
Introduction to Computer Science II (CSI 1101 A,B)
Final Examination

Instructor: Marcel Turcotte

April 2004, duration: 3 hours

Identification

Student name:

Student number: Signature:

Instructions

1. This is a closed book examination;
2. No calculators or other aids are permitted;
3. Write comments and assumptions to get partial marks;
4. Beware, poor hand writing can affect grades;
5. Do not remove the staple holding the examination pages together;
6. Write your answers in the space provided. Use the back of the pages if necessary.

You may not hand in additional pages;

Marking scheme

Question Maximum Result
1 3
2 3
3 6
4 12
5 20
6 16
7 20
8 15
9 5

Total 100

April 2004 CSI 1101 Page 2 of 20

Question 1 (3 marks)

Knowing that ⊕ (called xor — “exclusive-or”) is defined as follows,

A⊕B = A ·B + A ·B

With a truth table, show that the following equivalence is true. The Appendix A has the truth
tables for the AND (·), OR (+) and NOT (¬).

A⊕B = A⊕B

Question 2 (3 marks)

Given the following canonical product of sums (CPOS) describing F :

F = (x + y + z) · (x + y + z) · (x + y + z) · (x + y + z)

Complete the following truth table for the boolean function F .

x y z F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

April 2004 CSI 1101 Page 3 of 20

Question 3 (6 marks)

For this question, eight (8) bits are used to represent signed binary integers using two’s com-
plement.

A. Represent the signed decimal integer (+23)10 in two’s complement.

Answer: []2

B. Represent the signed decimal integer (−70)10 in two’s complement.

Answer: []2

C. Do the following addition in two’s complement. The calculations must be carried out in base
2.

1 1 0 1 1 0 0 1
+ 1 1 1 1 1 0 1 0

Hint: verify your answers by doing the calculations in decimal as well.

April 2004 CSI 1101 Page 4 of 20

Question 4 (12 marks)

On the next page you will find a program (in machine code) for the TC-1101 computer, as defined
for the question 4 of the assignment 9; i.e. the processor has an ADDi instruction. The Appendix B
summarizes the necessary information for this question.

A. Give the content of the following registers at the end of each of the first three (3) cycles of the
execution of the program found on the next page; the cycles refer to the FETCH-EXECUTE
cycles.

PC opCode opAddr MAR MDR A Z N
0
1
2

B. Convert the machine program to assembly language for the TC-1101. Create new symbols
as needed, labels for the instructions must have the form [1], [2], etc. and the labels that
represent either variables, or constants, must have the form, X, Y , etc.

April 2004 CSI 1101 Page 5 of 20

(Question 4 continued)

The table below gives the memory content (right, bold) and the addresses (left).

00 00 15
00 01 00
00 02 06
00 03 15
00 04 00
00 05 01
00 06 91
00 07 00
00 08 05
00 09 61
00 10 00
00 11 03
00 12 19
00 13 00
00 14 21
00 15 17
00 16 00
00 17 21
00 18 15
00 19 00
00 20 41
00 21 91
00 22 00
00 23 04
00 24 99
00 25 00
00 26 05
00 27 39
00 28 00
00 29 04
00 30 91
00 31 00
00 32 05
00 33 83
00 34 02
00 35 39
00 36 00
00 37 05
00 38 15
00 39 00
00 40 09
00 41 01
00 42 00
00 43 04
00 44 64

April 2004 CSI 1101 Page 6 of 20

Question 5 (20 marks)

An association list, alist for short, is an abstract data type to store key-value pairs. The operation
for finding the value associated with a key is called a lookup. An association list can be used to
implement a “symbol table”, in an assembler program, for example.

AList table = new AList();

table.put("Quot", new Address(44));

table.put("Rem", new Address(45));

table.put("[7]", new Address(7));

Address x = (Address) table.get("Quot");

System.out.println("x = " + x);

would display,

x = 0044

the class Address is defined in the Appendix C.
For the partial implementation of the class AList below, using linked nodes, write the instance

method put according to the following specifications, Object put(Object key, Object value):

• Associates the specified value with the specified key in this association list;

• If the association list previously contained an association for this key, the old value is replaced
by the specified value;

• Returns the previous value associated with the specified key, or null if the AList contains
no association for this key;

• Neither the key nor the value can be null, an exception of type IllegalArgumentException
must be thrown if this is the case.

public class AList {

// private nested class

private static class Node {

private Object key;

private Object value;

private Node next;

public Node(Object key, Object value, Node next) {

this.key = key;

this.value = value;

this.next = next;

}

} // end of Node

private Node first ; // first node

April 2004 CSI 1101 Page 7 of 20

(Question 5 continued)

// Representation of the empty list

public AList() {

first = null;

}

// The other methods, such as get, would go here, but no auxiliary method can

// be used for your implementation. Write your answer in the space below.

} // End of AList

April 2004 CSI 1101 Page 8 of 20

Question 6 (16 marks)

Write the static method boolean equals(Queue a, Queue b) that returns true if a and b are
two queues containing the same elements in the same order. This will require taking elements out of
the queues and comparing them one by one. The only auxiliary data structure that you are allowed
to use to temporarily store these elements is a stack (you can use as many stacks as you need).
Here are the two interfaces for this question. You may assume the existence of an implementation
for Stack, say LinkedStack. The queues a and b must remain unchanged following a call to the
method equals.

public interface Queue {

// Tests if this Queue is empty

public abstract boolean isEmpty();

// Removes and returns the front element of the Queue

public abstract Object dequeue();

// Puts an element at the rear of this Queue

public abstract void enqueue(Object element);

}

public interface Stack {

// Tests if this Stack is empty

public abstract boolean isEmpty();

// Returns a reference to the top element; does not change

// the state of this Stack

public abstract Object peek();

