CSI5180. Machine Learning for Bioinformatics Applications

Ensemble Learning

Marcel Turcotte

Version December 5, 2019

Preamble

Preamble

Ensemble Learning

In this lecture, we consider several meta learning algorithms all based on the principle that the combined opinion of a large group of individuals is often more accurate than the opinion of a single expert — this is often referred to as the **wisdom of the crowd**. Today, we tell apart the following meta-algorithms: **bagging**, **pasting**, **random patches**, **random subspaces**, **boosting**, and **stacking**.

General objective :

Compare the specific features of various ensemble learning meta-algorithms

Learning objectives

- Discuss the intuition behind bagging and pasting methods
- **Explain** the difference between random patches and random subspaces
- **Describe** boosting methods
- **Contrast** the stacking meta-algorithms from bagging

Reading:

Jaswinder Singh, Jack Hanson, Kuldip Paliwal, and Yaoqi Zhou. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. *Nature Communications* **10**(1):5407, 2019.

www.mims.ai

Bioinformatician/ Bioinformatics analyst

Institution/Compa	My Intelligent Machines (MIMs)	
Location:	Montreal, QC, Canada	
Job Type:	Programmer/Developer	
Degree Level Requ	Masters, Bachelor's, PhD	Apply No

Bioinformatician/ Bioinformatics analyst

My Intelligent Machines (MIMs) is looking for a highly talented senior bioinformatician/bioinformatics analysts to participate at the development of the core of a world class platform for life scientist integrating AI, Natural language, domain specific workflows. In this role, you will work closely with the AI and Bioinfo teams to provide the state-of-art technology to life scientists. This full time position will focus on workflow design, data/results integration and graphical representation.

Responsibilities:

bioinformatics.ca/job-postings

1. Preamble

2. Introduction

3. Justification

4. Meta-algorithms

5. Prologue

Introduction

* "Ensemble learning is a learning paradigm that, instead of trying to learn one super-accurate model, focuses on training a large number of low-accuracy models and then combining the predictions given by those weak models to obtain a high-accuracy meta-model." [Burkov, 2019] §7.5

- * "Ensemble learning is a learning paradigm that, instead of trying to learn one super-accurate model, focuses on training a large number of low-accuracy models and then combining the predictions given by those weak models to obtain a high-accuracy meta-model." [Burkov, 2019] §7.5
- Weak learners (low-accuracy) models are simple and fast, both for training and prediction.

- * "Ensemble learning is a learning paradigm that, instead of trying to learn one super-accurate model, focuses on training a large number of low-accuracy models and then combining the predictions given by those weak models to obtain a high-accuracy meta-model." [Burkov, 2019] §7.5
- Weak learners (low-accuracy) models are simple and fast, both for training and prediction.
- The general idea is that each learner has a vote, and these votes are combined to establish the final decision.

- * "Ensemble learning is a learning paradigm that, instead of trying to learn one super-accurate model, focuses on training a large number of low-accuracy models and then combining the predictions given by those weak models to obtain a high-accuracy meta-model." [Burkov, 2019] §7.5
- Weak learners (low-accuracy) models are simple and fast, both for training and prediction.
- The general idea is that each learner has a vote, and these votes are combined to establish the final decision.
- **Decision trees** are the most commonly used weak learners.

- * "Ensemble learning is a learning paradigm that, instead of trying to learn one super-accurate model, focuses on training a large number of low-accuracy models and then combining the predictions given by those weak models to obtain a high-accuracy meta-model." [Burkov, 2019] §7.5
- Weak learners (low-accuracy) models are simple and fast, both for training and prediction.
- The general idea is that each learner has a vote, and these votes are combined to establish the final decision.
- **Decision trees** are the most commonly used weak learners.
- Ensemble learning is fact an umbrella for a large family of meta-algorithms, including bagging, pasting, random patches, random subspaces, boosting, and stacking.

