces: only sampling features.

Random patches and subspaces

Meta-algorithms 28/50

BaggingClassifier also supports sampling features.
This is controlled by the parameters bootstrap_features and
max_features.

Random patches: sampling both instances and features.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , max_samples =1.0 ,
b o o t s t r a p _ f e a t u r e s=True , max_features =0.4 ,
n_jobs=−1, oob_score=True)

Random subspaces: only sampling features.

Random patches and subspaces

Meta-algorithms 28/50

BaggingClassifier also supports sampling features.
This is controlled by the parameters bootstrap_features and
max_features.

Random patches: sampling both instances and features.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , max_samples =1.0 ,
b o o t s t r a p _ f e a t u r e s=True , max_features =0.4 ,
n_jobs=−1, oob_score=True)

Random subspaces: only sampling features.

Random patches and subspaces

Meta-algorithms 28/50

BaggingClassifier also supports sampling features.
This is controlled by the parameters bootstrap_features and
max_features.

Random patches: sampling both instances and features.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r () , n_e s t ima to r s =500 ,
b o o t s t r a p=True , max_samples =1.0 ,
b o o t s t r a p _ f e a t u r e s=True , max_features =0.4 ,
n_jobs=−1, oob_score=True)

Random subspaces: only sampling features.

Random Forest

Meta-algorithms 29/50

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r (s p l i t t e r=" random " , max_leaf_nodes =16) ,
n_es t ima to r s =500 , max_samples =1.0 , b o o t s t r a p=True)

sklearn.ensemble.RandomForestClassifier

Meta-algorithms 30/50

“The Random Forest algorithm introduces extra randomness when
growing trees; instead of searching for the very best feature when splitting a
node (. . .), it searches for the best feature among a random subset
of features.” [Géron, 2019]

from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r

r f c = R a n d o m F o r e s t C l a s s i f i e r (n_es t ima to r s =500 , max_leaf_nodes =16)

r f c . f i t (X_tra in , y _ t r a i n)

y_pred_rf = r f c . p r e d i c t (X_test)

See also ExtraTreesClassifier and ExtraTreesRegressor.

Boosting

Meta-algorithms 31/50

Boosting meta-algorithms are training learners sequentially, in such a way
that each classifier is trying to correct the mistakes of the previous
classifier in the chain.

AdaBoost

Meta-algorithms 32/50

AdaBoost stands for Adaptive Boosting.

Each learner focuses on examples that were incorrectly classified by the
previous classifier.

Specifically, the weight of examples incorrectly is increased with each
iteration.
Initially, the weight of each example (wi) is 1

N , where N is the number of
examples.

AdaBoost

Meta-algorithms 32/50

AdaBoost stands for Adaptive Boosting.
Each learner focuses on examples that were incorrectly classified by the
previous classifier.

Specifically, the weight of examples incorrectly is increased with each
iteration.
Initially, the weight of each example (wi) is 1

N , where N is the number of
examples.

AdaBoost

Meta-algorithms 32/50

AdaBoost stands for Adaptive Boosting.
Each learner focuses on examples that were incorrectly classified by the
previous classifier.

Specifically, the weight of examples incorrectly is increased with each
iteration.

Initially, the weight of each example (wi) is 1
N , where N is the number of

examples.

AdaBoost

Meta-algorithms 32/50

AdaBoost stands for Adaptive Boosting.
Each learner focuses on examples that were incorrectly classified by the
previous classifier.

Specifically, the weight of examples incorrectly is increased with each
iteration.
Initially, the weight of each example (wi) is 1

N , where N is the number of
examples.

AdaBoost - error rate

Meta-algorithms 33/50

Let’s define an indicator function:

I(ŷ (j)
i , yi) =

0 if ŷ (j)
i = yi

1 if ŷ (j)
i ̸= yi

where ŷ (j)
i is the prediction of the j th learner on example i and yi is the label

of example i .

The error rate of the j th learner is defined as:

rj =
∑N

i=1 wi × I(ŷ (j)
i , yi)∑N

i=1 wi

AdaBoost - error rate

Meta-algorithms 33/50

Let’s define an indicator function:

I(ŷ (j)
i , yi) =

0 if ŷ (j)
i = yi

1 if ŷ (j)
i ̸= yi

where ŷ (j)
i is the prediction of the j th learner on example i and yi is the label

of example i .
The error rate of the j th learner is defined as:

rj =
∑N

i=1 wi × I(ŷ (j)
i , yi)∑N

i=1 wi

AdaBoost - learner’s weight

Meta-algorithms 34/50

When making a final decision (vote), each learner has a weigth.
The weight of the learner j :

αj = η log 1 − rj

rj

where η is the learning rate, default value is 1.
Low error rate implies high learn’s weight.
Random guesses, error rate = 0.5, implies a weight of 0.
Error rate > 0.5 implies a negative weight.

