
Introduction to Computer Science II (ITI 1221)
Final Examination

Instructor: Marcel Turcotte

April 2006, duration: 3 hours

Identification

Last name: First name:

Student number: Signature:

Instructions

1. This is a closed book examination;
2. No calculators or other aids are permitted;
3. Write comments and assumptions to get partial marks;
4. Beware, poor hand writing can affect grades;
5. Do not remove the staple holding the examination pages together;
6. Write your answers in the space provided. Use the backs of pages if necessary.

You may not hand in additional pages;

Marking scheme

Question Maximum Result
1 15
2 15
3 10
4 15
5 15
6 5
7 15
8 10

Total 100

April 2006 ITI 1221 Page 2 of 18

Question 1: isPalindrome (15 marks)

Complete the implementation of the static method boolean isPalindrome(CharReader r).
Let’s define a palindrome as a word or a phrase that reads the same forward and backward if the
punctuation symbols and spaces are ignored. Examples of palindromes include:

• i prefer pi

• never odd or even

• was it a cat i saw

Follow all the directives.

• boolean isPalindrome(CharReader r); returns true if the whole word or phrase specified
by the reader is a palindrome according to the above definition, and false otherwise;

• The parameter of the method is a CharReader. A CharReader has two instance methods.

– boolean hasMoreChars(); returns true if the reader has more characters to return,
that is if a call to char nextChar() would succeed, and false otherwise;

– char nextChar(); returns the next character of the input.

• You can only use instances of a Stack and/or a Queue as temporary storage (in particular,
you cannot use arrays or strings);

• The class StackImpl implements the interface Stack. For this question, a Stack stores
characters.

public interface Stack {

public abstract boolean isEmpty();

public abstract char peek();

public abstract char pop();

public abstract void push(char element);

}

• The class QueueImpl implements the interface Queue. For this question, a Queue stores
characters.

public interface Queue {

public abstract boolean isEmpty();

public abstract char dequeue();

public abstract void enqueue(char element);

}

• StackImpl and QueueImpl can store an arbitrarily large number of characters;

• Character.isLetter(c) can be used to determine if the character c is a letter.

April 2006 ITI 1221 Page 3 of 18

public static boolean isPalindrome(CharReader reader) {

boolean answer = true;

while (reader.hasMoreChars()) {

char c = reader.nextChar();

return answer;

}

April 2006 ITI 1221 Page 4 of 18

Question 2: CircularStack (15 marks)

Complete the implementation of the class CircularStack. The context for this question is an
application that is required to support a fixed number of undo operations. You can imagine a text
editor that allows to add, delete or replace characters. For every operation that is performed (add,
delete or replace) an object is pushed onto a stack. Whenever the application is required to undo
an operation, it retrieves an element from the stack. However, since the stack has a fixed capacity,
the maximum number of operations that can be undone is equal to the size of stack. Follow all the
directives.

• Because of memory constraints, only a fixed number of undo operations are allowed;

• Whenever the stack is full, the method push discards the oldest (bottom) element to make
room for the new element to be inserted;

• However, the method push should not move the elements that are currently stored in the stack.
Instead, it overwrites the oldest (bottom) element. Notice the similarity with the circular array
implementation of the Queue seen in class;

• void push(Object o); pushes an element onto the top of this stack, null is a valid value;

• Object pop(); removes and returns the top element of the stack. If the stack is empty, the
method must throw an exception of type EmptyStackException.

import java.util.EmptyStackException;

public class CircularStack {

private Object[] stack;

private int top = 0;

private int size = 0;

public CircularStack(int capacity) {

if (capacity < 0) {

throw new IllegalArgumentException("negative number");

}

stack = new Object[capacity];

}

public boolean isEmpty() {

return size == 0;

}

Complete the implementation of the methods push and pop on the next page.

April 2006 ITI 1221 Page 5 of 18

public void push(Object item) {

}

public Object pop() {

}

} // End of CircularStack

April 2006 ITI 1221 Page 6 of 18

Question 3: ArrayListIterator (10 marks)

In the class ArrayList below, complete the implementation of the iterator. For this question, the
declaration of the interface Iterator is as follows.

public interface Iterator {

// Returns true if the iteration has more elements.

public abstract boolean hasNext();

// Returns the next element in the interation. Throws

// NoSuchElementException if the iteration has no next element.

public abstract Object next();

}

import java.util.NoSuchElementException;

public class ArrayList {

// Instance variables

private Object[] elems;

private int size = 0;

// Constructor

public ArrayList(int capacity) {

if (capacity < 0) {

throw new IllegalArgumentException();

}

elems = new Object[capacity];

}

public boolean isEmpty() {

return size == 0;

}

public void addLast(Object element) {

if (size == elems.length) {

increaseSize();

}

elems[size] = element;

size++;

}

private void increaseSize() {

Object[] newElems;

newElems = new Object[2 * elems.length];