Justification

10 experiments

10 experiments

Each experiment consists of tossing a loaded coin

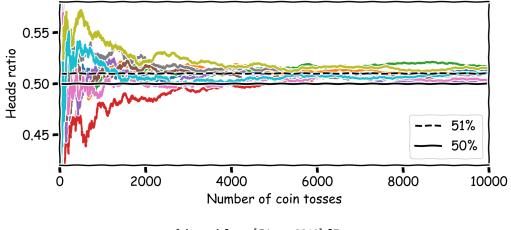
10 experiments

- Each experiment consists of tossing a loaded coin
 - ▶ 51 % head, 49 % tail

10 experiments

- Each experiment consists of tossing a loaded coin
 - 51 % head, 49 % tail
- \blacktriangleright As the number of toss increases, the proportion of heads will approach 51%

```
tosses = (np.random.rand(10000, 10) < 0.51). astype(np.int8)
cumsum = np.cumsum(tosses, axis=0) / np.arange(1, 10001).reshape(-1, 1)
with plt.xkcd():
    plt.figure(figsize = (8, 3.5))
    plt.plot(cumsum)
    plt.plot([0, 10000], [0.51, 0.51], "k-", linewidth=2, label="51%")
    plt.plot([0, 10000], [0.5, 0.5], "k-", label="50%")
    plt.xlabel("Number of coin tosses")
    plt.ylabel("Heads ratio")
    plt.legend(loc="lower right")
    plt.axis([0, 10000, 0.42, 0.58])
    plt.tight_layout()
    plt.savefig("weak learner.pdf", format="pdf", dpi=264)
```



Adapted from [Géron, 2019] §7

Clearly, the learners are using the same input, they are not independent.

- Clearly, the **learners** are using the same input, they are **not independent**.
- Ensemble learning works best when the learners are as independent one from another as possible.

- Clearly, the **learners** are using the same input, they are **not independent**.
- Ensemble learning works best when the learners are as independent one from another as possible.
 - Different algorithms

- Clearly, the **learners** are using the same input, they are **not independent**.
- Ensemble learning works best when the learners are as independent one from another as possible.
 - Different algorithms
 - Different sets of features

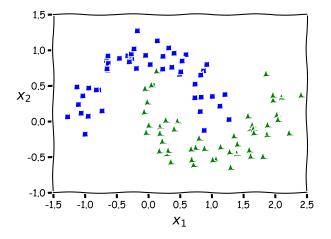
- Clearly, the **learners** are using the same input, they are **not independent**.
- Ensemble learning works best when the learners are as independent one from another as possible.
 - Different algorithms
 - Different sets of features
 - Different data sets

Data set - moons

```
import matplotlib.pyplot as plt
from sklearn datasets import make_moons
X, y = make moons(n samples=100, noise=0.15)
with plt.xkcd():
    plt.plot(X[:, 0][y==0], X[:, 1][y==0], "bs")
    plt.plot(X[:, 0][y==1], X[:, 1][y==1], "g^")
    plt.axis([-1.5, 2.5, -1, 1.5])
    plt.grid(True, which='both')
    plt.xlabel(r"$x 1$", fontsize=20)
    plt.ylabel(r"$x 2$", fontsize=20, rotation=0)
    plt.tight layout()
    plt.savefig("make moons.pdf", format="pdf", dpi=264)
```

Adapted from: [Géron, 2019] §5

Data set - moons

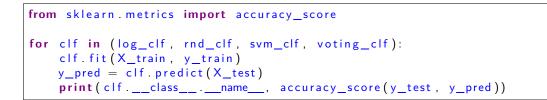


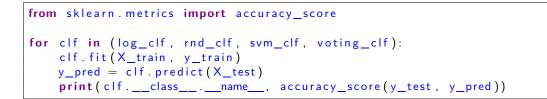
Adapted from [Géron, 2019] §5

Source code - VotingClassifier - hard

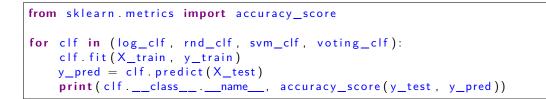
```
from sklearn ensemble import VotingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn linear_model import LogisticRegression
from sklearn.svm import SVC
\log_clf = LogisticRegression()
rnd clf = RandomForestClassifier()
svm_clf = SVC()
estimators = [('lr', log clf),
            ('rf', rnd_clf),
('svc', svm_clf)]
voting_clf = VotingClassifier (estimators=estimators, voting='hard')
voting clf.fit(X_train, y_train)
```

