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Ensemble Learning

In this lecture, we consider several meta learning algorithms all based on the principle
that the combined opinion of a large group of individuals is often more accurate than
the opinion of a single expert — this is often referred to as the wisdom of the crowd.
Today, we tell apart the following meta-algorithms: bagging, pasting, random
patches, random subspaces, boosting, and stacking.

General objective :
Compare the specific features of various ensemble learning meta-algorithms
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Discuss the intuition behind bagging and pasting methods
Explain the difference between random patches and random subspaces
Describe boosting methods
Contrast the stacking meta-algorithms from bagging

Reading:
Jaswinder Singh, Jack Hanson, Kuldip Paliwal, and Yaoqi Zhou. RNA
secondary structure prediction using an ensemble of two-dimensional deep
neural networks and transfer learning. Nature Communications 10(1):5407,
2019.
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bioinformatics.ca/job-postings

https://bit.ly/37K70t5
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“Ensemble learning is a learning paradigm that, instead of trying to learn
one super-accurate model, focuses on training a large number of
low-accuracy models and then combining the predictions given by those
weak models to obtain a high-accuracy meta-model.” [Burkov, 2019] §7.5

Weak learners (low-accuracy) models are simple and fast, both for training
and prediction.
The general idea is that each learner has a vote, and these votes are
combined to establish the final decision.
Decision trees are the most commonly used weak learners.
Ensemble learning is fact an umbrella for a large family of meta-algorithms,
including bagging, pasting, random patches, random subspaces,
boosting, and stacking.
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10 experiments

Each experiment consists of tossing a loaded coin

51 % head, 49 % tail

As the number of toss increases, the proportion of heads will approach 51%

See: [Géron, 2019] §7
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t o s s e s = ( np . random . rand (10000 , 10) < 0 . 5 1 ) . a s t ype ( np . i n t 8 )
cumsum = np . cumsum( t o s s e s , a x i s =0) / np . a range (1 , 10001) . r e shape (−1 , 1)

w i th p l t . xkcd ( ) :
p l t . f i g u r e ( f i g s i z e =(8 ,3 .5 ) )
p l t . p l o t ( cumsum)
p l t . p l o t ( [ 0 , 10000 ] , [ 0 . 5 1 , 0 . 5 1 ] , "k−−" , l i n e w i d t h =2, l a b e l="51%" )
p l t . p l o t ( [ 0 , 10000 ] , [ 0 . 5 , 0 . 5 ] , "k−" , l a b e l="50%" )
p l t . x l a b e l ( "Number o f c o i n t o s s e s " )
p l t . y l a b e l ( " Heads r a t i o " )
p l t . l e g end ( l o c=" lowe r r i g h t " )
p l t . a x i s ( [ 0 , 10000 , 0 . 42 , 0 . 5 8 ] )
p l t . t i g h t _ l a y o u t ( )
p l t . s a v e f i g ( " weak_ lea rne r . pdf " , format=" pdf " , dp i =264)

See: [Géron, 2019] §7
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Adapted from [Géron, 2019] §7



Independent learners
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Clearly, the learners are using the same input, they are not independent.

Ensemble learning works best when the learners are as independent one
from another as possible.

Different algorithms
Different sets of features
Different data sets
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Data set - moons
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import m a t p l o t l i b . p y p l o t as p l t

from s k l e a r n . d a t a s e t s import make_moons

X, y = make_moons ( n_samples =100 , n o i s e =0.15)

w i th p l t . xkcd ( ) :
p l t . p l o t (X [ : , 0 ] [ y==0] , X [ : , 1 ] [ y==0] , " bs " )
p l t . p l o t (X [ : , 0 ] [ y==1] , X [ : , 1 ] [ y==1] , "g^" )
p l t . a x i s ( [ −1 .5 , 2 . 5 , −1, 1 . 5 ] )
p l t . g r i d ( True , which=’ both ’ )
p l t . x l a b e l ( r " $x_1$ " , f o n t s i z e =20)
p l t . y l a b e l ( r " $x_2$ " , f o n t s i z e =20, r o t a t i o n =0)
p l t . t i g h t _ l a y o u t ( )
p l t . s a v e f i g ( "make_moons . pdf " , format=" pdf " , dp i =264)

Adapted from: [Géron, 2019] §5
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Adapted from [Géron, 2019] §5



Source code - VotingClassifier - hard
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from s k l e a r n . ensemble import V o t i n g C l a s s i f i e r
from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r
from s k l e a r n . l i n e a r _ m od e l import L o g i s t i c R e g r e s s i o n
from s k l e a r n . svm import SVC

l o g _ c l f = L o g i s t i c R e g r e s s i o n ( )
r n d _ c l f = R a n d o m F o r e s t C l a s s i f i e r ( )
svm_cl f = SVC( )

e s t i m a t o r s =[( ’ l r ’ , l o g _ c l f ) ,
( ’ r f ’ , r n d _ c l f ) ,
( ’ s vc ’ , svm_cl f ) ]

v o t i n g _ c l f = V o t i n g C l a s s i f i e r ( e s t i m a t o r s=e s t i m a t o r s , v o t i n g=’ hard ’ )

v o t i n g _ c l f . f i t ( X_tra in , y _ t r a i n )