System.arraycopy(elems, 0, newElems, 0, elems.length);

elems = newElems;

}

April 2006 ITI 1221 Page 7 of 18

public Object remove(int index) {

if (index < 0 || index > (size - 1)) {

throw new IndexOutOfBoundsException("Index: "+index);

}

Object savedElem = elems[index];

System.arraycopy(elems, index+1, elems, index, size - index - 1);

size--;

elems[size] = null;

return savedElem;

}

public Iterator iterator() {

return ______________________________;

}

private _______________ class ArrayListIterator implements Iterator {

private _______________ current = _______________;

public boolean hasNext() { // implement hasNext()

boolean answer;

return answer;

}

public Object next() { // implement next()

Object answer;

return answer;

}

} // end of ArrayListIterator

} // end of ArrayList

April 2006 ITI 1221 Page 8 of 18

Question 4: equals (15 marks)

Iterator iterator()
void add(Object o)
void remove(Object o)
boolean isEmpty()

«interface»
Collection

AbstractList

LinkedList ArrayList

In the abstract class AbstractList found on the next page, override the method boolean
equals(Object other). Follow all the directives for writing the method.

• Compares other with this list for equality;

• Returns true if and only if other is also an AbstractList (more precisely, the object desig-
nated by other is an instance of a subclass of AbstractList), both lists have the same size,
and all the corresponding pairs of elements in the two lists are equal. Otherwise, the method
returns false;

• The value null is a valid element;

• AbstractList implements the interface Collection;

• LinkedList and ArrayList are two examples of subclasses of AbstractList but there could
be more;

• Use iterators to implement the method.

The declarations of the interfaces Collection and Iterator can be found on page 10.

April 2006 ITI 1221 Page 9 of 18

public class AbstractList implements Collection {

public boolean equals(Object other) {

} // End of equals

} // End of AbstractList

April 2006 ITI 1221 Page 10 of 18

public interface Collection {

/* Returns an iterator over the elements in this collection.

*/

public abstract Iterator iterator();

/* Add the item to the Collection and return true if the

* collection changed as a result of this call.

*/

public abstract boolean add(Object item);

/* Removes a single instance of the specified element from this

* collection, if it is present. Returns true if this collection

* changed as a result of the call.

*/

public abstract boolean remove(Object item);

/* Returns true if this collection contains no elements.

*/

public abstract boolean isEmpty();

}

public interface Iterator {

/* Returns true if the iteration has more elements.

*/

public abstract boolean hasNext();

/* Returns the next element in the interation. Throws

* NoSuchElementException if the iteration has no next element.

*/

public abstract Object next();

}

April 2006 ITI 1221 Page 11 of 18

Question 5: splitAt (15 marks)

Complete the implementation of the instance method LinkedList splitAt(int n). The method
splitAt splits this LinkedList in two parts. The first n elements remain part of this list while the
rest is returned in a new LinkedList. In particular,

• After the call t = l.splitAt(0), l is empty and t contains all the elements that were initially
present in l;

• After the call t = l.splitAt(1), l contains one element and t contains all the elements that
were initially present in l except one;

• After the call t = l.splitAt(i), l contains i elements and t contains size-i elements, where
size is the length of l before the call;

• After the call t = l.splitAt(l.size()), l is unchanged and t designates an empty LinkedList;

• An exception, IllegalArgumentException, is thrown if the parameter n is larger than the
size of the list.

The implementation of the LinkedList has the same characteristics as the one of the assignment
4.

• This implementation always starts off with a dummy node, which serves as a marker for the
start of the list. The dummy node is never used to store data. The empty list consists of the
dummy node only;

• In the implementation for this question, the nodes of the list are doubly linked;

• In this implementation, the list is circular, i.e. the reference next of the last node of the list
is pointing at the dummy node, the reference previous of the dummy node is pointing at the
last element of the list. In the empty list, the dummy node is the first and last node of the
list, its references previous and next are pointing at the node itself;

• Since the last node is easily accessed, it is always the previous node of the dummy node, the
header of the list does not need (have) a tail pointer.

Write your answer in the class LinkedList on the next page. No method calls are allowed.

Hint: draw the memory diagram for the special and general cases.

April 2006 ITI 1221 Page 12 of 18

public class LinkedList {

private static class Elem { // Implementation of the doubly linked nodes

private Object value;

private Elem previous;

private Elem next;

private Elem(Object value, Elem previous, Elem next) {

this.value = value;

this.previous = previous;

this.next = next;

}

}

private Elem head;

private int size;

public LinkedList() {

head = new Elem(null, null, null);

head.next = head.previous = head;

size = 0;

}

public LinkedList splitAt(int n) {

if (______________________________) {

throw new IllegalArgumentException();

}

_______________ answer = ______________________________;

Elem p = ______________________________;

for (int i=0; i<_______________; i++) {

p = p.next;

}

if (______________________________) { // complete

answer.size = ______________________________;

size = ______________________________;

}

return answer;

}

}

April 2006 ITI 1221 Page 13 of 18

Question 6: foo (5 marks)

The recursive method SinglyLinkedList foo() was applied to a list containing the following
integers (objects of the class Integer): “[1,2,3,4,5,6,7,8,9]”. Which of the following lists represents
the result of the execution of the method SinglyLinkedList foo()? Circle the right answer.