Source: [Géron, 2019] §7





```
LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.888
VotingClassifier 0.904
```



```
LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.888
VotingClassifier 0.904
```

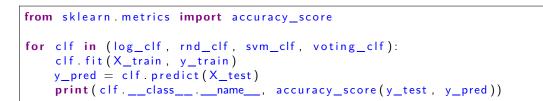
[Géron, 2019] §7

Source code - VotingClassifier - soft

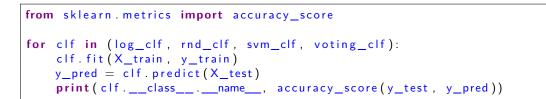
```
from sklearn ensemble import VotingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn linear_model import LogisticRegression
from sklearn.svm import SVC
\log_clf = LogisticRegression()
rnd clf = RandomForestClassifier()
svm clf = SVC(probability=True)
estimators = [('lr', log clf),
            ('rf', rnd_clf),
('svc', svm_clf)]
voting_clf = VotingClassifier(estimators=estimators, voting='soft')
voting clf.fit(X_train, y_train)
```

Source: [Géron, 2019] §7

Source code - accuracy

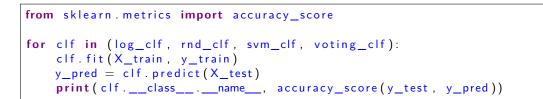


Source code - accuracy



```
LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.896
VotingClassifier 0.92
```

Source code - accuracy



```
LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.896
VotingClassifier 0.92
```

Soft uses the average probability score, rather than hard voting. [Géron, 2019] §7

Meta-algorithms

Ensemble learning works best when the learners are independent.

- **Ensemble learning** works best when the learners are independent.
- One way to achieve this is to train the learners on (slightly) different data sets.

- **Ensemble learning** works best when the learners are independent.
- One way to achieve this is to train the learners on (slightly) different data sets.
 - **Bagging**: sampling with replacement (bootstrap aggregating);

- **Ensemble learning** works best when the learners are independent.
- One way to achieve this is to train the learners on (slightly) different data sets.
 - **Bagging**: sampling with replacement (bootstrap aggregating);
 - **Pasting**: sampling without replacement.

- **Ensemble learning** works best when the learners are independent.
- One way to achieve this is to train the learners on (slightly) different data sets.
 - **Bagging**: sampling with replacement (bootstrap aggregating);
 - **Pasting**: sampling without replacement.
- As an added bonus, the learns can be trained in **parallel**!

- **Ensemble learning** works best when the learners are independent.
- One way to achieve this is to train the learners on (slightly) different data sets.
 - **Bagging**: sampling with replacement (bootstrap aggregating);
 - **Pasting**: sampling without replacement.
- As an added bonus, the learns can be trained in **parallel**!
- Literature suggests that **bagging** outperforms **pasting** [Géron, 2019].

sklearn.ensemble.BaggingClassifier

- **Soft voting** by default
- bootstrap=False implies pasting

Adapted from: [Géron, 2019] §7

- Bagging and pasting apply for regression tasks as well.
 - **BaggingRegressor** in Keras
 - Voting is replaced the average

Claim:

• On average 37 % of the training examples are not used when bagging!

Claim:

- On average 37 % of the training examples are not used when bagging!
- By default, bagging samples N examples with replacement, where N is the size of the training set.

```
from random import random
def do_sample_with_replacement():
    xs = [1 \text{ for } i \text{ in } range(100)]
    for sample in range(100):
        index = int(100 * random())
        xs[index] = 0
    print(sum(xs))
for run in range (10):
    do sample with replacement()
```

Empirical evidence

By default, bagging samples N examples with replacement, where N is the size of the training set.

- By default, bagging samples N examples with replacement, where N is the size of the training set.
- This means that on average, for each learner, 37% of the examples are not used.

- By default, bagging samples N examples with replacement, where N is the size of the training set.
- This means that on average, for each learner, 37% of the examples are not used.
- These **unseen**, out-of-bag, examples can be used for validation!

