
Introduction to Computing II (ITI 1121)
Midterm Examination

Instructor: Marcel Turcotte

February 2010, duration: 2 hours

Identification

Student name:

Student number: Signature:

Instructions

1. This is a closed book examination;
2. No calculators or other aids are permitted;
3. Write comments and assumptions to get partial marks;
4. Beware, poor hand writing can affect grades;
5. Do not remove the staple holding the examination pages together;
6. Write your answers in the space provided. Use the back of pages if necessary.

You may not hand in additional pages.

Marking scheme

Question Maximum Result
1 5
2 5
3 5
4 20
5 25

Total 60

February 2010 ITI 1121 Page 2 of 15

Question 1: (5 marks)

A. Transform the infix expression “100− (6− 2)× 5” into postfix (RPN).

B. Use the stack-based algorithm seen in class to evaluate the following postfix (RPN) expression
and show the content of the stack immediately before and after processing each operator.
The symbol represents a space.

2 5 × 9 6 3 ÷ − +

Before × After × Before ÷ After ÷

Before − After − Before + After +

February 2010 ITI 1121 Page 3 of 15

Question 2: (5 marks)

On the next page, you will find the declarations of the classes Animal, Cat and FamousCat.
What will be the outcome of compiling and executing each block of code below? Use one of the
following four patterns to answer and give a brief explanation.

i. Produces a compile-time error;

ii. Produces an execution-time error;

iii. Compiles and runs, but displays nothing;

iv. Otherwise, write down the information that will be displayed on the screen.

A. Animal boo = new Cat(12.0);

System.out.println(boo.says());

Answer:

B. FamousCat sylvester = new FamousCat("That’s Not All Folks!");

System.out.println(sylvester.says());

Answer:

C. Cat garfield = new FamousCat("It’s My Birthday!");

System.out.println(garfield.says());

Answer:

D. Cat garfield = new FamousCat("It’s My Birthday!");

FamousCat sylvester = new FamousCat("That’s Not All Folks!");

sylvester = garfield;

System.out.println(sylvester.says());

Answer:

E. Cat garfield;

Animal boo = new Cat(12.0);

FamousCat sylvester = new FamousCat("That’s Not All Folks!");

if (boo instanceof Cat) {

garfield = (Cat) boo;

sylvester.swap(garfield);

System.out.println(sylvester.getWeight());

}

Answer:

February 2010 ITI 1121 Page 4 of 15

public abstract class Animal {

protected double weight = 0.0;

public Animal(double w) {

weight = w;

}

public abstract String says();

public double getWeight() {

return weight;

}

}

public class Cat extends Animal {

public Cat(double w) {

super(w);

}

public String says() {

return "Meow!";

}

}

public class FamousCat extends Cat {

private String message;

public FamousCat(String msg) {

super(19.0);

message = msg;

}

public String says() {

return message;

}

private static void swap(double a, double b) {

double tmp = a;

a = b;

b = tmp;

}

public void swap(Cat other) {

swap(weight, other.weight);

}

}

February 2010 ITI 1121 Page 5 of 15

Question 3: (5 marks)

public class Pair {

private Object first;

private Object second;

public Object getFirst() {

return first;

}

public void setFirst(Object first) {

this.first = first;

}

public Object getSecond() {

return second;

}

public void setSecond(Object second) {

this.second = second;

}

public String toString() {

return "{" + first + "," + second + "}";

}

}

Given the above declaration of the class Pair.

A. Give the result of executing the statements below, i.e. what will be displayed on the screen
immediately after the execution of “System.out.println(p1)”;

B. Draw the memory diagrams representing p1 and p2 immediately after executing the last
statement (make sure to include all the objects and all the variables involved).

Pair p1, p2;

p1 = new Pair();

p1.setFirst(new String("Alpha"));

p2 = new Pair();

p2.setFirst(new String("Bravo"));

p1.setSecond(p2);

p2.setSecond(null);

System.out.println(p1);

February 2010 ITI 1121 Page 6 of 15

Question 4: (20 marks)

In mathematics, a series is an infinite sequence of terms added together. The partial sum of the
series, Sn, is the sum of the first n terms.

Sn =
n∑

i=1

ai

Here, you must create a class hierarchy, as illustrated by the UML diagram below, such that all the
series have a method next, which returns the next Sn. The first call to the method next returns
S1, which is

a1

the next call to the method next returns S2, which is

a1 + a2

the next call to the method next returns S3, which is

a1 + a2 + a3

and so on. The implementation of the method next is specific to the type of series, here Arithmetic
and Geometric. Specifically, this hierarchy consists of the interface Series, an abstract class called
AbstractSeries, as well as two concrete implementations, called Arithmetic and Geometric.