A. [1,2,3,4,5,6,7,8,9];

B. [1,2];

C. [2,5,8,7,4,1];

D. [1,4,7,9,6,3];

E. [3,6,9,7,4,1];

F. [1,4,7,8,5,2];

G. [2,1];

H. [2,4,8,9,3,1];

I. [9,8,7,6,5,4,3,2,1];

J. [].

public SinglyLinkedList foo() {

SinglyLinkedList answer;

answer = new SinglyLinkedList();

foo(first, 0, answer);

return answer;

}

private static void foo(Node p, int index, SinglyLinkedList answer) {

if (p == null) {

return;

} else {

if (index % 3 == 0) {

answer.addFirst(p.value);

}

foo(p.next, index+1, answer);

if (index % 3 == 1) {

answer.addFirst(p.value);

}

return;

}

}

The implementation of the class SinglyLinkedList can be found on the next page.

April 2006 ITI 1221 Page 14 of 18

public class SinglyLinkedList {

// Objects of the static nested class Node are used to create

// the structure of the linked list.

private static class Node {

private Object value;

private Node next;

private Node(Object value, Node next) {

this.value = value;

this.next = next;

}

}

// The first Node of the linked list.

private Node first;

// Adds an element at the start of the list.

public void addFirst(Object item) {

first = new Node(item, first);

}

// Override the method String toString().

public String toString() {

StringBuffer answer = new StringBuffer("[");

Node p = first;

while (p != null) {

if (p != first) {

answer.append(",");

}

answer.append(p.value);

p = p.next;

}

answer.append("]");

return answer.toString();

}

}

April 2006 ITI 1221 Page 15 of 18

Question 7: zip (15 marks)

Complete the implementation of the method LinkedList zip(Operator op, LinkedList l1,
LinkedList l2) on the next page.

• Returns a new LinkedList that is of the same length as the two input lists and such that the
values of this list are the result of applying the operator op to the elements at the respective
position within each list;

• The interface Operator is defined as follows:

public interface Operator {

public abstract Object apply(Object a, Object b);

}

• Both arguments must be of the same length, otherwise an IllegalArgumentException is
thrown;

• Both LinkedList arguments remain unchanged by a call to zip;

• The method zip is implemented outside of the class LinkedList. Here are the public methods
that you can use to implement zip:

– LinkedList(); constructor;

– void addFirst(Object item); adds item at the start of this list;

– void addLast(Object item); adds item at the end of this list;

– void deleteFirst(); deletes the first element of this list;

– boolean isEmpty(); returns true if and only if this list is empty;

– Object head(); returns a reference to the object stored in the first node of this list;

– LinkedList split(); returns the tail of this list, this list now contains a single element;

– void join(LinkedList other); appends other at the end of this list, other is now
empty.

• Given two lists of integers (objects of the class Integer) l1 and l2:

l1 is [1,3,5,7,9]

l2 is [0,2,4,6,8]

The execution of l3 = zip(new Plus(), l1, l2) produces a list where each element is the
sum of the elements at the respective position within each list; l1 and l2 remain unchanged:

l3 is [1,5,9,13,17]

April 2006 ITI 1221 Page 16 of 18

public static LinkedList zip(Operator op, LinkedList l1, LinkedList l2) {

LinkedList answer;

if (______________________________) {

throw new IllegalArgumentException("first list is shorter");

}

if (______________________________) {

throw new IllegalArgumentException("second list is shorter");

}

if (l1.isEmpty() && l2.isEmpty()) {

answer = new LinkedList();

} else {

LinkedList t1, t2;

t1 = ______________________________;

t2 = ______________________________;

answer = zip(op, __________, __________);

Object current = ______________________________;

answer._______________(current);

______________________________;

______________________________;

}

return answer;

}

April 2006 ITI 1221 Page 17 of 18

Question 8: getLeavesCount (10 marks)

For the class BinarySearchTree, implement the instance method int getLeavesCount(). It
returns an integer equal to the number of leaves in this binary tree.

public class BinarySearchTree {

// Objects of the static nested class Node are used to create

// the structure of the binary tree.

private static class Node {

private Comparable value;

private Node left;

private Node right;

private Node(Comparable value) {

this.value = value;

left = null;

right = null;

}

}

private Node root = null;

} // End of BinarySearchTree

April 2006 ITI 1221 Page 18 of 18

(blank space)