- By default, bagging samples N examples with replacement, where N is the size of the training set.
- This means that on average, for each learner, 37% of the examples are not used.
- These **unseen**, out-of-bag, examples can be used for validation!
- OOB (possibly) eliminates the need for a separate validation set.

- By default, bagging samples N examples with replacement, where N is the size of the training set.
- This means that on average, for each learner, 37% of the examples are not used.
- These **unseen**, out-of-bag, examples can be used for validation!
- OOB (possibly) eliminates the need for a separate validation set.

- By default, bagging samples N examples with replacement, where N is the size of the training set.
- This means that on average, for each learner, 37% of the examples are not used.
- These **unseen**, out-of-bag, examples can be used for validation!
- OOB (possibly) eliminates the need for a separate validation set.

0.9013333333333333322

BaggingClassifier also supports sampling features.

- BaggingClassifier also supports sampling features.
 - This is controlled by the parameters bootstrap_features and max_features.

BaggingClassifier also supports sampling features.

- This is controlled by the parameters bootstrap_features and max_features.
 - **Random patches:** sampling **both** instances and features.

```
bag_clf = BaggingClassifier(
    DecisionTreeClassifier(), n_estimators=500,
    bootstrap=True, max_samples=1.0,
    bootstrap_features=True, max_features=0.4,
    n_jobs=-1, oob_score=True)
```

BaggingClassifier also supports sampling features.

- This is controlled by the parameters bootstrap_features and max_features.
 - **Random patches:** sampling **both** instances and features.

```
bag_clf = BaggingClassifier(
        DecisionTreeClassifier(), n_estimators=500,
        bootstrap=True, max_samples=1.0,
        bootstrap_features=True, max_features=0.4,
        n_jobs=-1, oob_score=True)
```

Random subspaces: only sampling features.

```
bag_clf = BaggingClassifier(
    DecisionTreeClassifier(splitter="random", max_leaf_nodes=16),
    n_estimators=500, max_samples=1.0, bootstrap=True)
```

sklearn.ensemble.RandomForestClassifier

"The Random Forest algorithm introduces extra randomness when growing trees; instead of searching for the very best feature when splitting a node (...), it searches for the best feature among a random subset of features." [Géron, 2019]

```
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16)
rfc.fit(X_train, y_train)
y_pred_rf = rfc.predict(X_test)
```

See also ExtraTreesClassifier and ExtraTreesRegressor.

Boosting meta-algorithms are training learners sequentially, in such a way that each classifier is trying to correct the mistakes of the previous classifier in the chain.

Each learner focuses on examples that were incorrectly classified by the previous classifier.

- Each learner focuses on examples that were **incorrectly classified by the previous classifier**.
 - Specifically, the weight of examples incorrectly is increased with each iteration.

- Each learner focuses on examples that were incorrectly classified by the previous classifier.
 - Specifically, the weight of examples incorrectly is increased with each iteration.
 - Initially, the weight of each example (w_i) is $\frac{1}{N}$, where N is the number of examples.

AdaBoost - error rate

Let's define an **indicator function**:

$$I(\hat{y}_{i}^{(j)}, y_{i}) = \begin{cases} 0 & \text{if } \hat{y}_{i}^{(j)} = y_{i} \\ 1 & \text{if } \hat{y}_{i}^{(j)} \neq y_{i} \end{cases}$$

where $\hat{y}_i^{(j)}$ is the prediction of the j^{th} learner on example *i* and y_i is the label of example *i*.

AdaBoost - error rate

Let's define an **indicator function**:

$$I(\hat{y}_{i}^{(j)}, y_{i}) = \begin{cases} 0 & \text{if } \hat{y}_{i}^{(j)} = y_{i} \\ 1 & \text{if } \hat{y}_{i}^{(j)} \neq y_{i} \end{cases}$$

where $\hat{y}_i^{(j)}$ is the prediction of the j^{th} learner on example *i* and y_i is the label of example *i*.