+take(int n) : double[]
AbstractSeries

+next() : double

«interface»
Series

Arithmetic Geometric

Here is a test program that illustrates the intended use of the classes.

AbstractSeries sn;

double[] tuple;

sn = new Arithmetic();

for (int n=0; n<5; n++) {

System.out.println(sn.next());

}

sn = new Geometric();

tuple = sn.take(5);

for (int n=0; n<5; n++) {

System.out.println(tuple[n]);

}

The first loop displays the values 1.0, 3.0, 6.0, 10.0, 15.0, whilst the second one displays, 1.0, 1.5,
1.75, 1.875, 1.9375. See page 10 for the details of the calculations.

February 2010 ITI 1121 Page 7 of 15

(Question 4: continued)

A. Create an interface called Series. It declares a method called next that has a return-type
double.

B. Write the implementation of the abstract class AbstractSeries. It realizes the interface
Series. The class implements a method called take that returns an array containing the next
k partial sums of this series, where k is the formal parameter of the method take.

February 2010 ITI 1121 Page 8 of 15

(Question 4: continued)

C. Implement the class Arithmetic, which is a subclass of AbstractSeries. In this class, the
first call to the method next returns the value 1.0, the second call returns the value 3.0, the
third call returns 6.0, the fourth call returns 10.0, etc. The general formula is as follows, the
ith call to the method next returns Si−1 + i, where i ∈ 1, 2, 3 . . . and Si−1 is the value that
was returned by the previous call to the method next.

Sn =
n∑

i=1

i

February 2010 ITI 1121 Page 9 of 15

(Question 4: continued)

D. Implement the class Geometric, which is a subclass of AbstractSeries. Each call to the
method next produces the next partial sum of the series according to the formula below. The
first call returns 1.0, the second call returns 1.5, the third call returns 1.75, etc. You can use
Math.pow(a, b), which returns ab, for your implementation.

Sn =
n∑

i=0

1

2i

February 2010 ITI 1121 Page 10 of 15

(Question 4: continued)

The first 5 partial sums of the arithmetic series are

S1 = 1

S2 = 1 + 2 = 3

S3 = 1 + 2 + 3 = 6

S4 = 1 + 2 + 3 + 4 = 10

S5 = 1 + 2 + 3 + 4 + 5 = 15

The first 5 partial sums of the geometric series are

S1 = 1

S2 = 1 + 1
2

= 1.5

S3 = 1 + 1
2

+ 1
4

= 1.75

S4 = 1 + 1
2

+ 1
4

+ 1
8

= 1.875

S5 = 1 + 1
2

+ 1
4

+ 1
8

+ 1
16

= 1.9375

A call to the method next produces the next partial sum, i.e. the next value of Sn.

February 2010 ITI 1121 Page 11 of 15

Question 5: (25 marks)

For this question, you must complete the implementation of the class Tuple, the interface Pred-
icate, and the class IsNegative. Here is a test program that illustrates their intended use. The
last statement displays the value 2.

Tuple<Integer> t;

int n;

n = 5;

t = new Tuple<Integer>(n);

t.add(3);

t.add(-14);

t.add(-15);

t.add(9);

t.add(26);

System.out.println(t.count(new IsNegative()));

A. Complete the implementation of the class Tuple on the next page. In computer science, an
n-tuple is a linear collection of n elements. The type of the elements is a type argument of
the class declaration, in other words, Tuple is a parameterized type.

• The implementation uses a fixed size array to store the elements of the collection;

• The class has a constructor that has the following signature Tuple(int n), where n is
the capacity (physical size) of the tuple;

• The class has a method boolean add(E elem), where E is the type of the elements of
the collection. If the array is not full, the method adds the element at the end of the
collection and returns true. Otherwise, if the collection was full when the call was made,
the tuple remains unchanged and the method returns false;

• Implement the method int count(Predicate<E> p). The method returns the number
of elements of this tuple for which the method eval of the predicate p returns true.

February 2010 ITI 1121 Page 12 of 15

(Question 5: continued)

public class Tuple {

// instance variable(s)

public Tuple(int n) {

}

public boolean add(E elem) {

}

public int count(Predicate<E> p) {

}

}

February 2010 ITI 1121 Page 13 of 15

(Question 5: continued)

B. Complete the implementation of the interface Predicate. This interface is a parameterized
type. The interface declares a method called eval that has a single parameter, its type is the
type parameter of the interface. The return-type of the method eval is boolean.

public Predicate {

}

C. Complete the implementation of the class IsNegative. The class must realize the interface
Predicate. The method eval returns true if the value of the parameter is negative, and
false otherwise.

public IsNegative {

}

February 2010 ITI 1121 Page 14 of 15

(blank space)

February 2010 ITI 1121 Page 15 of 15

(blank space)