Source: [Géron, 2019] §7



Source code - accuracy
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from s k l e a r n . m e t r i c s import accu ra cy_sco r e

f o r c l f i n ( l o g _ c l f , r nd_c l f , svm_clf , v o t i n g _ c l f ) :
c l f . f i t ( X_tra in , y _ t r a i n )
y_pred = c l f . p r e d i c t ( X_test )
p r i n t ( c l f . __class__ . __name__ , accu ra cy_sco r e ( y_test , y_pred ) )

LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.888
VotingClassifier 0.904

[Géron, 2019] §7
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Source code - VotingClassifier - soft
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from s k l e a r n . ensemble import V o t i n g C l a s s i f i e r
from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r
from s k l e a r n . l i n e a r _ m od e l import L o g i s t i c R e g r e s s i o n
from s k l e a r n . svm import SVC

l o g _ c l f = L o g i s t i c R e g r e s s i o n ( )
r n d _ c l f = R a n d o m F o r e s t C l a s s i f i e r ( )
svm_cl f = SVC( p r o b a b i l i t y=True )

e s t i m a t o r s =[( ’ l r ’ , l o g _ c l f ) ,
( ’ r f ’ , r n d _ c l f ) ,
( ’ s vc ’ , svm_cl f ) ]

v o t i n g _ c l f = V o t i n g C l a s s i f i e r ( e s t i m a t o r s=e s t i m a t o r s , v o t i n g=’ s o f t ’ )

v o t i n g _ c l f . f i t ( X_tra in , y _ t r a i n )

Source: [Géron, 2019] §7
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from s k l e a r n . m e t r i c s import accu ra cy_sco r e

f o r c l f i n ( l o g _ c l f , r nd_c l f , svm_clf , v o t i n g _ c l f ) :
c l f . f i t ( X_tra in , y _ t r a i n )
y_pred = c l f . p r e d i c t ( X_test )
p r i n t ( c l f . __class__ . __name__ , accu ra cy_sco r e ( y_test , y_pred ) )

LogisticRegression 0.864
RandomForestClassifier 0.896
SVC 0.896
VotingClassifier 0.92

Soft uses the average probability score, rather than hard voting.
[Géron, 2019] §7
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Bagging and pasting
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Ensemble learning works best when the learners are independent.

One way to achieve this is to train the learners on (slightly) different data
sets.

Bagging: sampling with replacement (bootstrap aggregating);
Pasting: sampling without replacement.

As an added bonus, the learns can be trained in parallel!
Literature suggests that bagging outperforms pasting [Géron, 2019].
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sklearn.ensemble.BaggingClassifier
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from s k l e a r n . ensemble import B a g g i n g C l a s s i f i e r
from s k l e a r n . t r e e import D e c i s i o n T r e e C l a s s i f i e r

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r ( ) ,
n_e s t ima to r s =500 , max_samples =100 ,
b o o t s t r a p=True , n_jobs=8

)

bag_c l f . f i t ( nX_train , y _ t r a i n )

y_pred = bag_c l f . p r e d i c t ( X_test )

Soft voting by default
bootstrap=False implies pasting

Adapted from: [Géron, 2019] §7



Not just for classification
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Bagging and pasting apply for regression tasks as well.
BaggingRegressor in Keras
Voting is replaced the average
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Claim:

On average 37 % of the training examples are not used when bagging!
By default, bagging samples N examples with replacement, where N is the
size of the training set.
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Empirical evidence
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from random import random

def do_sample_with_replacement ( ) :

x s = [ 1 f o r i i n range (100) ]

f o r sample i n range ( 1 0 0 ) :
i n d e x = i n t (100 ∗ random ( ) )
xs [ i n d e x ] = 0

p r i n t (sum( xs ) )

f o r run i n range ( 1 0 ) :
do_sample_with_replacement ( )



Empirical evidence
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38
33
34
37
37
37
44
37
35
37



Out-of-bag evaluation (oob)

Meta-algorithms 27/50

By default, bagging samples N examples with replacement, where N is the
size of the training set.
This means that on average, for each learner, 37% of the examples are not
used.
These unseen, out-of-bag, examples can be used for validation!
OOB (possibly) eliminates the need for a separate validation set.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r ( ) , n_e s t ima to r s =500 ,
b o o t s t r a p=True , n_jobs=−1, oob_score=True )

bag_c l f . f i t ( X_tra in , y _ t r a i n )
p r i n t ( bag_c l f . oob_score_ )

0.90133333333333332
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Random patches and subspaces
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BaggingClassifier also supports sampling features.