The **error rate** of the *j*th learner is defined as:

$$r_{j} = \frac{\sum_{i=1}^{N} w_{i} \times I(\hat{y}_{i}^{(j)}, y_{i})}{\sum_{i=1}^{N} w_{i}}$$

AdaBoost - learner's weight

When making a final decision (vote), each learner has a weigth.

The **weight** of the learner *j*:

$$\alpha_j = \eta \log \frac{1 - r_j}{r_j}$$

where η is the learning rate, default value is 1.

- Low error rate implies high learn's weight.
- Random guesses, error rate = 0.5, implies a weight of 0.
- Error rate > 0.5 implies a negative weight.

After training the learner *j*, the weight of each example is updated as follows.

$$w_i = \begin{cases} w_i & \text{if } \hat{y}_i^{(j)} = y_i \\ w_i \times e^{\alpha_j} & \text{if } \hat{y}_i^{(j)} \neq y_i \end{cases}$$

After training the learner *j*, the weight of each example is updated as follows.

$$w_i = egin{cases} w_i & ext{if } \hat{y}_i^{(j)} = y_i \ w_i imes e^{lpha_j} & ext{if } \hat{y}_i^{(j)}
eq y_i \end{cases}$$

The weights are then normalized, dividing them by $\sum_{i=1}^{N} w_i$

The outcome is the class with the **largest weighted vote**:

$$\hat{y}(x) = \operatorname{argmax}_k \sum_{\substack{j=1 \ \hat{y}^{(j)}(x)=k}}^m lpha_j$$

where m is the number of learners.

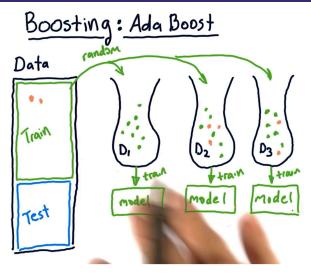
sklearn.ensemble.AdaBoostClassifier

[Géron, 2019] §7

AdaBoost

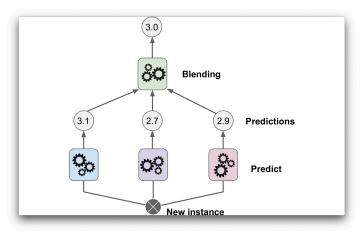
- A literature search using Scopus for "AdaBoost" and "bioinformatics returns 78 references. Including the following two papers:
 - Y. Qu, B.-L. Adam, Y. Yasui, M.D. Ward, L.H. Cazares, P.F. Schellhammer, Z. Feng, O.J. Semmes, and G.L. Wright Jr., Boosted decision tree analysis of surface-enhanced laser desorption/ionization mass spectral serum profiles discriminates prostate cancer from noncancer patients, *Clinical Chemistry* 48 (2002), no. 10, 18351843, cited By 382.
 - P.M. Long and V.B. Vega, Boosting and microarray data, *Machine Learning* 52 (2003), no. 1-2, 3144, cited By 40.

AdaBoost



https://youtu.be/GM3CDQfQ4sw

Stacking



Source [Géron, 2019] Figure 7.12

Like bagging, stacking combines the predictions of several learners.

- Like bagging, stacking combines the predictions of several learners.
- Unlike bagging, stacking does not use a predetermined function to combine the predictions, say majority vote, instead, it trains a classifier/regressor.

- Like bagging, stacking combines the predictions of several learners.
- Unlike bagging, stacking does not use a predetermined function to combine the predictions, say majority vote, instead, it trains a classifier/regressor.
- A holdout set is used to train the blender.

• **Ensemble learning** is the idea of combining the predictions of several weak learners.

- **Ensemble learning** is the idea of combining the predictions of several weak learners.
- **Ensemble learning** works best when the learners are as independent one from another as possible.

- **Ensemble learning** is the idea of combining the predictions of several weak learners.
- Ensemble learning works best when the learners are as independent one from another as possible.
- This diversity of learners can be achieved in various ways: different algorithms, different sets of features, (slightly) different data sets.

- Ensemble learning is the idea of combining the predictions of several weak learners.
- Ensemble learning works best when the learners are as independent one from another as possible.
- This diversity of learners can be achieved in various ways: different algorithms, different sets of features, (slightly) different data sets.
- **Boosting** combines the learners in a sequential, rather than parallel, manner. Each learner fixes the mistakes of its predecessor.