// Removes and returns the element at the top of this stack

public abstract Object pop();

// Puts an element onto the top of this stack

public abstract void push(Object element);

}

April 2004 CSI 1101 Page 9 of 20

(Question 6 continued)

public static boolean equals(Queue a, Queue b) {

} End of equals

April 2004 CSI 1101 Page 10 of 20

Question 7 (20 marks)

Write an implementation for the interface Stack below.

public interface Stack {

// Puts an element onto the top of this stack

public abstract void push(Object element);

// Removes and returns the element at the top of this stack

public abstract Object pop() throws java.util.EmptyStackException;

// Tests if this Stack is empty

public abstract boolean isEmpty();

}

• Your implementation must use a fixed-size array;

• The constructor of the class has a parameter, which is the size of the array;

• Whenever the stack is full the method push should discard the bottom element to make room
for the new element to be inserted, consequently elements will be lost;

• However, the method push should not move the elements that are currently stored in the
stack, this solution is considered to costly, instead, the implementation should use a circular
array, as seen in class and in assignment 6;

• null values are valid elements.

April 2004 CSI 1101 Page 11 of 20

(Question 7 continued)

April 2004 CSI 1101 Page 12 of 20

(Question 7 continued)

April 2004 CSI 1101 Page 13 of 20

Question 8 (15 marks)

For the class BitList below write a recursive instance method that returns a new BitList that
is the complement of this list (the complement of 0 is 1, and vice-versa). The implementation
must follow the scheme presented in class, where a recursive method is made of a public part and
a private recursive part, that we called the helper method. The public method is responsible for
initiating the first call to the recursive method. If the list is empty the method must return a new
empty list. Assuming that a designates an instance that contains the following list of bits,

-> 1 -> 1 -> 0 -> 1 -> 0 -> 0 -> 1

a.complement() returns a new BitList as follows,

-> 0 -> 0 -> 1 -> 0 -> 1 -> 1 -> 0

public class BitList {

public static final int ZERO = 0;

public static final int ONE = 1;

// the implementation of the Nodes

private static class Node {

private int bit;

private Node next;

private Node(int bit, Node next) {

this.bit = bit;

this.next = next;

}

}

// instance variables

private Node first;

private Node last;

// constructor

public BitList() {

first = null;

}

public void addFirst(int bit) {

first = new Node(bit, first);

if (last == null)

last = first;

}

public void addLast(int bit) {

Node newNode = new Node(bit, null);

if (first == null) {

first = newNode;

last = first;

} else {

last.next = newNode;

last = last.next;

}

}

April 2004 CSI 1101 Page 14 of 20

(Question 8 continued)

} // End of BitList

April 2004 CSI 1101 Page 15 of 20

Question 9 (5 marks)

Nowadays, microprocessors are found everywhere. The UltimateGrill is a new product that will
be launched next year; available at Mona Dépot. The emphasis is placed on security. Accordingly,
the BBQ is equipped with sensors and microprocessors. Java has been chosen as the implementation
language because of its ability to handle exceptions. For this question you must:

A. Implement the exception class BurnerException as a direct descendant of the class Excep-
tion. This class has a single constructor that has a formal parameter of type String, which
is the message to be passed to the constructor of the superclass upon creation;

B. In the class UltimateGrill, make all the necessary changes so that the method start handles
error situations as follows; the grill is functional if at least 3 out of its 4 burners are functional,
otherwise the grill is automatically turned off.

public class UltimateGrill {

public static final int NB_BURNERS = 4;

private Burner[] elems;

UltimateGrill() {

elems = new Burner[NB_BURNERS];

for (int i=0; i<NB_BURNERS; i++) {

elems[i] = new Burner();

}

}

public void start() {

for (int i=0; i<NB_BURNERS; i++) {

elems[i].ignite();

}

}

public void stop() {

for (int i=0; i<NB_BURNERS; i++) {

elems[i].turnOff();

}

}

}

Assume the existence of a class called Burner that has the following methods.

• ignite(): ignites the element or throws an exception of type BurnerException if an error
occurs;

• turnOff(): turns off the burner.

April 2004 CSI 1101 Page 16 of 20

(Question 9 continued)

April 2004 CSI 1101 Page 17 of 20

Appendix A: Switching Logic

A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

A NOT A
0 1
1 0

April 2004 CSI 1101 Page 18 of 20

Appendix B: TC-1101 architecture and assembly language
M

ai
n

m
em

or
y

OpCode OpAddrOpAddr
H L

PC
R/W

Control

MDR

MAR

H
Z
N

ALU

A

Mnemonic opCode Description
LDA 91 load x
STA 39 store x
CLA 08 clear the accumulator (a=0, z=true, n=false)
INC 10 increment accumulator (modifies z and n)

ADD 99 add x to the accumulator (modifies z and n)
ADDi 83 add a value to the accumulator (modifies z and n)
SUB 61 subtract x from the accumulator (modifies z and n)
JMP 15 unconditional branch to x

JZ 17 go to x if z==true
JN 19 go to x if n==true

DSP 01 display the content of the memory location x
HLT 64 halt

where x is a memory location.

April 2004 CSI 1101 Page 19 of 20

Appendix C: auxiliary classes

Here is a possible implementation for the class Address.

public class Address {

// addresses are 2 "bytes"

public static final int MAX_ADDRESS = 9999;

private int address;

public Address(int address) {

if ((address < 0) || (address > MAX_ADDRESS))

throw new IllegalArgumentException(Integer.toString(address));

this.address = address;

}

public int getValue() {

return address;

}

public String toString() {

String sAddr = Integer.toString(address);

while (sAddr.length() < 4) {

sAddr = "0" + sAddr;

}

return sAddr;

}

}

April 2004 CSI 1101 Page 20 of 20

(blank space)

