Lecture 02

Jupyter Notebook - Empty

Author
Affiliations

Marcel Turcotte

School of Electrical Engineering and Computer Science

University of Ottawa

Published

November 15, 2024

Market Capitalization of NVIDIA and Intel (2012 - 2024)

The Python library yfinance is often used to download stock market data.

import yfinance as yf
import matplotlib.pyplot as plt

Let’s define the stocks that are of interest for this analysis.

# Define the tickers for NVIDIA and Intel
tickers = ['NVDA', 'INTC']

Now, downloading the data to our Colab instance or local computer.

# Download the historical market data since 2012
data = yf.download(tickers, start='2012-01-01', end='2024-01-01', group_by='ticker')

Focusing on the closing prices.

# Extract the adjusted closing prices
nvda_data = data['NVDA']['Adj Close']
intc_data = data['INTC']['Adj Close']

Drawing.

# Plot the stock price data
plt.figure(figsize=(12, 6))
plt.plot(nvda_data.index, nvda_data, label='NVIDIA')
plt.plot(intc_data.index, intc_data, label='Intel')
plt.title('Stock Prices of NVIDIA and Intel (2012 - 2024)')
plt.xlabel('Date')
plt.ylabel('Stock Price (USD)')
plt.legend()
plt.grid(True)
plt.show()

Now calculating the market capitalisation.

# Fetch the number of shares outstanding (this gives the most recent value)
nvda_shares = yf.Ticker('NVDA').info['sharesOutstanding']
intc_shares = yf.Ticker('INTC').info['sharesOutstanding']

# Calculate market capitalization (Adjusted Close * shares outstanding)
nvda_market_cap = data['NVDA']['Adj Close'] * nvda_shares
intc_market_cap = data['INTC']['Adj Close'] * intc_shares

While the share prices of NVIDIA and Intel are comparable, NVIDIA’s market capitalization has experienced a significant increase since 2020, in contrast to Intel’s more stable market capitalization.

# Plot the market capitalization data
plt.figure(figsize=(12, 6))
plt.plot(nvda_market_cap.index, nvda_market_cap, label='NVIDIA')
plt.plot(intc_market_cap.index, intc_market_cap, label='Intel')
plt.title('Market Capitalization of NVIDIA and Intel (2012 - 2024)')
plt.xlabel('Date')
plt.ylabel('Market Capitalization (USD)')
plt.legend()
plt.grid(True)
plt.show()