- Ensemble learning is the idea of combining the predictions of several weak learners.
- Ensemble learning works best when the learners are as independent one from another as possible.
- This diversity of learners can be achieved in various ways: different algorithms, different sets of features, (slightly) different data sets.
- **Boosting** combines the learners in a sequential, rather than parallel, manner. Each learner fixes the mistakes of its predecessor.
- With stacking, a learning algorithm is used to combine the results the weak classifiers.

Null

Burkov, A. (2019).

The Hundred-Page Machine Learning Book. Andriy Burkov.

- Cao, Z., Pan, X., Yang, Y., Huang, Y., and Shen, H.-B. (2018).
 The IncLocator: a subcellular localization predictor for long non-coding rnas based on a stacked ensemble classifier.
 Bioinformatics, 34(13):2185–2194.
- Chen, X., Zhu, C.-C., and Yin, J. (2019).
 Ensemble of decision tree reveals potential miRNA-disease associations.
 PLoS Comput Biol, 15(7):e1007209.
- Colomé-Tatché, M. and Theis, F. J. (2018). Statistical single cell multi-omics integration. Current Opinion in Systems Biology, 7:54–59.

Géron, A. (2019).
 Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow.
 O'Reilly Media, 2nd edition.

- Ma, Y., Liu, Y., and Cheng, J. (2018).
 Protein secondary structure prediction based on data partition and semi-random subspace method.
 Sci Rep, 8(1):9856.
- Meher, P. K., Sahu, T. K., Gahoi, S., Satpathy, S., and Rao, A. R. (2019). Evaluating the performance of sequence encoding schemes and machine learning methods for splice sites recognition. *Gene*, 705:113–126.
- Peng, H., Zheng, Y., Zhao, Z., Liu, T., and Li, J. (2018).

Recognition of CRISPR/Cas9 off-target sites through ensemble learning of uneven mismatch distributions.

Bioinformatics, 34(17):i757–i765.

 Singh, A. P., Mishra, S., and Jabin, S. (2018a).
 Sequence based prediction of enhancer regions from DNA random walk. *Sci Rep*, 8(1):15912.

Singh, J., Hanson, J., Heneman, R., Paliwai, K., Yang, Y., and Zhou, Y. (2016b). Detecting proline and non-proline cis isomers in protein structures from sequences using deep residual ensemble learning.

J Chem Inf Model, 58(9):2033–2042.

- Singh, J., Hanson, J., Paliwal, K., and Zhou, Y. (2019).
 RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning.
 Nature Communications, 10(1):5407.
- Su, W., Gu, X., and Peterson, T. (2019).

TIR-Learner, a new ensemble method for TIR transposable element annotation, provides evidence for abundant new transposable elements in the maize genome. *Mol Plant*, 12(3):447-460.

Wang, X., Yu, B., Ma, A., Chen, C., Liu, B., and Ma, Q. (2018).
 Protein-protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique.
 Bioinformatics, 35(14):2395-2402.

Yu, J., Shi, S., Zhang, F., Chen, G., and Cao, M. (2019). PredGly: predicting lysine glycation sites for homo sapiens based on XGboost feature optimization.

Bioinformatics, 35(16):2749-2756.

Zeng, X., Zhong, Y., Lin, W., and Zou, Q. (2019).

Predicting disease-associated circular RNAs using deep forests combined with positive-unlabeled learning methods.

Brief Bioinform.

Zhang, L., Yu, G., Xia, D., and Wang, J. (2019).

Protein-protein interactions prediction based on ensemble deep neural networks. *Neurocomputing*, 324:10–19.

Zhang, X., Wang, J., Li, J., Chen, W., and Liu, C. (2018). CrIncrc: a machine learning-based method for cancer-related long noncoding rna identification using integrated features. BMC Med Genomics, 11(Suppl 6):120. Zheng, R., Li, M., Chen, X., Wu, F.-X., Pan, Y., and Wang, J. (2019). BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene regulatory networks. *Bioinformatics*, 35(11):1893–1900.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS) University of Ottawa