AdaBoost - update

Meta-algorithms 35/50

After training the learner j , the weight of each example is updated as follows.

wi =

wi if ŷ (j)
i = yi

wi × eαj if ŷ (j)
i ̸= yi

The weights are then normalized, dividing them by ∑N
i=1 wi

AdaBoost - update

Meta-algorithms 35/50

After training the learner j , the weight of each example is updated as follows.

wi =

wi if ŷ (j)
i = yi

wi × eαj if ŷ (j)
i ̸= yi

The weights are then normalized, dividing them by ∑N
i=1 wi

AdaBoost - prediction

Meta-algorithms 36/50

The outcome is the class with the largest weighted vote:

ŷ(x) = argmaxk

m∑
j=1

ŷ (j)(x)=k

αj

where m is the number of learners.

sklearn.ensemble.AdaBoostClassifier

Meta-algorithms 37/50

from s k l e a r n . ensemble import A d a B o o s t C l a s s i f i e r

ada_c l f = A d a B o o s t C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r (max_depth =1) ,
n_es t ima to r s =200 ,
a l g o r i t h m="SAMME. R" ,
l e a r n i n g _ r a t e =0.5)

ada_c l f . f i t (X_tra in , y _ t r a i n)

[Géron, 2019] §7

AdaBoost

Meta-algorithms 38/50

A literature search using Scopus for “AdaBoost” and “bioinformatics
returns 78 references. Including the following two papers:

Y. Qu, B.-L. Adam, Y. Yasui, M.D. Ward, L.H. Cazares, P.F. Schellhammer,
Z. Feng, O.J. Semmes, and G.L. Wright Jr., Boosted decision tree analysis of
surface-enhanced laser desorption/ionization mass spectral serum profiles
discriminates prostate cancer from noncancer patients, Clinical Chemistry 48
(2002), no. 10, 18351843, cited By 382.
P.M. Long and V.B. Vega, Boosting and microarray data, Machine Learning
52 (2003), no. 1-2, 3144, cited By 40.

AdaBoost

Meta-algorithms 39/50

https://youtu.be/GM3CDQfQ4sw

https://youtu.be/GM3CDQfQ4sw

Stacking

Meta-algorithms 40/50

Source [Géron, 2019] Figure 7.12

Stacking

Meta-algorithms 41/50

Like bagging, stacking combines the predictions of several learners.

Unlike bagging, stacking does not use a predetermined function to combine
the predictions, say majority vote, instead, it trains a classifier/regressor.
A holdout set is used to train the blender.

Stacking

Meta-algorithms 41/50

Like bagging, stacking combines the predictions of several learners.
Unlike bagging, stacking does not use a predetermined function to combine
the predictions, say majority vote, instead, it trains a classifier/regressor.

A holdout set is used to train the blender.

Stacking

Meta-algorithms 41/50

Like bagging, stacking combines the predictions of several learners.
Unlike bagging, stacking does not use a predetermined function to combine
the predictions, say majority vote, instead, it trains a classifier/regressor.
A holdout set is used to train the blender.

Prologue 42/50

Prologue

Summary

Prologue 43/50

Ensemble learning is the idea of combining the predictions of several weak
learners.

Ensemble learning works best when the learners are as independent one
from another as possible.
This diversity of learners can be achieved in various ways: different
algorithms, different sets of features, (slightly) different data sets.
Boosting combines the learners in a sequential, rather than parallel,
manner. Each learner fixes the mistakes of its predecessor.
With stacking, a learning algorithm is used to combine the results the
weak classifiers.

Summary

Prologue 43/50

Ensemble learning is the idea of combining the predictions of several weak
learners.
Ensemble learning works best when the learners are as independent one
from another as possible.

This diversity of learners can be achieved in various ways: different
algorithms, different sets of features, (slightly) different data sets.
Boosting combines the learners in a sequential, rather than parallel,
manner. Each learner fixes the mistakes of its predecessor.
With stacking, a learning algorithm is used to combine the results the
weak classifiers.

Summary

Prologue 43/50

Ensemble learning is the idea of combining the predictions of several weak
learners.
Ensemble learning works best when the learners are as independent one
from another as possible.
This diversity of learners can be achieved in various ways: different
algorithms, different sets of features, (slightly) different data sets.

Boosting combines the learners in a sequential, rather than parallel,
manner. Each learner fixes the mistakes of its predecessor.
With stacking, a learning algorithm is used to combine the results the
weak classifiers.

Summary

Prologue 43/50

Ensemble learning is the idea of combining the predictions of several weak
learners.
Ensemble learning works best when the learners are as independent one
from another as possible.
This diversity of learners can be achieved in various ways: different
algorithms, different sets of features, (slightly) different data sets.
Boosting combines the learners in a sequential, rather than parallel,
manner. Each learner fixes the mistakes of its predecessor.