This is controlled by the parameters bootstrap_features and
max_features.

Random patches: sampling both instances and features.

bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r ( ) , n_e s t ima to r s =500 ,
b o o t s t r a p=True , max_samples =1.0 ,
b o o t s t r a p _ f e a t u r e s=True , max_features =0.4 ,
n_jobs=−1, oob_score=True )

Random subspaces: only sampling features.
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bag_c l f = B a g g i n g C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r ( s p l i t t e r=" random " , max_leaf_nodes =16) ,
n_es t ima to r s =500 , max_samples =1.0 , b o o t s t r a p=True )



sklearn.ensemble.RandomForestClassifier
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“The Random Forest algorithm introduces extra randomness when
growing trees; instead of searching for the very best feature when splitting a
node (. . . ), it searches for the best feature among a random subset
of features.” [Géron, 2019]

from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r

r f c = R a n d o m F o r e s t C l a s s i f i e r ( n_es t ima to r s =500 , max_leaf_nodes =16)

r f c . f i t ( X_tra in , y _ t r a i n )

y_pred_rf = r f c . p r e d i c t ( X_test )

See also ExtraTreesClassifier and ExtraTreesRegressor.



Boosting

Meta-algorithms 31/50

Boosting meta-algorithms are training learners sequentially, in such a way
that each classifier is trying to correct the mistakes of the previous
classifier in the chain.



AdaBoost
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AdaBoost stands for Adaptive Boosting.

Each learner focuses on examples that were incorrectly classified by the
previous classifier.

Specifically, the weight of examples incorrectly is increased with each
iteration.
Initially, the weight of each example (wi) is 1

N , where N is the number of
examples.
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Let’s define an indicator function:

I(ŷ (j)
i , yi) =

0 if ŷ (j)
i = yi

1 if ŷ (j)
i ̸= yi

where ŷ (j)
i is the prediction of the j th learner on example i and yi is the label

of example i .

The error rate of the j th learner is defined as:

rj =
∑N

i=1 wi × I(ŷ (j)
i , yi)∑N

i=1 wi
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AdaBoost - learner’s weight

Meta-algorithms 34/50

When making a final decision (vote), each learner has a weigth.
The weight of the learner j :

αj = η log 1 − rj

rj

where η is the learning rate, default value is 1.
Low error rate implies high learn’s weight.
Random guesses, error rate = 0.5, implies a weight of 0.
Error rate > 0.5 implies a negative weight.
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After training the learner j , the weight of each example is updated as follows.

wi =

wi if ŷ (j)
i = yi

wi × eαj if ŷ (j)
i ̸= yi

The weights are then normalized, dividing them by ∑N
i=1 wi
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AdaBoost - prediction
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The outcome is the class with the largest weighted vote:

ŷ(x) = argmaxk

m∑
j=1

ŷ (j)(x)=k

αj

where m is the number of learners.



sklearn.ensemble.AdaBoostClassifier
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from s k l e a r n . ensemble import A d a B o o s t C l a s s i f i e r

ada_c l f = A d a B o o s t C l a s s i f i e r (
D e c i s i o n T r e e C l a s s i f i e r ( max_depth =1) ,
n_es t ima to r s =200 ,
a l g o r i t h m="SAMME. R" ,
l e a r n i n g _ r a t e =0.5)

ada_c l f . f i t ( X_tra in , y _ t r a i n )

[Géron, 2019] §7



AdaBoost
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A literature search using Scopus for “AdaBoost” and “bioinformatics
returns 78 references. Including the following two papers:

Y. Qu, B.-L. Adam, Y. Yasui, M.D. Ward, L.H. Cazares, P.F. Schellhammer,
Z. Feng, O.J. Semmes, and G.L. Wright Jr., Boosted decision tree analysis of
surface-enhanced laser desorption/ionization mass spectral serum profiles
discriminates prostate cancer from noncancer patients, Clinical Chemistry 48
(2002), no. 10, 18351843, cited By 382.
P.M. Long and V.B. Vega, Boosting and microarray data, Machine Learning
52 (2003), no. 1-2, 3144, cited By 40.
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https://youtu.be/GM3CDQfQ4sw

https://youtu.be/GM3CDQfQ4sw
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Source [Géron, 2019] Figure 7.12
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Like bagging, stacking combines the predictions of several learners.

Unlike bagging, stacking does not use a predetermined function to combine
the predictions, say majority vote, instead, it trains a classifier/regressor.
A holdout set is used to train the blender.
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Ensemble learning is the idea of combining the predictions of several weak
learners.

Ensemble learning works best when the learners are as independent one
from another as possible.
This diversity of learners can be achieved in various ways: different
algorithms, different sets of features, (slightly) different data sets.
Boosting combines the learners in a sequential, rather than parallel,
manner. Each learner fixes the mistakes of its predecessor.
With stacking, a learning algorithm is used to combine the results the
weak classifiers.
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Null
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