With stacking, a learning algorithm is used to combine the results the
weak classifiers.

Summary

Prologue 43/50

Ensemble learning is the idea of combining the predictions of several weak
learners.
Ensemble learning works best when the learners are as independent one
from another as possible.
This diversity of learners can be achieved in various ways: different
algorithms, different sets of features, (slightly) different data sets.
Boosting combines the learners in a sequential, rather than parallel,
manner. Each learner fixes the mistakes of its predecessor.
With stacking, a learning algorithm is used to combine the results the
weak classifiers.

Next module

Prologue 44/50

Null

References

Prologue 45/50

Burkov, A. (2019).
The Hundred-Page Machine Learning Book.
Andriy Burkov.

Cao, Z., Pan, X., Yang, Y., Huang, Y., and Shen, H.-B. (2018).
The lncLocator: a subcellular localization predictor for long non-coding rnas based
on a stacked ensemble classifier.
Bioinformatics, 34(13):2185–2194.

Chen, X., Zhu, C.-C., and Yin, J. (2019).
Ensemble of decision tree reveals potential miRNA-disease associations.
PLoS Comput Biol, 15(7):e1007209.

Colomé-Tatché, M. and Theis, F. J. (2018).
Statistical single cell multi-omics integration.
Current Opinion in Systems Biology, 7:54–59.

Géron, A. (2019).
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow.
O’Reilly Media, 2nd edition.

References

Prologue 46/50

Ma, Y., Liu, Y., and Cheng, J. (2018).
Protein secondary structure prediction based on data partition and semi-random
subspace method.
Sci Rep, 8(1):9856.

Meher, P. K., Sahu, T. K., Gahoi, S., Satpathy, S., and Rao, A. R. (2019).
Evaluating the performance of sequence encoding schemes and machine learning
methods for splice sites recognition.
Gene, 705:113–126.
Peng, H., Zheng, Y., Zhao, Z., Liu, T., and Li, J. (2018).
Recognition of CRISPR/Cas9 off-target sites through ensemble learning of uneven
mismatch distributions.
Bioinformatics, 34(17):i757–i765.

Singh, A. P., Mishra, S., and Jabin, S. (2018a).
Sequence based prediction of enhancer regions from DNA random walk.
Sci Rep, 8(1):15912.

References

Prologue 47/50

Singh, J., Hanson, J., Heffernan, R., Paliwal, K., Yang, Y., and Zhou, Y. (2018b).
Detecting proline and non-proline cis isomers in protein structures from sequences
using deep residual ensemble learning.
J Chem Inf Model, 58(9):2033–2042.

Singh, J., Hanson, J., Paliwal, K., and Zhou, Y. (2019).
RNA secondary structure prediction using an ensemble of two-dimensional deep
neural networks and transfer learning.
Nature Communications, 10(1):5407.

Su, W., Gu, X., and Peterson, T. (2019).
TIR-Learner, a new ensemble method for TIR transposable element annotation,
provides evidence for abundant new transposable elements in the maize genome.
Mol Plant, 12(3):447–460.

Wang, X., Yu, B., Ma, A., Chen, C., Liu, B., and Ma, Q. (2018).
Protein–protein interaction sites prediction by ensemble random forests with
synthetic minority oversampling technique.
Bioinformatics, 35(14):2395–2402.

References

Prologue 48/50

Yu, J., Shi, S., Zhang, F., Chen, G., and Cao, M. (2019).
PredGly: predicting lysine glycation sites for homo sapiens based on XGboost
feature optimization.
Bioinformatics, 35(16):2749–2756.

Zeng, X., Zhong, Y., Lin, W., and Zou, Q. (2019).
Predicting disease-associated circular RNAs using deep forests combined with
positive-unlabeled learning methods.
Brief Bioinform.
Zhang, L., Yu, G., Xia, D., and Wang, J. (2019).
Protein-protein interactions prediction based on ensemble deep neural networks.
Neurocomputing, 324:10–19.

Zhang, X., Wang, J., Li, J., Chen, W., and Liu, C. (2018).
Crlncrc: a machine learning-based method for cancer-related long noncoding rna
identification using integrated features.
BMC Med Genomics, 11(Suppl 6):120.

References

Prologue 49/50

Zheng, R., Li, M., Chen, X., Wu, F.-X., Pan, Y., and Wang, J. (2019).
BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene
regulatory networks.
Bioinformatics, 35(11):1893–1900.

Prologue 50/50

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

Marcel.Turcotte@uOttawa.ca

	Preamble
	Objectives
	Learning objectives
	Plan

	Introduction
	Justification
	Meta-algorithms
	Prologue

